cube-studio/myapp/models/model_nni.py
2021-09-07 18:09:47 +08:00

150 lines
5.4 KiB
Python

from flask_appbuilder import Model
from sqlalchemy import Column, Integer, String, ForeignKey,Float
from sqlalchemy.orm import relationship
import datetime,time,json
from sqlalchemy import (
Boolean,
Column,
create_engine,
DateTime,
ForeignKey,
Integer,
MetaData,
String,
Table,
Text,
Enum,
)
from myapp.utils import core
import re
from myapp.models.base import MyappModelBase
from myapp.models.helpers import AuditMixinNullable, ImportMixin
from flask import escape, g, Markup, request
from myapp import app,db
from myapp.models.helpers import ImportMixin
# 添加自定义model
from sqlalchemy import Column, Integer, String, ForeignKey ,Date,DateTime
from flask_appbuilder.models.decorators import renders
from flask import Markup
import datetime
metadata = Model.metadata
conf = app.config
# 定义model
class NNI(Model,AuditMixinNullable,MyappModelBase):
__tablename__ = 'nni'
id = Column(Integer, primary_key=True)
job_type = Column(Enum('Job'),nullable=False,default='Job')
project_id = Column(Integer, ForeignKey('project.id'), nullable=False) # 定义外键
project = relationship(
"Project", foreign_keys=[project_id]
)
name = Column(String(200), unique = True, nullable=False)
namespace = Column(String(200), nullable=False,default='katib')
describe = Column(Text)
parallel_trial_count = Column(Integer,default=3)
maxExecDuration = Column(Integer,default=3600)
max_trial_count = Column(Integer,default=12)
max_failed_trial_count = Column(Integer,default=3)
objective_type = Column(Enum('maximize','minimize'),nullable=False,default='maximize')
objective_goal = Column(Float, nullable=False,default=0.99)
objective_metric_name = Column(String(200), nullable=False,default='accuracy')
objective_additional_metric_names = Column(String(200),default='') # 逗号分隔
algorithm_name = Column(String(200),nullable=False,default='Random')
algorithm_setting = Column(Text,default='') # 搜索算法的配置
parameters=Column(Text,default='{}') # 搜索超参的配置
job_json = Column(Text, default='{}') # 根据不同算法和参数写入的task模板
trial_spec=Column(Text,default='') # 根据不同算法和参数写入的task模板
# code_dir = Column(String(200), default='') # 代码挂载
working_dir = Column(String(200), default='') # 挂载
volume_mount = Column(String(100), default='kubeflow-user-workspace(pvc):/mnt,kubeflow-archives(pvc):/archives') # 挂载
node_selector = Column(String(100), default='cpu=true,train=true') # 挂载
image_pull_policy = Column(Enum('Always', 'IfNotPresent'), nullable=False, default='Always')
resource_memory = Column(String(100), default='1G')
resource_cpu = Column(String(100), default='1')
resource_gpu = Column(String(100), default='')
experiment=Column(Text,default='') # 构建出来的实验体
alert_status = Column(String(100), default='Pending,Running,Succeeded,Failed,Terminated') # 哪些状态会报警Pending,Running,Succeeded,Failed,Unknown,Waiting,Terminated
def __repr__(self):
return self.name
@property
def run(self):
return Markup(f'<a href="/nni_modelview/run/{self.id}">运行</a>')
@renders('parameters')
def parameters_html(self):
return Markup('<pre><code>' + self.parameters + '</code></pre>')
# '''
# "\"单反斜杠 %5C
# "|" %7C
# 回车 %0D%0A
# 空格 %20
# 双引号 %22
# "&" %26
# '''
@property
def name_url(self):
return Markup(f'<a target=_blank href="/experiments_modelview/list/?_flt_2_labels=%22{self.name}%22">{self.name}</a>')
@property
def describe_url(self):
return Markup(f'<a target=_blank href="/nni/{self.name}/">{self.describe}</a>')
@renders('trial_spec')
def trial_spec_html(self):
return Markup('<pre><code>' + self.trial_spec + '</code></pre>')
@renders('experiment')
def experiment_html(self):
return Markup('<pre><code>' + self.experiment + '</code></pre>')
@property
def log(self):
return Markup(f'<a target=_blank href="/nni_modelview/log/{self.id}">log</a>')
def get_node_selector(self):
return self.get_default_node_selector(self.project.node_selector,self.resource_gpu,'train')
def clone(self):
return NNI(
name=self.name.replace('_','-'),
job_type = self.job_type,
describe=self.describe,
namespace=self.namespace,
project_id=self.project_id,
parallel_trial_count=self.parallel_trial_count,
max_trial_count=self.max_trial_count,
max_failed_trial_count=self.max_failed_trial_count,
objective_type=self.objective_type,
objective_goal=self.objective_goal,
objective_metric_name=self.objective_metric_name,
objective_additional_metric_names=self.objective_additional_metric_names,
algorithm_name=self.algorithm_name,
algorithm_setting=self.algorithm_setting,
parameters=self.parameters,
job_json = self.job_json,
trial_spec=self.trial_spec,
volume_mount=self.volume_mount,
node_selector=self.node_selector,
image_pull_policy=self.image_pull_policy,
resource_memory=self.resource_memory,
resource_cpu=self.resource_cpu,
experiment=self.experiment,
alert_status=self.alert_status
)