mirror of
https://github.com/tencentmusic/cube-studio.git
synced 2024-12-15 06:09:57 +08:00
.. | ||
bert_pretrain | ||
models | ||
tokenizer | ||
utils | ||
bert_bilstm_crf_opration.py | ||
bilstm_crf_opration.py | ||
bilstm_opration.py | ||
build.sh | ||
config.py | ||
data.py | ||
Dockerfile | ||
evaluating.py | ||
main4argo.py | ||
main.py | ||
README.md | ||
the_peoples_daily_tool.py | ||
train_evaluate.py |
ner 模板
模版简介
命名实体识别(NER)是一种自然语言处理技术,可以自动扫描整篇文章,提取文本中的一些基本实体,并将它们分类到预定义的类别中。 举一个直观一点的例子,比如你对手机的语音助手说,“提醒我明天下午7点开会”,或者“明天北京海淀区的天气怎么样”,然后它就会根据你的指令来做出相应的执行。 主要应用于:搜索和推荐引擎、自动聊天机器人、内容分析、消费者洞察
准备数据集
数据集 可以通过链接下载
把数据拷贝到 note book 中 /mnt/admin/NER
目录(可以直接拖拽进去),包含NER/zdata/resume_BIO.txt和NER/zdata/people_daily_BIO.txt
注册模板
{
"参数分组1": {
"--model": {
"type": "str",
"item_type": "str",
"label": "训练的基础模型名称,这里固定为: BiLSTM_CRF",
"require": 1,
"choice": [],
"range": "",
"default": "BiLSTM_CRF",
"placeholder": "",
"describe": "训练的基础模型名称,这里固定为: BiLSTM_CRF",
"editable": 1
},
"--path": {
"type": "str",
"item_type": "str",
"label": "训练数据存放目录",
"require": 1,
"choice": [],
"range": "",
"default": "/mnt/admin/NER/zdata/",
"placeholder": "",
"describe": "训练数据存放目录",
"editable": 1
},
"--filename": {
"type": "str",
"item_type": "str",
"label": "数据集的名字",
"require": 1,
"choice": [
"resume_BIO.txt",
"people_daily_BIO.txt"
],
"range": "",
"default": "resume_BIO.txt",
"placeholder": "",
"describe": " 数据集的名字",
"editable": 1
},
"--epochs": {
"type": "str",
"item_type": "str",
"label": "训练的次数,次数越大效果越好,建议 5 以上",
"require": 1,
"choice": [],
"range": "",
"default": "5",
"placeholder": "",
"describe": "训练的次数,次数越大效果越好,建议 5 以上",
"editable": 1
},
"-pp": {
"type": "str",
"item_type": "str",
"label": "模型保存地址",
"require": 1,
"choice": [],
"range": "",
"default": "/mnt/admin/model.pkl",
"placeholder": "",
"describe": "模型保存地址",
"editable": 1
}
}
}