mirror of
https://github.com/tencentmusic/cube-studio.git
synced 2024-12-15 06:09:57 +08:00
193 lines
8.5 KiB
Python
193 lines
8.5 KiB
Python
import torch
|
||
from tqdm import tqdm
|
||
|
||
from config import TrainingConfig, BiLSTMConfig
|
||
from models.BiLSTM import BiLSTM, cal_loss
|
||
from utils.utils import expand_vocabulary
|
||
from evaluating import Metrics
|
||
|
||
|
||
class BiLSTM_opration:
|
||
|
||
def __init__(self, train_data, dev_data, test_data, word2id, tag2id):
|
||
self.train_word_lists, self.train_tag_lists = train_data
|
||
self.dev_word_lists, self.dev_tag_lists = dev_data
|
||
self.test_word_lists, self.test_tag_lists = test_data
|
||
self.word2id, self.tag2id = expand_vocabulary(word2id, tag2id)
|
||
self.id2tag = dict((id, tag) for tag, id in tag2id.items())
|
||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||
# self.device = 'cpu'
|
||
|
||
self.model = BiLSTM(
|
||
vocab_size=len(self.word2id),
|
||
tagset_size=len(self.tag2id),
|
||
embedding_dim=BiLSTMConfig.input_size,
|
||
hidden_dim=BiLSTMConfig.hidden_size
|
||
).to(self.device)
|
||
self.optimizer = torch.optim.Adam(params=self.model.parameters(), lr=TrainingConfig.lr)
|
||
|
||
|
||
def _sort_by_sentence_lengths(self, word_lists, tag_lists):
|
||
"""将 word_lists和tag_lists 根据sentence序列的长度
|
||
降序排序, 此举可以有效保证每个batch中的sentence序列
|
||
长度相近, 减少< pad> 占位符的用量
|
||
"""
|
||
pairs = list(zip(word_lists, tag_lists))
|
||
indices = sorted(range(len(pairs)), key=lambda x:len(pairs[x][0]), reverse=True)
|
||
|
||
pairs = [pairs[i] for i in indices]
|
||
word_lists, tag_lists = list(zip(*pairs))
|
||
|
||
return word_lists, tag_lists
|
||
|
||
def _tokenizer(self, word_lists, tag_lists=None):
|
||
"""将 word和tag 转换为 词表(word2id)和标签表(tag2id)中对应的id
|
||
:params word_lists 文本(以单个汉字为单位)序列 类型: python.List
|
||
:params tag_lists 标签序列 类型: python.List
|
||
:return wordID_lists 文本id序列 类型: pytorch.LongTensor
|
||
:return tagID_lists 标签id序列 类型: pytorch.LongTensor
|
||
"""
|
||
if tag_lists is None:
|
||
# 用于 predict函数
|
||
assert len(word_lists == 1)
|
||
sentence = word_lists[0]
|
||
wordID_lists = torch.LongTensor(size=(1, len(sentence))).to(self.device)
|
||
for i, word in enumerate(sentence):
|
||
wordID_lists[0][i] = self.word2id.get(word, self.word2id['<unk>'])
|
||
return wordID_lists
|
||
else:
|
||
# 用于 train、validate、evaluate函数
|
||
# print(word_lists)
|
||
wordID_lists = (torch.ones(size=(len(word_lists), len(word_lists[0])), dtype=torch.long) * self.word2id['<pad>']).to(self.device)
|
||
tagID_lists = (torch.ones(size=(len(word_lists), len(word_lists[0])), dtype=torch.long) * self.tag2id['<pad>']).to(self.device)
|
||
for i in range(len(word_lists)):
|
||
for j in range(len(word_lists[i])):
|
||
wordID_lists[i][j] = self.word2id.get(word_lists[i][j], self.word2id['<unk>']) # 遇到词表中不存在的字符,使用<unk>代替
|
||
tagID_lists[i][j] = self.tag2id[tag_lists[i][j]]
|
||
return wordID_lists, tagID_lists
|
||
|
||
def _predtion_to_tags(self, prediction):
|
||
"""将模型给出的预测结果转化为标签序列"""
|
||
return [self.id2tag[id.item()] for id in torch.argmax(prediction, dim=2)[0]]
|
||
|
||
|
||
def train(self):
|
||
"""训练
|
||
数据以batch的形式输入模型, 同一个batch中的序列使
|
||
用<pad>填补至与该batch中最长序列相同的长度, 故每
|
||
个batch的序列长度为不同"""
|
||
# 根据sentence的长度 重排train_data
|
||
# 此举可以减少同一个batch中的每个sentence之间
|
||
# 的长度差距,这意味只需添加最少数量的 <pad>
|
||
train_word_lists, train_tag_lists = self._sort_by_sentence_lengths(self.train_word_lists, self.train_tag_lists)
|
||
|
||
epochs = TrainingConfig.epochs
|
||
batch_size = TrainingConfig.batch_size
|
||
iteration_size = round(len(train_word_lists) / batch_size + 0.49)
|
||
|
||
for epoch in range(epochs):
|
||
losses = 0.
|
||
with tqdm(total=iteration_size, desc='Epoch %d/%d Training' %(epoch, epochs)) as pbar:
|
||
# one batch
|
||
for step in range(iteration_size):
|
||
# batch data
|
||
batch_sentences, batch_targets = self._tokenizer(
|
||
train_word_lists[batch_size * step: min(batch_size * (step+1), len(train_word_lists))],
|
||
train_tag_lists[batch_size * step: min(batch_size * (step+1), len(train_tag_lists))]
|
||
)
|
||
# forword
|
||
self.model.train()
|
||
self.model.zero_grad()
|
||
prediction = self.model.forward(batch_sentences)
|
||
# loss
|
||
loss = cal_loss(prediction, batch_targets, self.tag2id).to(self.device)
|
||
loss.backward()
|
||
self.optimizer.step()
|
||
losses += loss.item()
|
||
|
||
if step % 10 == 0 and step != 0: pbar.set_postfix(ave_loss=losses/(step+1))
|
||
pbar.update(1)
|
||
|
||
# 每个epoch结束后,使用验证集测试
|
||
val_loss = self.validate(batch_size)
|
||
pbar.set_postfix(ave_loss='{0:.3f}'.format(losses/iteration_size), val_loss='{0:.3f}'.format(val_loss))
|
||
|
||
|
||
def validate(self, batch_size):
|
||
"""验证
|
||
数据以batch的形式输入模型, 同一个batch中的序列使
|
||
用<pad>填补至与该batch中最长序列相同的长度, 故每
|
||
个batch的序列长度为不同"""
|
||
dev_word_lists, dev_tag_lists = self._sort_by_sentence_lengths(self.dev_word_lists, self.dev_tag_lists)
|
||
|
||
# print(dev_word_lists)
|
||
|
||
self.model.eval()
|
||
with torch.no_grad():
|
||
val_losses = 0
|
||
iteration_size = round(len(self.dev_word_lists) / batch_size + 0.5)
|
||
for step in range(iteration_size):
|
||
# validate batch data
|
||
|
||
val_sentences, val_targets = self._tokenizer(
|
||
dev_word_lists[batch_size * step: min(batch_size * (step+1), len(dev_word_lists))],
|
||
dev_tag_lists[batch_size * step: min(batch_size * (step+1), len(dev_tag_lists))]
|
||
)
|
||
# forward
|
||
prediction = self.model.forward(val_sentences)
|
||
# loss
|
||
loss = cal_loss(prediction, val_targets, self.tag2id).to(self.device)
|
||
val_losses += loss.item()
|
||
val_losses = val_losses / iteration_size
|
||
|
||
return val_losses
|
||
|
||
def evaluate(self, file_path):
|
||
"""评估
|
||
一个batch只有一条序列, 无需<pad>"""
|
||
self.model.eval()
|
||
with torch.no_grad():
|
||
pred_tag_lists = []
|
||
for i, (word_list, tag_list) in enumerate(zip(self.test_word_lists, self.test_tag_lists)):
|
||
# test data
|
||
wordID_list, tagID_list = self._tokenizer([word_list], [tag_list])
|
||
# forward
|
||
prediction = self.model.forward(wordID_list)
|
||
# loss
|
||
loss = cal_loss(prediction, tagID_list, self.tag2id)
|
||
|
||
if i % 100 == 0: print(f'{i}/{len(self.test_word_lists)} : loss={loss}')
|
||
pred_tag_lists.append(self._predtion_to_tags(prediction))
|
||
# 计算评估值
|
||
metrics = Metrics(file_path, self.test_tag_lists, pred_tag_lists)
|
||
metrics.report_scores(dtype='BiLSTM')
|
||
|
||
def predict(self, sentence):
|
||
"""预测
|
||
: params sentence 单个文本"""
|
||
sentence_token = self._tokenizer([sentence])
|
||
torch.no_grad()
|
||
prediction = self.model.forward(sentence_token)
|
||
pred_tags = self._predtion_to_tags(prediction)
|
||
return pred_tags, prediction
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
|
||
from data import build_corpus
|
||
|
||
train_word_lists, train_tag_lists, word2id, tag2id = build_corpus("train")
|
||
dev_word_lists, dev_tag_lists = build_corpus("dev", make_vocab=False)
|
||
test_word_lists, test_tag_lists = build_corpus("test", make_vocab=False)
|
||
|
||
bilstm_opration = BiLSTM_opration(
|
||
train_data=(train_word_lists, train_tag_lists),
|
||
dev_data=(dev_word_lists, dev_tag_lists),
|
||
test_data=(test_word_lists, test_tag_lists),
|
||
word2id=word2id,
|
||
tag2id=tag2id
|
||
)
|
||
|
||
bilstm_opration.train()
|
||
bilstm_opration.evaluate(file_path='./zdata') |