mirror of
https://github.com/tencentmusic/cube-studio.git
synced 2024-12-15 06:09:57 +08:00
578 lines
22 KiB
Python
578 lines
22 KiB
Python
|
||
import ray
|
||
import re
|
||
|
||
import os
|
||
import sys
|
||
import time
|
||
from kubernetes import client, config, watch
|
||
import json,datetime,time,os,sys
|
||
sys.path.append(os.path.dirname(__file__))
|
||
|
||
import argparse
|
||
import datetime, time
|
||
import pysnooper
|
||
|
||
# print(os.environ)
|
||
base_dir = os.path.split(os.path.realpath(__file__))[0]
|
||
KFJ_NAMESPACE = os.getenv('KFJ_NAMESPACE', '')
|
||
KFJ_TASK_ID = os.getenv('KFJ_TASK_ID', '')
|
||
KFJ_TASK_NAME = os.getenv('KFJ_TASK_NAME', '')
|
||
RAY_HOST='ray-header-'+KFJ_TASK_NAME
|
||
os.system('set RAY_HOST %s'%RAY_HOST)
|
||
os.environ['RAY_HOST']=RAY_HOST
|
||
task_node_selectors = re.split(',|;|\n|\t', os.getenv('KFJ_TASK_NODE_SELECTOR', 'cpu=true,train=true'))
|
||
KFJ_TASK_NODE_SELECTOR = {}
|
||
for task_node_selector in task_node_selectors:
|
||
KFJ_TASK_NODE_SELECTOR[task_node_selector.split('=')[0]] = task_node_selector.split('=')[1]
|
||
|
||
KFJ_PIPELINE_ID = os.getenv('KFJ_PIPELINE_ID', '')
|
||
KFJ_RUN_ID = os.getenv('KFJ_RUN_ID', '')
|
||
KFJ_CREATOR = os.getenv('KFJ_CREATOR', '')
|
||
KFJ_RUNNER = os.getenv('KFJ_RUNNER','')
|
||
KFJ_PIPELINE_NAME = os.getenv('KFJ_PIPELINE_NAME', '')
|
||
KFJ_TASK_IMAGES = os.getenv('KFJ_TASK_IMAGES', '')
|
||
KFJ_TASK_VOLUME_MOUNT = os.getenv('KFJ_TASK_VOLUME_MOUNT', '')
|
||
KFJ_TASK_RESOURCE_CPU = os.getenv('KFJ_TASK_RESOURCE_CPU', '')
|
||
KFJ_TASK_RESOURCE_MEMORY = os.getenv('KFJ_TASK_RESOURCE_MEMORY', '')
|
||
NUM_WORKER = 3
|
||
HEADER_NAME = os.getenv('RAY_HOST', '')
|
||
WORKER_NAME = HEADER_NAME.replace('header', 'worker')
|
||
INIT_FILE=''
|
||
|
||
def get_volume_mounts(volume_mount,username):
|
||
k8s_volumes = []
|
||
k8s_volume_mounts = []
|
||
if volume_mount and ":" in volume_mount:
|
||
volume_mount = volume_mount.strip()
|
||
if volume_mount:
|
||
volume_mounts_temp = re.split(',|;', volume_mount)
|
||
volume_mounts_temp = [volume_mount_temp.strip() for volume_mount_temp in volume_mounts_temp if volume_mount_temp.strip()]
|
||
|
||
for volume_mount in volume_mounts_temp:
|
||
volume, mount = volume_mount.split(":")[0].strip(), volume_mount.split(":")[1].strip()
|
||
if "(pvc)" in volume:
|
||
pvc_name = volume.replace('(pvc)', '').replace(' ', '')
|
||
volumn_name = pvc_name.replace('_', '-').lower()
|
||
k8s_volumes.append({
|
||
"name":volumn_name,
|
||
"persistentVolumeClaim":{
|
||
"claimName":pvc_name
|
||
}
|
||
})
|
||
k8s_volume_mounts.append(
|
||
{
|
||
"name":volumn_name,
|
||
"mountPath":os.path.join(mount, username),
|
||
"subPath":username
|
||
}
|
||
)
|
||
|
||
if "(hostpath)" in volume:
|
||
hostpath_name = volume.replace('(hostpath)', '').replace(' ', '')
|
||
temps = re.split('_|\.|/', hostpath_name)
|
||
temps = [temp for temp in temps if temp]
|
||
volumn_name = '-'.join(temps).lower() # hostpath_name.replace('_', '-').replace('/', '-').replace('.', '-')
|
||
k8s_volumes.append(
|
||
{
|
||
"name":volumn_name,
|
||
"hostPath":{
|
||
"path":hostpath_name
|
||
}
|
||
}
|
||
)
|
||
k8s_volume_mounts.append({
|
||
"name":volumn_name,
|
||
"mountPath":mount
|
||
})
|
||
|
||
if "(configmap)" in volume:
|
||
configmap_name = volume.replace('(configmap)', '').replace(' ', '')
|
||
volumn_name = configmap_name.replace('_', '-').replace('/', '-').replace('.', '-').lower()
|
||
k8s_volumes.append({
|
||
"name":volumn_name,
|
||
"configMap":{
|
||
"name":configmap_name
|
||
}
|
||
})
|
||
|
||
k8s_volume_mounts.append({
|
||
"name":volumn_name,
|
||
"mountPath":mount
|
||
})
|
||
|
||
return k8s_volumes,k8s_volume_mounts
|
||
|
||
|
||
k8s_volumes, k8s_volume_mounts = get_volume_mounts(KFJ_TASK_VOLUME_MOUNT,KFJ_CREATOR)
|
||
|
||
|
||
# k8s_volumes.append(
|
||
# {
|
||
# "name": "dshm",
|
||
# "emptyDir": {
|
||
# "medium": "Memory"
|
||
# }
|
||
# }
|
||
# )
|
||
|
||
k8s_volume_mounts.append(
|
||
{
|
||
"name":'tz-config',
|
||
"mountPath":"/etc/localtime"
|
||
}
|
||
)
|
||
|
||
|
||
|
||
k8s_volumes.append(
|
||
{
|
||
"name": "tz-config",
|
||
"hostPath": {
|
||
"path": '/usr/share/zoneinfo/Asia/Shanghai'
|
||
}
|
||
}
|
||
)
|
||
|
||
# k8s_volume_mounts.append(
|
||
# {
|
||
# "name":'dshm',
|
||
# "mountPath":"/dev/shm"
|
||
# }
|
||
# )
|
||
|
||
print(k8s_volumes)
|
||
print(k8s_volume_mounts)
|
||
|
||
GPU_TYPE= os.getenv('KFJ_GPU_TYPE', 'NVIDIA')
|
||
GPU_RESOURCE= os.getenv('KFJ_TASK_RESOURCE_GPU', '0')
|
||
print(GPU_TYPE,GPU_RESOURCE)
|
||
|
||
|
||
def create_header_service(name):
|
||
service_json = {
|
||
"apiVersion": "v1",
|
||
"kind": "Service",
|
||
"metadata": {
|
||
"namespace": KFJ_NAMESPACE,
|
||
"name": name,
|
||
"labels":{
|
||
"run-id":os.getenv('KFJ_RUN_ID','unknown'),
|
||
"run-rtx":os.getenv('KFJ_RUNNER','unknown'),
|
||
"pipeline-rtx": os.getenv('KFJ_CREATOR', 'unknown'),
|
||
"task-id":os.getenv('KFJ_TASK_ID','unknown'),
|
||
"pipeline-id": os.getenv('KFJ_PIPELINE_ID', 'unknown')
|
||
}
|
||
},
|
||
"spec": {
|
||
"ports": [
|
||
{
|
||
"name": "client",
|
||
"protocol": "TCP",
|
||
"port": 10001,
|
||
"targetPort": 10001
|
||
},
|
||
{
|
||
"name": "dashboard",
|
||
"protocol": "TCP",
|
||
"port": 8265,
|
||
"targetPort": 8265
|
||
},
|
||
{
|
||
"name": "redis",
|
||
"protocol": "TCP",
|
||
"port": 6379,
|
||
"targetPort": 6379
|
||
}
|
||
],
|
||
"selector": {
|
||
"component": name
|
||
}
|
||
}
|
||
}
|
||
return service_json
|
||
|
||
# @pysnooper.snoop()
|
||
def create_header_deploy(name):
|
||
header_deploy = {
|
||
"apiVersion": "apps/v1",
|
||
"kind": "Deployment",
|
||
"metadata": {
|
||
"namespace": KFJ_NAMESPACE,
|
||
"name": name,
|
||
"labels":{
|
||
"run-id":os.getenv('KFJ_RUN_ID','unknown'),
|
||
"run-rtx":os.getenv('KFJ_RUNNER','unknown'),
|
||
"pipeline-rtx": os.getenv('KFJ_CREATOR', 'unknown'),
|
||
"task-id":os.getenv('KFJ_TASK_ID','unknown'),
|
||
"pipeline-id": os.getenv('KFJ_PIPELINE_ID', 'unknown')
|
||
}
|
||
},
|
||
"spec": {
|
||
"replicas": 1,
|
||
"selector": {
|
||
"matchLabels": {
|
||
"component": name,
|
||
"type": "ray"
|
||
}
|
||
},
|
||
"template": {
|
||
"metadata": {
|
||
"labels": {
|
||
"pipeline-id": KFJ_PIPELINE_ID,
|
||
"pipeline-name": KFJ_PIPELINE_NAME,
|
||
"task-name": KFJ_TASK_NAME,
|
||
'rtx-user': KFJ_RUNNER,
|
||
"component": name,
|
||
"type": "ray",
|
||
"run-id": os.getenv('KFJ_RUN_ID', 'unknown'),
|
||
}
|
||
},
|
||
"spec": {
|
||
"restartPolicy": "Always",
|
||
"volumes": k8s_volumes,
|
||
# "imagePullSecrets": [
|
||
# {
|
||
# "name": "hubsecret"
|
||
# }
|
||
# ],
|
||
"affinity": {
|
||
"nodeAffinity": {
|
||
"requiredDuringSchedulingIgnoredDuringExecution": {
|
||
"nodeSelectorTerms": [
|
||
{
|
||
"matchExpressions": [
|
||
{
|
||
"key": node_selector_key,
|
||
"operator": "In",
|
||
"values": [
|
||
KFJ_TASK_NODE_SELECTOR[node_selector_key]
|
||
]
|
||
} for node_selector_key in KFJ_TASK_NODE_SELECTOR
|
||
]
|
||
}
|
||
]
|
||
}
|
||
},
|
||
"podAntiAffinity": {
|
||
"preferredDuringSchedulingIgnoredDuringExecution": [
|
||
{
|
||
"weight": 5,
|
||
"podAffinityTerm": {
|
||
"topologyKey": "kubernetes.io/hostname",
|
||
"labelSelector": {
|
||
"matchLabels": {
|
||
"component": name
|
||
}
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
},
|
||
"containers": [
|
||
{
|
||
"name": "ray-head",
|
||
"image": KFJ_TASK_IMAGES,
|
||
"imagePullPolicy": "Always",
|
||
"command": [
|
||
"/bin/bash",
|
||
"-c",
|
||
"%s ray start --head --port=6379 --redis-shard-ports=6380,6381 --num-cpus=$MY_CPU_REQUEST --object-manager-port=12345 --node-manager-port=12346 --block"%INIT_FILE
|
||
],
|
||
"ports": [
|
||
{
|
||
"containerPort": 6379
|
||
},
|
||
{
|
||
"containerPort": 10001
|
||
},
|
||
{
|
||
"containerPort": 8265
|
||
}
|
||
],
|
||
"volumeMounts": k8s_volume_mounts,
|
||
"env": [
|
||
{
|
||
"name": "MY_CPU_REQUEST",
|
||
"valueFrom": {
|
||
"resourceFieldRef": {
|
||
"resource": "requests.cpu"
|
||
}
|
||
}
|
||
}
|
||
],
|
||
"resources": {
|
||
"requests": {
|
||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||
"memory": KFJ_TASK_RESOURCE_MEMORY,
|
||
},
|
||
"limits": {
|
||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||
"memory": KFJ_TASK_RESOURCE_MEMORY
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if GPU_TYPE=='NVIDIA' and GPU_RESOURCE:
|
||
header_deploy['spec']['template']['spec']['containers'][0]['resources']['requests']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||
header_deploy['spec']['template']['spec']['containers'][0]['resources']['limits']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||
|
||
return header_deploy
|
||
|
||
|
||
def create_worker_deploy(header_name,worker_name):
|
||
worker_deploy = {
|
||
"apiVersion": "apps/v1",
|
||
"kind": "Deployment",
|
||
"metadata": {
|
||
"namespace": KFJ_NAMESPACE,
|
||
"name": worker_name,
|
||
"labels": {
|
||
"run-id":os.getenv('KFJ_RUN_ID','unknown'),
|
||
"run-rtx":os.getenv('KFJ_RUNNER','unknown'),
|
||
"pipeline-rtx": os.getenv('KFJ_CREATOR', 'unknown'),
|
||
"task-id":os.getenv('KFJ_TASK_ID','unknown'),
|
||
"pipeline-id": os.getenv('KFJ_PIPELINE_ID', 'unknown')
|
||
}
|
||
},
|
||
"spec": {
|
||
"replicas": NUM_WORKER,
|
||
"selector": {
|
||
"matchLabels": {
|
||
"component": worker_name,
|
||
"type": "ray"
|
||
}
|
||
},
|
||
"template": {
|
||
"metadata": {
|
||
"labels": {
|
||
"pipeline-id": KFJ_PIPELINE_ID,
|
||
"pipeline-name": KFJ_PIPELINE_NAME,
|
||
"task-name": KFJ_TASK_NAME,
|
||
'rtx-user': KFJ_RUNNER,
|
||
"component": worker_name,
|
||
"type": "ray",
|
||
"run-id": os.getenv('KFJ_RUN_ID', 'unknown'),
|
||
|
||
}
|
||
},
|
||
|
||
"spec": {
|
||
"affinity": {
|
||
"nodeAffinity": {
|
||
"requiredDuringSchedulingIgnoredDuringExecution": {
|
||
"nodeSelectorTerms": [
|
||
{
|
||
"matchExpressions": [
|
||
{
|
||
"key": node_selector_key,
|
||
"operator": "In",
|
||
"values": [
|
||
KFJ_TASK_NODE_SELECTOR[node_selector_key]
|
||
]
|
||
} for node_selector_key in KFJ_TASK_NODE_SELECTOR
|
||
]
|
||
}
|
||
]
|
||
}
|
||
},
|
||
"podAntiAffinity": {
|
||
"preferredDuringSchedulingIgnoredDuringExecution": [
|
||
{
|
||
"weight": 5,
|
||
"podAffinityTerm": {
|
||
"topologyKey": "kubernetes.io/hostname",
|
||
"labelSelector": {
|
||
"matchLabels": {
|
||
"component": worker_name
|
||
}
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
},
|
||
# "imagePullSecrets": [
|
||
# {
|
||
# "name": "hubsecret"
|
||
# }
|
||
# ],
|
||
"restartPolicy": "Always",
|
||
"volumes": k8s_volumes,
|
||
"containers": [
|
||
{
|
||
"name": "ray-worker",
|
||
"image": KFJ_TASK_IMAGES,
|
||
"imagePullPolicy": "Always",
|
||
"command": [
|
||
"/bin/bash",
|
||
"-c",
|
||
"%s ray start --num-cpus=$MY_CPU_REQUEST --address=$RAY_HEAD_SERVICE_HOST:$RAY_HEAD_SERVICE_PORT_REDIS --object-manager-port=12345 --node-manager-port=12346 --block"%INIT_FILE
|
||
],
|
||
"volumeMounts": k8s_volume_mounts,
|
||
"env": [
|
||
{
|
||
"name": "MY_CPU_REQUEST",
|
||
"valueFrom": {
|
||
"resourceFieldRef": {
|
||
"resource": "requests.cpu"
|
||
}
|
||
}
|
||
},
|
||
{
|
||
"name": "RAY_HEAD_SERVICE_HOST",
|
||
"value": header_name
|
||
},
|
||
{
|
||
"name": "RAY_HEAD_SERVICE_PORT_REDIS",
|
||
"value": "6379"
|
||
}
|
||
],
|
||
"resources": {
|
||
"requests": {
|
||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||
"memory": KFJ_TASK_RESOURCE_MEMORY
|
||
},
|
||
"limits": {
|
||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||
"memory": KFJ_TASK_RESOURCE_MEMORY
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if GPU_TYPE=='NVIDIA' and GPU_RESOURCE:
|
||
worker_deploy['spec']['template']['spec']['containers'][0]['resources']['requests']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||
worker_deploy['spec']['template']['spec']['containers'][0]['resources']['limits']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||
|
||
|
||
return worker_deploy
|
||
|
||
|
||
# @pysnooper.snoop()
|
||
def wait_for_nodes():
|
||
# Wait for all nodes to join the cluster.
|
||
while True:
|
||
resources = ray.cluster_resources()
|
||
node_keys = [key for key in resources if "node" in key]
|
||
num_nodes = sum(resources[node_key] for node_key in node_keys)
|
||
if num_nodes < NUM_WORKER:
|
||
print("{} nodes have joined so far, waiting for {} more.".format(num_nodes, NUM_WORKER - num_nodes))
|
||
sys.stdout.flush()
|
||
time.sleep(1)
|
||
else:
|
||
break
|
||
|
||
|
||
# @pysnooper.snoop()
|
||
def launcher_cluster(file_path=None,deal=None):
|
||
if file_path:
|
||
config.kube_config.load_kube_config(config_file=file_path) # 使用kubeconfig文件名称获取访问权限,需要
|
||
else:
|
||
config.load_incluster_config() # 使用为pod配置的rbac访问集群
|
||
# v1 = client.AppsV1Api()
|
||
# v1.api_client.configuration.verify_ssl = False
|
||
|
||
# 清理一下之前存在的
|
||
try:
|
||
print('begin delete old header service')
|
||
client.CoreV1Api().delete_namespaced_service(HEADER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
# print(e1)
|
||
|
||
try:
|
||
print('begin delete old header deployment')
|
||
client.AppsV1Api().delete_namespaced_deployment(HEADER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
# print(e1)
|
||
|
||
try:
|
||
print('begin delete old worker deployment')
|
||
client.AppsV1Api().delete_namespaced_deployment(WORKER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
# print(e1)
|
||
time.sleep(3)
|
||
|
||
if deal=='create':
|
||
header_service = create_header_service(HEADER_NAME)
|
||
header_deploy = create_header_deploy(HEADER_NAME)
|
||
worker_deploy = create_worker_deploy(HEADER_NAME,WORKER_NAME)
|
||
try:
|
||
print(KFJ_NAMESPACE,end='\n\n\n')
|
||
print(json.dumps(header_service,indent=4,ensure_ascii=False),end='\n\n\n')
|
||
print('begin create ray header service,%s ' % datetime.datetime.now())
|
||
client.CoreV1Api().create_namespaced_service(KFJ_NAMESPACE, header_service, pretty='true')
|
||
print('begin create ray header deployment,%s ' % datetime.datetime.now())
|
||
print(json.dumps(header_deploy, indent=4, ensure_ascii=False),end='\n\n\n')
|
||
client.AppsV1Api().create_namespaced_deployment(KFJ_NAMESPACE, header_deploy, pretty='true')
|
||
print('begin create ray worker deployment,%s ' % datetime.datetime.now())
|
||
print(json.dumps(worker_deploy, indent=4, ensure_ascii=False),end='\n\n\n')
|
||
client.AppsV1Api().create_namespaced_deployment(KFJ_NAMESPACE, worker_deploy, pretty='true')
|
||
# 等待创建完成
|
||
time.sleep(20)
|
||
header_host = "%s:10001" % HEADER_NAME
|
||
print('begin connect ray cluster %s,%s ' % (header_host,datetime.datetime.now()),end='\n\n\n')
|
||
|
||
ray.util.connect(header_host,connection_retries=20)
|
||
wait_for_nodes()
|
||
print('ray cluster all node ready,%s ' % datetime.datetime.now(),end='\n\n\n')
|
||
|
||
except Exception as e:
|
||
print(e)
|
||
try:
|
||
print('begin delete error header service',end='\n\n\n')
|
||
client.CoreV1Api().delete_namespaced_service(HEADER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
# print(e1)
|
||
try:
|
||
print('begin delete error header deployment',end='\n\n\n')
|
||
client.AppsV1Api().delete_namespaced_deployment(HEADER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
# print(e1)
|
||
try:
|
||
print('begin delete error worker deployment',end='\n\n\n')
|
||
client.AppsV1Api().delete_namespaced_deployment(WORKER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
print(e1)
|
||
# 如果出现错误,报错退出。不进行下一步代码
|
||
raise e
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
arg_parser = argparse.ArgumentParser(description="build component")
|
||
arg_parser.add_argument('--num_workers', type=int, required=False, help="workers的数量", default=3)
|
||
arg_parser.add_argument('--download_type', type=str, required=False, help="数据下载类型", default="url")
|
||
arg_parser.add_argument('--input_file', type=str, required=False, help="下载内容文件地址", default="/mnt/ray/url.txt")
|
||
|
||
args = arg_parser.parse_args()
|
||
print('NUM_WORKER',args.num_workers)
|
||
|
||
NUM_WORKER = int(args.num_workers)
|
||
|
||
|
||
if args.download_type=='url':
|
||
launcher_cluster(deal='create')
|
||
from download_url import main
|
||
main(src_file_path=args.input_file)
|
||
launcher_cluster()
|
||
|
||
|
||
|