{ "darknet-yolov3":{ "pipeline":{ "name":"imageAI", "describe":"图像预测+物体检测+视频跟踪", "project":"public", "parameter":{ "demo":"true", "img":"https://user-images.githubusercontent.com/20157705/170216784-91ac86f7-d272-4940-a285-0c27d6f6cd96.jpg" }, "dag_json": { "download-data": { "upstream": [] }, "yolov3-object-recognition": { "upstream": [ "download-data" ] }, "deploy-darknet-web-service": { "upstream": ["yolov3-object-recognition"] } } }, "tasks":[ { "job_templete":"自定义镜像", "name":"download-data", "label":"下载标注数据", "volume_mount": "kubeflow-user-workspace(pvc):/mnt/", "args":{ "images":"ccr.ccs.tencentyun.com/cube-studio/ubuntu-gpu:cuda10.1-cudnn7-python3.6", "workdir":"/mnt/admin/coco_data_sample", "command":"bash reset_file.sh" } }, { "job_templete":"object-detection-on-darknet", "name":"yolov3-object-recognition", "label":"目标识别训练", "volume_mount": "kubeflow-user-workspace(pvc):/mnt/", "resource_memory": "10G", "resource_cpu": "10", "args": { "--train_cfg": "[net]\n# Testing\n# batch=1\n# subdivisions=1\n# Training\nbatch=64\nsubdivisions=16\nwidth=608\nheight=608\nchannels=3\nmomentum=0.9\ndecay=0.0005\nangle=0\nsaturation = 1.5\nexposure = 1.5\nhue=.1\n\nlearning_rate=0.001\nburn_in=1000\nmax_batches = 500230\npolicy=steps\nsteps=400000,450000\nscales=.1,.1\n\n[convolutional]\nbatch_normalize=1\nfilters=32\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n# Downsample\n\n[convolutional]\nbatch_normalize=1\nfilters=64\nsize=3\nstride=2\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=32\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=64\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n# Downsample\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=3\nstride=2\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=64\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=64\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n# Downsample\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=3\nstride=2\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n# Downsample\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=3\nstride=2\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n# Downsample\n\n[convolutional]\nbatch_normalize=1\nfilters=1024\nsize=3\nstride=2\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=1024\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=1024\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=1024\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=1024\nsize=3\nstride=1\npad=1\nactivation=leaky\n\n[shortcut]\nfrom=-3\nactivation=linear\n\n######################\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nsize=3\nstride=1\npad=1\nfilters=1024\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nsize=3\nstride=1\npad=1\nfilters=1024\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=512\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nsize=3\nstride=1\npad=1\nfilters=1024\nactivation=leaky\n\n[convolutional]\nsize=1\nstride=1\npad=1\nfilters=255\nactivation=linear\n\n\n[yolo]\nmask = 6,7,8\nanchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326\nclasses=80\nnum=9\njitter=.3\nignore_thresh = .7\ntruth_thresh = 1\nrandom=1\n\n\n[route]\nlayers = -4\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[upsample]\nstride=2\n\n[route]\nlayers = -1, 61\n\n\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nsize=3\nstride=1\npad=1\nfilters=512\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nsize=3\nstride=1\npad=1\nfilters=512\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=256\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nsize=3\nstride=1\npad=1\nfilters=512\nactivation=leaky\n\n[convolutional]\nsize=1\nstride=1\npad=1\nfilters=255\nactivation=linear\n\n\n[yolo]\nmask = 3,4,5\nanchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326\nclasses=80\nnum=9\njitter=.3\nignore_thresh = .7\ntruth_thresh = 1\nrandom=1\n\n\n\n[route]\nlayers = -4\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[upsample]\nstride=2\n\n[route]\nlayers = -1, 36\n\n\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nsize=3\nstride=1\npad=1\nfilters=256\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nsize=3\nstride=1\npad=1\nfilters=256\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nfilters=128\nsize=1\nstride=1\npad=1\nactivation=leaky\n\n[convolutional]\nbatch_normalize=1\nsize=3\nstride=1\npad=1\nfilters=256\nactivation=leaky\n\n[convolutional]\nsize=1\nstride=1\npad=1\nfilters=255\nactivation=linear\n\n\n[yolo]\nmask = 0,1,2\nanchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326\nclasses=80\nnum=9\njitter=.3\nignore_thresh = .7\ntruth_thresh = 1\nrandom=1\n\n", "--data_cfg": "classes= 80\ntrain = /mnt/admin/coco_data_sample/train.txt\nvalid = /mnt/admin/coco_data_sample/valid.txt\nnames = /mnt/admin/coco_data_sample/coco.names\nbackup = /mnt/admin/coco_data_sample/yolo\neval=coco\n\n", "--weights": "/mnt/admin/coco_data_sample/yolov3.weights" } }, { "job_templete":"deploy-service", "name":"deploy-darknet-web-service", "volume_mount": "kubeflow-user-workspace(pvc):/mnt/", "label":"部署模型web服务", "args":{ "--label":"目标识别推理服务", "--model_name":"yolov3", "--model_version":"v2022.10.01.1", "--model_path":"", "--service_type":"serving", "--images":"ccr.ccs.tencentyun.com/cube-studio/target-detection", "--working_dir":"", "--command":"", "--args":"", "--env":"YOLO_DATA_PATH=/mnt/admin/coco_data_sample/yolo/coco.data\nYOLO_CFG_PATH=/mnt/admin/coco_data_sample/yolo/yolov3.cfg\nYOLO_WEIGHTS_PATH=/mnt/admin/coco_data_sample/yolo/yolov3.weights", "--ports":"8080", "--replicas":"1", "--resource_memory": "5G", "--resource_cpu": "5", "--resource_gpu": "0" } } ] } }