import random import requests from flask_appbuilder.models.sqla.interface import SQLAInterface from flask import jsonify from jinja2 import Environment, BaseLoader, DebugUndefined from myapp.models.model_serving import InferenceService from myapp.utils import core from flask_babel import gettext as __ from flask_babel import lazy_gettext as _ from flask_appbuilder.actions import action from myapp import app, appbuilder,db from flask_babel import lazy_gettext import re import pytz import pysnooper import copy from sqlalchemy.exc import InvalidRequestError from myapp.models.model_job import Repository from wtforms.ext.sqlalchemy.fields import QuerySelectField from myapp import security_manager from wtforms.validators import DataRequired, Length, Regexp from wtforms import SelectField, StringField from flask_appbuilder.fieldwidgets import BS3TextFieldWidget, Select2ManyWidget,Select2Widget from myapp.forms import MyBS3TextAreaFieldWidget,MySelect2Widget, MyBS3TextFieldWidget,MySelectMultipleField from myapp.views.view_team import Project_Join_Filter,filter_join_org_project from flask import ( flash, g, Markup, redirect, request ) from .base import ( MyappFilter, MyappModelView, ) from .baseApi import ( MyappModelRestApi ) from flask_appbuilder import expose import datetime,time,json conf = app.config global_all_service_load = { "data":None, "check_time":None } class InferenceService_Filter(MyappFilter): # @pysnooper.snoop() def apply(self, query, func): if g.user.is_admin(): return query join_projects_id = security_manager.get_join_projects_id(db.session) return query.filter(self.model.project_id.in_(join_projects_id)) class InferenceService_ModelView_base(): datamodel = SQLAInterface(InferenceService) check_redirect_list_url = conf.get('MODEL_URLS',{}).get('inferenceservice','') # add_columns = ['service_type','project','name', 'label','images','resource_memory','resource_cpu','resource_gpu','min_replicas','max_replicas','ports','host','hpa','metrics','health'] add_columns = ['service_type', 'project', 'label', 'model_name', 'model_version', 'images', 'model_path', 'resource_memory', 'resource_cpu', 'resource_gpu', 'min_replicas', 'max_replicas', 'hpa','priority', 'canary', 'shadow', 'host','inference_config', 'working_dir', 'command','volume_mount', 'env', 'ports', 'metrics', 'health','expand','sidecar'] show_columns = ['service_type','project', 'name', 'label','model_name', 'model_version', 'images', 'model_path', 'images', 'volume_mount','sidecar','working_dir', 'command', 'env', 'resource_memory', 'resource_cpu', 'resource_gpu', 'min_replicas', 'max_replicas', 'ports', 'inference_host_url','hpa','priority', 'canary', 'shadow', 'health','model_status','expand','metrics','deploy_history','host','inference_config'] enable_echart = True edit_columns = add_columns add_form_query_rel_fields = { "project": [["name", Project_Join_Filter, 'org']] } edit_form_query_rel_fields = add_form_query_rel_fields list_columns = ['project','service_type','label','model_name_url','model_version','inference_host_url','ip','model_status','resource','replicas_html','creator','modified','operate_html'] cols_width={ "project":{"type": "ellip2", "width": 150}, "label": {"type": "ellip2", "width": 300}, "service_type": {"type": "ellip2", "width": 100}, "model_name_url":{"type": "ellip2", "width": 300}, "model_version": {"type": "ellip2", "width": 200}, "inference_host_url": {"type": "ellip2", "width": 500}, "ip": {"type": "ellip2", "width": 250}, "model_status": {"type": "ellip2", "width": 100}, "modified": {"type": "ellip2", "width": 150}, "operate_html": {"type": "ellip2", "width": 350}, "resource": {"type": "ellip2", "width": 300}, } search_columns = ['name','created_by','project','service_type','label','model_name','model_version','model_path','host','model_status','resource_gpu'] ops_link = [ { "text": "服务资源监控", "url": conf.get('GRAFANA_SERVICE_PATH','/grafana/d/istio-service/istio-service?var-namespace=service&var-service=')+"All" } ] label_title = '推理服务' base_order = ('id','desc') order_columns = ['id'] base_filters = [["id",InferenceService_Filter, lambda: []]] images = [] INFERNENCE_IMAGES = list(conf.get('INFERNENCE_IMAGES', {}).values()) for item in INFERNENCE_IMAGES: images += item service_type_choices= ['serving','tfserving','torch-server','onnxruntime','triton-server'] spec_label_columns = { # "host": _("域名:测试环境test.xx,调试环境 debug.xx"), "resource":"资源", "replicas_html":"副本数" } service_type_choices = [x.replace('_','-') for x in service_type_choices] host_rule=",
".join([cluster+"集群:*."+conf.get('CLUSTERS')[cluster].get("SERVICE_DOMAIN",conf.get('SERVICE_DOMAIN','')) for cluster in conf.get('CLUSTERS') if conf.get('CLUSTERS')[cluster].get("SERVICE_DOMAIN",conf.get('SERVICE_DOMAIN',''))]) add_form_extra_fields={ "project": QuerySelectField( _(datamodel.obj.lab('project')), query_factory=filter_join_org_project, allow_blank=True, widget=Select2Widget(), validators=[DataRequired()] ), "resource_memory":StringField(_(datamodel.obj.lab('resource_memory')),default='5G',description='内存的资源使用限制,示例1G,10G, 最大100G,如需更多联系管路员',widget=BS3TextFieldWidget(),validators=[DataRequired()]), "resource_cpu":StringField(_(datamodel.obj.lab('resource_cpu')), default='5',description='cpu的资源使用限制(单位核),示例 0.4,10,最大50核,如需更多联系管路员',widget=BS3TextFieldWidget(), validators=[DataRequired()]), "min_replicas": StringField(_(datamodel.obj.lab('min_replicas')), default=InferenceService.min_replicas.default.arg,description='最小副本数,用来配置高可用,流量变动自动伸缩',widget=BS3TextFieldWidget(), validators=[DataRequired()]), "max_replicas": StringField(_(datamodel.obj.lab('max_replicas')), default=InferenceService.max_replicas.default.arg, description='最大副本数,用来配置高可用,流量变动自动伸缩', widget=BS3TextFieldWidget(), validators=[DataRequired()]), "host": StringField(_(datamodel.obj.lab('host')), default=InferenceService.host.default.arg,description='访问域名,'+host_rule,widget=BS3TextFieldWidget()), "transformer":StringField(_(datamodel.obj.lab('transformer')), default=InferenceService.transformer.default.arg,description='前后置处理逻辑,用于原生开源框架的请求预处理和响应预处理,目前仅支持kfserving下框架',widget=BS3TextFieldWidget()), 'resource_gpu':StringField(_(datamodel.obj.lab('resource_gpu')), default='0', description='gpu的资源使用限制(单位卡),示例:1,2,训练任务每个容器独占整卡。申请具体的卡型号,可以类似 1(V100),目前支持T4/V100/A100,或虚拟gpu,例如0.2(T4)', widget=BS3TextFieldWidget(),validators=[DataRequired()]), 'sidecar': MySelectMultipleField( _(datamodel.obj.lab('sidecar')), default='', description='容器的agent代理,istio用于服务网格', widget=Select2ManyWidget(), validators=[], choices=[['istio','istio']] ), "priority": SelectField( _('服务优先级'), widget=MySelect2Widget(), default=1, description='优先满足高优先级的资源需求,同时保证每个服务的最低pod副本数', choices=[[1, '高优先级'],[0, '低优先级']], validators=[DataRequired()] ), 'model_name': StringField( _('模型名称'), default='', description='英文名(小写字母、数字、- 组成),最长50个字符', widget=MyBS3TextFieldWidget(), validators=[DataRequired(), Regexp("^[a-z][a-z0-9\-]*[a-z0-9]$"), Length(1, 54)] ), 'model_version': StringField( _('模型版本号'), default= datetime.datetime.now().strftime('v%Y.%m.%d.1'), description='版本号,时间格式', widget=MyBS3TextFieldWidget(), validators=[DataRequired(), Length(1, 54)] ), 'service_type': SelectField( _(datamodel.obj.lab('service_type')), default='serving', description="推理框架类型", widget=MySelect2Widget(retry_info=True), choices=[[x, x] for x in service_type_choices], validators=[DataRequired()] ), 'label': StringField( _(datamodel.obj.lab('label')), default="xx模型,%s框架,xx版", description='中文描述', widget=BS3TextFieldWidget(), validators=[DataRequired()] ), "hpa": StringField( _(datamodel.obj.lab('hpa')), default='cpu:50%,gpu:50%', description='弹性伸缩容的触发条件:可以使用cpu/mem/gpu/qps等信息,可以使用其中一个指标或者多个指标,示例:cpu:50%,mem:50%,gpu:50%', widget=BS3TextFieldWidget() ), 'expand': StringField( _(datamodel.obj.lab('expand')), default=json.dumps({ "help_url":"https://github.com/tencentmusic/cube-studio/tree/master/images/serving" },indent=4,ensure_ascii=False), description='扩展字段', widget=MyBS3TextAreaFieldWidget(rows=3) ), 'canary': StringField( _('流量分流'), default='', description='流量分流,将该服务的所有请求,按比例分流到目标服务上。格式 service1:20%,service2:30%,表示分流20%流量到service1,30%到service2', widget=BS3TextFieldWidget() ), 'shadow': StringField( _('流量复制'), default='', description='流量复制,将该服务的所有请求,按比例复制到目标服务上,格式 service1:20%,service2:30%,表示复制20%流量到service1,30%到service2', widget=BS3TextFieldWidget() ), 'volume_mount':StringField( _(datamodel.obj.lab('volume_mount')), default='kubeflow-user-workspace(pvc):/mnt,kubeflow-archives(pvc):/archives', description='外部挂载,格式:$pvc_name1(pvc):/$container_path1,$hostpath1(hostpath):/$container_path2,4G(memory):/dev/shm,注意pvc会自动挂载对应目录下的个人rtx子目录', widget=BS3TextFieldWidget() ), 'model_path':StringField( _('模型地址'), default='', description=Markup('tfserving:仅支持添加了服务签名的saved_model目录地址,例如 /xx/saved_model
' 'torch-server:torch-model-archiver编译后的mar模型文件,需保存模型结构和模型参数
' 'onnxruntime:onnx模型文件的地址
' 'triton-server:框架:地址。onnx:模型文件地址model.onnx,pytorch:torchscript模型文件地址model.pt,tf:模型目录地址saved_model,tensorrt:模型文件地址model.plan'), widget=BS3TextFieldWidget(), validators=[] ), 'images': SelectField( _(datamodel.obj.lab('images')), default='', description="推理服务镜像", widget=MySelect2Widget(can_input=True), choices=[[x, x] for x in images] ), 'command': StringField( _(datamodel.obj.lab('command')), default='', description='启动命令,留空时将被自动重置', widget=MyBS3TextAreaFieldWidget(rows=3) ), 'env':StringField( _(datamodel.obj.lab('env')), default='', description='使用模板的task自动添加的环境变量,支持模板变量。书写格式:每行一个环境变量env_key=env_value', widget=MyBS3TextAreaFieldWidget() ), 'ports': StringField( _(datamodel.obj.lab('ports')), default='', description='监听端口号,逗号分隔', widget=BS3TextFieldWidget(), validators=[DataRequired()] ), 'metrics': StringField( _(datamodel.obj.lab('metrics')), default='', description='请求指标采集,配置端口+url,示例:8080:/metrics', widget=BS3TextFieldWidget() ), 'health': StringField( _(datamodel.obj.lab('health')), default='', description='健康检查接口,使用http接口或者shell命令,示例:8080:/health或者 shell:python health.py', widget=BS3TextFieldWidget() ), 'inference_config': StringField( _('推理配置文件'), default='', description='会配置文件的形式挂载到容器/config/目录下。留空时将被自动重置,格式:
---文件名
多行文件内容
---文件名
多行文件内容', widget=MyBS3TextAreaFieldWidget(rows=5), validators=[] ) } input_demo = ''' [ { name: "input_name" data_type: TYPE_FP32 format: FORMAT_NCHW dims: [ 3, 224, 224 ] reshape: { shape: [ 1, 3, 224, 224 ] } } ] ''' output_demo = ''' [ { name: "output_name" data_type: TYPE_FP32 dims: [ 1000 ] reshape: { shape: [ 1, 1000 ] } } ] ''' edit_form_extra_fields = add_form_extra_fields # edit_form_extra_fields['name']=StringField(_(datamodel.obj.lab('name')), description='英文名(小写字母、数字、- 组成),最长50个字符',widget=MyBS3TextFieldWidget(readonly=True), validators=[Regexp("^[a-z][a-z0-9\-]*[a-z0-9]$"),Length(1,54)]), model_columns = ['service_type', 'project', 'label', 'model_name', 'model_version', 'images', 'model_path'] service_columns = ['resource_memory', 'resource_cpu', 'resource_gpu', 'min_replicas', 'max_replicas', 'hpa', 'priority', 'canary', 'shadow', 'host', 'volume_mount', 'sidecar'] admin_columns = ['inference_config', 'working_dir', 'command', 'env', 'ports', 'metrics', 'health', 'expand'] add_fieldsets = [ ( lazy_gettext('模型配置'), {"fields": model_columns, "expanded": True}, ), ( lazy_gettext('推理配置'), {"fields": service_columns, "expanded": True}, ), ( lazy_gettext('管理员配置'), {"fields": admin_columns, "expanded": True}, ) ] add_columns = model_columns + service_columns + admin_columns edit_columns = add_columns edit_fieldsets = add_fieldsets def pre_add_web(self): self.default_filter = { "created_by": g.user.id } # @pysnooper.snoop() def tfserving_model_config(self,model_name,model_version,model_path): config_str=''' model_config_list { config { name: "%s" base_path: "/%s/" model_platform: "tensorflow" model_version_policy { specific { versions: %s } } } } '''%(model_name,model_path.strip('/'),model_version) return config_str def tfserving_monitoring_config(self): config_str=''' prometheus_config { enable: true path: "/metrics" } ''' return config_str def tfserving_platform_config(self): config_str = ''' platform_configs { key: "tensorflow" value { source_adapter_config { [type.googleapis.com/tensorflow.serving.SavedModelBundleSourceAdapterConfig] { legacy_config { session_config { gpu_options { allow_growth: true } } } } } } } ''' return config_str # 这些配置可在环境变量中 TS_中实现 def torch_config(self): config_str=''' inference_address=http://0.0.0.0:8080 management_address=http://0.0.0.0:8081 metrics_address=http://0.0.0.0:8082 cors_allowed_origin=* cors_allowed_methods=GET, POST, PUT, OPTIONS cors_allowed_headers=X-Custom-Header number_of_netty_threads=32 enable_metrics_api=true job_queue_size=1000 enable_envvars_config=true async_logging=true default_response_timeout=120 max_request_size=6553500 vmargs=-Dlog4j.configurationFile=file:///config/log4j2.xml ''' return config_str def torch_log(self): config_str=''' ''' return config_str def triton_config(self,item,model_type): plat_form={ "onnx":"onnxruntime_onnx", "tensorrt":"tensorrt_plan", "torch":"pytorch_libtorch", "pytorch":"pytorch_libtorch", "tf":"tensorflow_savedmodel" } parameters='' if model_type == 'tf': parameters = ''' optimization { execution_accelerators { gpu_execution_accelerator : [ { name : "tensorrt" parameters { key: "precision_mode" value: "FP16" }}] }} ''' if model_type=='onnx': parameters = ''' parameters { key: "intra_op_thread_count" value: { string_value: "0" } } parameters { key: "execution_mode" value: { string_value: "1" } } parameters { key: "inter_op_thread_count" value: { string_value: "0" } } ''' if model_type=='pytorch' or model_type=='torch': parameters = ''' parameters: { key: "DISABLE_OPTIMIZED_EXECUTION" value: { string_value:"true" } } parameters: { key: "INFERENCE_MODE" value: { string_value: "false" } } ''' config_str = ''' name: "%s" platform: "%s" max_batch_size: 0 input %s output %s %s '''%(item.model_name,plat_form[model_type],self.input_demo,self.output_demo,parameters) return config_str # @pysnooper.snoop(watch_explode=('item')) def use_expand(self, item): # # item.ports = conf.get('INFERNENCE_PORTS',{}).get(item.service_type,item.ports) # item.env = '\n'.join(conf.get('INFERNENCE_ENV', {}).get(item.service_type, item.env.split('\n') if item.env else [])) # item.metrics = conf.get('INFERNENCE_METRICS', {}).get(item.service_type, item.metrics) # item.health = conf.get('INFERNENCE_HEALTH', {}).get(item.service_type, item.health) # 先存储特定参数到expand expand = json.loads(item.expand) if item.expand else {} print(self.src_item_json) model_version = item.model_version.replace('v','').replace('.','').replace(':','') model_path = "/"+item.model_path.strip('/') if item.model_path else '' # 对网络地址先同一在命令中下载 download_command='' if 'http:' in item.model_path or 'https:' in item.model_path: model_file = item.model_path[item.model_path.rindex('/')+1:] model_path = model_file download_command = 'wget %s && '%item.model_path if '.zip' in item.model_path: download_command+='unzip -O %s && '%model_file model_path = model_file.replace('.zip', '').replace('.tar.gz', '') # 这就要求压缩文件和目录同名,并且下面直接就是目录。其他格式的文件不能压缩 if '.tar.gz' in item.model_path: download_command += 'tar -zxvf %s && '%model_file model_path = model_file.replace('.zip','').replace('.tar.gz','') # 这就要求压缩文件和目录同名,并且下面直接就是目录。其他格式的文件不能压缩 if item.service_type=='tfserving': des_model_path = "/models/%s/" % (item.model_name,) des_version_path = "/models/%s/%s/"%(item.model_name,model_version) if not item.id or not item.command: item.command=download_command+'''mkdir -p %s && cp -r %s/* %s && /usr/bin/tf_serving_entrypoint.sh --model_config_file=/config/models.config --monitoring_config_file=/config/monitoring.config --platform_config_file=/config/platform.config'''%(des_version_path,model_path,des_version_path) item.health='8501:/v1/models/%s/versions/%s/metadata'%(item.model_name,model_version) expand['models.config']=expand['models.config'] if expand.get('models.config','') else self.tfserving_model_config(item.model_name,model_version,des_model_path) expand['monitoring.config']=expand['monitoring.config'] if expand.get('monitoring.config','') else self.tfserving_monitoring_config() expand['platform.config'] = expand['platform.config'] if expand.get('platform.config','') else self.tfserving_platform_config() if not item.inference_config: item.inference_config=''' ---models.config %s ---monitoring.config %s ---platform.config %s '''%( self.tfserving_model_config(item.model_name,model_version,des_model_path), self.tfserving_monitoring_config(), self.tfserving_platform_config() ) if item.service_type=='torch-server': if not item.working_dir: item.working_dir='/models' model_file = model_path[model_path.rindex('/') + 1:] if '/' in model_path else model_path tar_command='ls' if '.mar' not in model_path: tar_command = 'torch-model-archiver --model-name %s --version %s --handler %s --serialized-file %s --export-path /models -f'%(item.model_name,model_version,item.transformer or item.model_type,model_path) else: if ('http:' in item.model_path or 'https://' in item.model_path) and item.working_dir=='/models': print('has download to des_version_path') else: tar_command='cp -rf %s /models/'%(model_path) if not item.id or not item.command: item.command=download_command+'cp /config/* /models/ && '+tar_command+' && torchserve --start --model-store /models --models %s=%s.mar --foreground --ts-config=/config/config.properties'%(item.model_name,item.model_name) expand['config.properties'] = expand['config.properties'] if expand.get('config.properties','') else self.torch_config() expand['log4j2.xml'] = expand['log4j2.xml'] if expand.get('log4j2.xml','') else self.torch_log() if not item.inference_config: item.inference_config = ''' ---config.properties %s ---log4j2.xml %s ''' % ( self.torch_config(), self.torch_log() ) if item.service_type=='triton-server': # 识别模型类型 model_type = 'tf' if '.onnx' in model_path: model_type='onnx' if '.plan' in model_path: model_type = 'tensorrt' if '.pt' in model_path or '.pth' in model_path: model_type = 'pytorch' if not item.id or not item.command: if model_type=='tf': item.command=download_command+'mkdir -p /models/{model_name}/{model_version}/model.savedmodel && cp /config/* /models/{model_name}/ && cp -r /{model_path}/* /models/{model_name}/{model_version}/model.savedmodel && tritonserver --model-repository=/models --strict-model-config=true --log-verbose=1'.format(model_path=model_path.strip('/'),model_name=item.model_name,model_version=model_version) else: model_file_ext = model_path.split(".")[-1] item.command=download_command+'mkdir -p /models/{model_name}/{model_version}/ && cp /config/* /models/{model_name}/ && cp -r {model_path} /models/{model_name}/{model_version}/model.{model_file_ext} && tritonserver --model-repository=/models --strict-model-config=true --log-verbose=1'.format(model_path=model_path,model_name=item.model_name,model_version=model_version,model_file_ext=model_file_ext) config_str = self.triton_config(item,model_type) old_config_str = json.loads(self.src_item_json['expand']).get('config.pbtxt','') if item.id else '' new_config_str = expand.get('config.pbtxt','') if not item.id: expand['config.pbtxt']=config_str elif new_config_str==old_config_str and new_config_str!=config_str: expand['config.pbtxt']=config_str elif not new_config_str: expand['config.pbtxt'] = config_str if not item.inference_config: item.inference_config = ''' ---config.pbtxt %s ''' % ( config_str, ) if item.service_type=='onnxruntime': if not item.id or not item.command: item.command=download_command+'./onnxruntime_server --log_level info --model_path %s'%model_path item.name=item.service_type+"-"+item.model_name+"-"+model_version # item.expand = json.dumps(expand,indent=4,ensure_ascii=False) # @pysnooper.snoop() def pre_add(self, item): if not item.model_path: item.model_path='' if not item.volume_mount: item.volume_mount=item.project.volume_mount self.use_expand(item) if ('http:' in item.model_path or 'https:' in item.model_path) and ('.zip' in item.model_path or '.tar.gz' in item.model_path): try: flash('检测到模型地址为网络压缩文件,需压缩文件名和解压后文件夹名相同','warning') except Exception as e: pass print(e) def delete_old_service(self,service_name,cluster): try: from myapp.utils.py.py_k8s import K8s k8s_client = K8s(cluster.get('KUBECONFIG','')) service_namespace = conf.get('SERVICE_NAMESPACE') for namespace in [service_namespace,]: for name in [service_name,'debug-'+service_name,'test-'+service_name]: service_external_name = (name + "-external").lower()[:60].strip('-') k8s_client.delete_deployment(namespace=namespace, name=name) k8s_client.delete_service(namespace=namespace, name=name) k8s_client.delete_service(namespace=namespace, name=service_external_name) k8s_client.delete_istio_ingress(namespace=namespace, name=name) k8s_client.delete_hpa(namespace=namespace, name=name) k8s_client.delete_configmap(namespace=namespace, name=name) except Exception as e: print(e) # @pysnooper.snoop(watch_explode=('item',)) def pre_update(self, item): if not item.volume_mount: item.volume_mount=item.project.volume_mount item.name = item.name.replace("_","-") if ('http:' in item.model_path or 'https:' in item.model_path) and ('.zip' in item.model_path or '.tar.gz' in item.model_path): flash('检测到模型地址为网络压缩文件,需压缩文件名和解压后文件夹名相同','warning') # if ('http://' in item.model_path or 'https://' in item.model_path) and item.model_path!=self.src_item_json.get('model_path',''): # # self.download_model(item) # if '.zip' not in item.model_path and '.tar.gz' not in item.model_path: # flash('未识别的模型网络地址','warning') # 修改了名称的话,要把之前的删掉 self.use_expand(item) # 如果模型版本和模型名称变了,需要把之前的服务删除掉 if self.src_item_json.get('name','') and item.name!=self.src_item_json.get('name',''): self.delete_old_service(self.src_item_json.get('name',''), item.project.cluster) flash('发现模型服务变更,启动清理服务%s:%s'%(self.src_item_json.get('model_name',''),self.src_item_json.get('model_version','')),'success') src_project_id = self.src_item_json.get('project_id',0) if src_project_id and src_project_id!=item.project.id: try: from myapp.models.model_team import Project src_project = db.session.query(Project).filter_by(id=int(src_project_id)).first() if src_project and src_project.cluster['NAME']!=item.project.cluster['NAME']: # 如果集群变了,原有集群的已经部署的服务要clear掉 service_name = self.src_item_json.get('name','') if service_name: from myapp.utils.py.py_k8s import K8s k8s_client = K8s(src_project.cluster.get('KUBECONFIG', '')) service_namespace = conf.get('SERVICE_NAMESPACE') for namespace in [service_namespace, ]: for name in [service_name, 'debug-' + service_name, 'test-' + service_name]: service_external_name = (name + "-external").lower()[:60].strip('-') k8s_client.delete_deployment(namespace=namespace, name=name) k8s_client.delete_service(namespace=namespace, name=name) k8s_client.delete_service(namespace=namespace, name=service_external_name) k8s_client.delete_istio_ingress(namespace=namespace, name=name) k8s_client.delete_hpa(namespace=namespace, name=name) k8s_client.delete_configmap(namespace=namespace, name=name) # 域名后缀如果不一样也要变了 if src_project and src_project.cluster['SERVICE_DOMAIN'] != item.project.cluster['SERVICE_DOMAIN']: item.host=item.host.replace(src_project.cluster['SERVICE_DOMAIN'],item.project.cluster['SERVICE_DOMAIN']) except Exception as e: print(e) # 事后无法读取到project属性 def pre_delete(self, item): self.delete_old_service(item.name,item.project.cluster) flash('服务已清理完成', category='success') @expose('/clear/', methods=['POST', "GET"]) def clear(self, service_id): service = db.session.query(InferenceService).filter_by(id=service_id).first() if service: self.delete_old_service(service.name, service.project.cluster) service.model_status='offline' if not service.deploy_history: service.deploy_history='' service.deploy_history = service.deploy_history + "\n" + "clear: %s %s" % (g.user.username,datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) db.session.commit() flash('服务清理完成', category='success') return redirect(conf.get('MODEL_URLS',{}).get('inferenceservice','')) @expose('/deploy/debug/',methods=['POST',"GET"]) # @pysnooper.snoop() def deploy_debug(self,service_id): return self.deploy(service_id,env='debug') @expose('/deploy/test/',methods=['POST',"GET"]) # @pysnooper.snoop() def deploy_test(self,service_id): return self.deploy(service_id,env='test') @expose('/deploy/prod/', methods=['POST', "GET"]) # @pysnooper.snoop() def deploy_prod(self, service_id): return self.deploy(service_id,env='prod') @expose('/deploy/update/', methods=['POST','GET']) # @pysnooper.snoop(watch_explode=('deploy')) def update_service(self): args = request.json if request.json else {} namespace = conf.get('SERVICE_NAMESPACE', 'service') args.update(request.args) service_id = int(args.get('service_id',0)) service_name = args.get('service_name', '') model_name = args.get('model_name', '') model_version = args.get('model_version', '') service=None if service_id: service = db.session.query(InferenceService).filter_by(id=service_id).first() elif service_name: service = db.session.query(InferenceService).filter_by(name=service_name).first() elif model_name: if model_version: service = db.session.query(InferenceService)\ .filter(InferenceService.model_name == model_name)\ .filter(InferenceService.model_version == model_version)\ .filter(InferenceService.model_status == 'online')\ .order_by(InferenceService.id.desc()).first() else: service = db.session.query(InferenceService)\ .filter(InferenceService.model_name==model_name)\ .filter(InferenceService.model_status=='online')\ .order_by(InferenceService.id.desc()).first() if service: status=0 message='success' if request.method=='POST': min_replicas = int(args.get('min_replicas',0)) if min_replicas: service.min_replicas = min_replicas if service.max_replicas < min_replicas: service.max_replicas=min_replicas db.session.commit() try: self.deploy(service.id) except Exception as e: print(e) status=-1 message=str(e) time.sleep(3) from myapp.utils.py.py_k8s import K8s k8s_client = K8s(service.project.cluster.get('KUBECONFIG','')) deploy=None try: deploy = k8s_client.AppsV1Api.read_namespaced_deployment(name=service.name,namespace=namespace) except Exception as e: print(e) status=-1, message=str(e) back={ "result": { "service":service.to_json(), "deploy":deploy.to_dict() if deploy else {} }, "status": status, "message": message } return jsonify(back) else: return jsonify({ "result":"", "status":-1, "message":"service not exist or service not online" }) # @pysnooper.snoop() def deploy(self,service_id,env='prod'): service = db.session.query(InferenceService).filter_by(id=service_id).first() namespace = conf.get('SERVICE_NAMESPACE','service') name = service.name command = service.command deployment_replicas = service.min_replicas if env=='debug': name = env+'-'+service.name command = 'sleep 43200' deployment_replicas = 1 # namespace=pre_namespace if env =='test': name = env+'-'+service.name # namespace=pre_namespace image_secrets = conf.get('HUBSECRET', []) user_hubsecrets = db.session.query(Repository.hubsecret).filter(Repository.created_by_fk == g.user.id).all() if user_hubsecrets: for hubsecret in user_hubsecrets: if hubsecret[0] not in image_secrets: image_secrets.append(hubsecret[0]) from myapp.utils.py.py_k8s import K8s k8s_client = K8s(service.project.cluster.get('KUBECONFIG','')) config_datas = service.inference_config.strip().split("\n---") if service.inference_config else [] config_datas = [x.strip() for x in config_datas if x.strip()] volume_mount = service.volume_mount print('文件个数:',len(config_datas)) config_data={} for data in config_datas: file_name = re.sub('^-*', '',data.split('\n')[0]).strip() file_content = '\n'.join(data.split('\n')[1:]) if file_name and file_content: config_data[file_name] = file_content if config_data: print('create configmap') k8s_client.create_configmap(namespace=namespace,name=name,data=config_data,labels={'app':name}) volume_mount += ",%s(configmap):/config/"%name ports = [int(port) for port in service.ports.split(',')] pod_env = service.env pod_env += "\nKUBEFLOW_ENV=" + env pod_env += '\nKUBEFLOW_MODEL_PATH=' + service.model_path if service.model_path else '' pod_env += '\nKUBEFLOW_MODEL_VERSION=' + service.model_version pod_env += '\nKUBEFLOW_MODEL_IMAGES=' + service.images pod_env += '\nKUBEFLOW_MODEL_NAME=' + service.model_name pod_env += '\nKUBEFLOW_AREA=' + json.loads(service.project.expand).get('area', 'guangzhou') pod_env += "\nRESOURCE_CPU=" + service.resource_cpu pod_env += "\nRESOURCE_MEMORY=" + service.resource_memory pod_env = pod_env.strip(',') if env=='test' or env =='debug': try: print('delete deployment') k8s_client.delete_deployment(namespace=namespace,name=name) except Exception as e: print(e) # 因为所有的服务流量通过ingress实现,所以没有isito的envoy代理 labels = {"app":name,"user":service.created_by.username,'pod-type':"inference"} try: pod_ports = copy.deepcopy(ports) try: if service.metrics.strip(): metrics_port = int(service.metrics[:service.metrics.index(":")]) pod_ports.append(metrics_port) except Exception as e: print(e) try: if service.health.strip(): health_port = int(service.health[:service.health.index(":")]) pod_ports.append(health_port) except Exception as e: print(e) pod_ports = list(set(pod_ports)) print('create deployment') annotations={} # https://istio.io/latest/docs/reference/config/annotations/ if service.sidecar and 'istio' in service.sidecar and service.service_type=='serving': labels['sidecar.istio.io/inject']='true' k8s_client.create_deployment( namespace=namespace, name=name, replicas=deployment_replicas, labels=labels, annotations=annotations, command=['sh','-c',command] if command else None, args=None, volume_mount=volume_mount, working_dir=service.working_dir, node_selector=service.get_node_selector(), resource_memory=service.resource_memory, resource_cpu=service.resource_cpu, resource_gpu=service.resource_gpu if service.resource_gpu else '', image_pull_policy=conf.get('IMAGE_PULL_POLICY','Always'), image_pull_secrets=image_secrets, image=service.images, hostAliases=conf.get('HOSTALIASES',''), env=pod_env, privileged=False, accounts=None, username=service.created_by.username, ports=pod_ports, health=service.health if ':' in service.health and env!='debug' else None ) except Exception as e: flash('deploymnet:'+str(e),'warning') # 监控 if service.metrics: annotations = { "prometheus.io/scrape": "true", "prometheus.io/port": service.metrics.split(":")[0], "prometheus.io/path": service.metrics.split(":")[1] } else: annotations={} print('deploy service') # 端口改变才重新部署服务 k8s_client.create_service( namespace=namespace, name=name, username=service.created_by.username, ports=ports, annotations=annotations, selector=labels ) # 如果域名配置的gateway,就用这个 host = service.name+"."+ service.project.cluster.get('SERVICE_DOMAIN',conf.get('SERVICE_DOMAIN','')) if service.host: host=service.host.replace('http://','').replace('https://','').strip() if "/" in host: host = host[:host.index("/")] # 前缀来区分不同的环境服务 if env=='debug' or env=='test': host=env+'.'+host try: print('deploy istio ingressgateway') k8s_client.create_istio_ingress( namespace=namespace, name=name, host = host, ports=service.ports.split(','), canary=service.canary, shadow=service.shadow ) except Exception as e: print(e) # 以ip形式访问的话,使用的代理ip。不然不好处理机器服务化机器扩容和缩容时ip变化 SERVICE_EXTERNAL_IP=[] # 使用项目组ip if service.project.expand: ip = json.loads(service.project.expand).get('SERVICE_EXTERNAL_IP', '') if ip and type(ip) == str: SERVICE_EXTERNAL_IP = [ip] if ip and type(ip) == list: SERVICE_EXTERNAL_IP = ip # 使用全局ip if not SERVICE_EXTERNAL_IP: SERVICE_EXTERNAL_IP = conf.get('SERVICE_EXTERNAL_IP', None) # 使用当前ip if not SERVICE_EXTERNAL_IP: ip = request.host[:request.host.rindex(':')] if ':' in request.host else request.host # 如果捕获到端口号,要去掉 if ip=='127.0.0.1': host = service.project.cluster.get('HOST','') if not host: SERVICE_EXTERNAL_IP = [host] elif core.checkip(ip): SERVICE_EXTERNAL_IP=[ip] if SERVICE_EXTERNAL_IP: # 对于多网卡模式,或者单域名模式,代理需要配置内网ip,界面访问需要公网ip或域名 SERVICE_EXTERNAL_IP = [ip.split('|')[0].strip() for ip in SERVICE_EXTERNAL_IP] service_ports = [[20000+10*service.id+index,port] for index,port in enumerate(ports)] service_external_name = (service.name + "-external").lower()[:60].strip('-') print('deploy proxy ip') k8s_client.create_service( namespace=namespace, name=service_external_name, username=service.created_by.username, ports=service_ports, selector=labels, external_ip=SERVICE_EXTERNAL_IP ) # # 以ip形式访问的话,使用的代理ip。不然不好处理机器服务化机器扩容和缩容时ip变化 # ip和端口形式只定向到生产,因为不能像泛化域名一样随意添加 TKE_EXISTED_LBID='' if service.project.expand: TKE_EXISTED_LBID = json.loads(service.project.expand).get('TKE_EXISTED_LBID',"") if not TKE_EXISTED_LBID: TKE_EXISTED_LBID = service.project.cluster.get("TKE_EXISTED_LBID",'') if not TKE_EXISTED_LBID: TKE_EXISTED_LBID = conf.get('TKE_EXISTED_LBID','') if not SERVICE_EXTERNAL_IP and TKE_EXISTED_LBID: TKE_EXISTED_LBID = TKE_EXISTED_LBID.split('|')[0] service_ports = [[20000+10*service.id+index,port] for index,port in enumerate(ports)] service_external_name = (service.name + "-external").lower()[:60].strip('-') k8s_client.create_service( namespace=namespace, name=service_external_name, username=service.created_by.username, ports=service_ports, selector=labels, service_type='LoadBalancer', annotations={ "service.kubernetes.io/tke-existed-lbid":TKE_EXISTED_LBID, } ) if env=='prod': hpas = re.split(',|;', service.hpa) regex = re.compile(r"\(.*\)") if float(regex.sub('', service.resource_gpu))<1: for hpa in copy.deepcopy(hpas): if 'gpu' in hpa: hpas.remove(hpa) # 伸缩容 if int(service.max_replicas)>int(service.min_replicas) and service.hpa: try: # 创建+绑定deployment print('create hpa') k8s_client.create_hpa( namespace=namespace, name=name, min_replicas=int(service.min_replicas), max_replicas=int(service.max_replicas), hpa=','.join(hpas) ) except Exception as e: flash('hpa:'+str(e),'warning') else: k8s_client.delete_hpa(namespace=namespace,name=name) # # 使用激活器 # if int(service.min_replicas)==0: # flash('检测到最小副本为0,已加入激活器装置') # pass # 不记录部署测试的情况 if env =='debug' and service.model_status=='offline': service.model_status = 'debug' if env=='test' and service.model_status=='offline': service.model_status = 'test' if env=='prod': service.model_status = 'online' service.deploy_history=service.deploy_history+"\n"+"deploy %s: %s %s"%(env,g.user.username,datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) service.deploy_history = '\n'.join(service.deploy_history.split("\n")[-10:]) db.session.commit() if env=="debug": time.sleep(2) pods = k8s_client.get_pods(namespace=namespace,labels={"app":name}) if pods: pod = pods[0] print('deploy debug success') return redirect("/k8s/web/debug/%s/%s/%s/%s" % (service.project.cluster['NAME'], namespace, pod['name'],name)) # 生产环境才有域名代理灰度的问题 if env=='prod': from myapp.tasks.async_task import upgrade_service kwargs = { "service_id": service.id, "name":service.name, "namespace":namespace } upgrade_service.apply_async(kwargs=kwargs) flash('服务部署完成,正在进行同域名服务版本切换', category='success') print('deploy prod success') return redirect(conf.get('MODEL_URLS',{}).get('inferenceservice','')) @action( "copy", __("Copy service"), confirmation=__('Copy Service'), icon="fa-copy",multiple=True, single=False ) def copy(self, services): if not isinstance(services, list): services = [services] try: for service in services: new_services = service.clone() index=1 model_version = datetime.datetime.now().strftime('v%Y.%m.%d.1') while True: model_version = datetime.datetime.now().strftime('v%Y.%m.%d.'+str(index)) exits_service = db.session.query(InferenceService).filter_by(model_version=model_version).filter_by(model_name=new_services.model_name).first() if exits_service: index+=1 else: break new_services.model_version=model_version new_services.name = new_services.service_type+"-"+new_services.model_name+"-"+new_services.model_version.replace('v','').replace('.','') new_services.created_on = datetime.datetime.now() new_services.changed_on = datetime.datetime.now() db.session.add(new_services) db.session.commit() except InvalidRequestError: db.session.rollback() except Exception as e: raise e return redirect(request.referrer) # @pysnooper.snoop() def echart_option(self,filters=None): print(filters) global global_all_service_load if not global_all_service_load: global_all_service_load['check_time'] = None option=global_all_service_load['data'] if not global_all_service_load['check_time'] or (datetime.datetime.now() - global_all_service_load['check_time']).total_seconds()>3600: all_services = db.session.query(InferenceService).filter_by(model_status='online').all() from myapp.utils.py.py_prometheus import Prometheus prometheus = Prometheus(conf.get('PROMETHEUS','')) # prometheus = Prometheus('10.101.142.16:8081') all_services_load = prometheus.get_istio_service_metric(namespace='service') services_metrics = [] legend=['qps','cpu','memory','gpu'] today_time = int(datetime.datetime.strptime(datetime.datetime.now().strftime("%Y-%m-%d"),"%Y-%m-%d").timestamp()) time_during = 5 * 60 end_point = min(int(datetime.datetime.now().timestamp() - today_time)//time_during, 60*60*24//time_during) start_point = max(end_point - 60, 0) # @pysnooper.snoop() def add_metric_data(metric,metric_name,service_name): if metric_name == 'qps': metric = [[date_value[0], int(float(date_value[1]))] for date_value in metric if datetime.datetime.now().timestamp() > date_value[0] > today_time] if metric_name == 'memory': metric = [[date_value[0], round(float(date_value[1]) / 1024 / 1024 / 1024, 2)] for date_value in metric if datetime.datetime.now().timestamp() > date_value[0] > today_time] if metric_name == 'cpu' or metric_name == 'gpu': metric = [[date_value[0], round(float(date_value[1]), 2)] for date_value in metric if datetime.datetime.now().timestamp() > date_value[0] > today_time] if metric: # 将时间戳转化为时间段分箱,按分钟分箱 metric_binning = [[0] for x in range(60*60*24//time_during)] # 每5分钟一个分箱 for date_value in metric: timestamp, value = date_value[0], date_value[1] metric_binning[(timestamp-today_time)//time_during].append(value) metric_binning = [int(sum(x) / len(x)) for x in metric_binning] # metric_binning = [[datetime.datetime.fromtimestamp(today_time+time_during*i+time_during).strftime('%Y-%m-%dT%H:%M:%S.000Z'),metric_binning[i]] for i in range(len(metric_binning)) if i<=end_point] metric_binning = [[(today_time+time_during*i+time_during)*1000,metric_binning[i]] for i in range(len(metric_binning)) if i<=end_point] services_metrics.append( { "name": service_name, "type": 'line', "smooth": True, "showSymbol": False, "data": metric_binning } ) for service in all_services: # qps_metric = all_services_load['qps'].get(service.name,[]) # add_metric_data(qps_metric, 'qps',service.name) # # servie_pod_metrics = [] # for pod_name in all_services_load['memory']: # if service.name in pod_name: # pod_metric = all_services_load['memory'][pod_name] # servie_pod_metrics = servie_pod_metrics + pod_metric # add_metric_data(servie_pod_metrics, 'memory', service.name) # # servie_pod_metrics = [] # for pod_name in all_services_load['cpu']: # if service.name in pod_name: # pod_metric = all_services_load['cpu'][pod_name] # servie_pod_metrics = servie_pod_metrics + pod_metric # add_metric_data(servie_pod_metrics, 'cpu',service.name) servie_pod_metrics = [] for pod_name in all_services_load['gpu']: if service.name in pod_name: pod_metric = all_services_load['gpu'][pod_name] servie_pod_metrics = servie_pod_metrics+pod_metric add_metric_data(servie_pod_metrics,'gpu',service.created_by.username+":"+service.label) # dataZoom: [ # { # start: {{start_point}}, # end: {{end_point}} # } # ], option = ''' { "title": { "text": '在线服务GPU负载监控' }, "tooltip": { "trigger": 'axis', "position": [10, 10] }, "legend": { "data": {{ legend }} }, "grid": { "left": '3%', "right": '4%', "bottom": '3%', "containLabel": true }, "xAxis": { "type": "time", "min": new Date('{{today}}'), "max": new Date('{{tomorrow}}'), "boundaryGap": false, "timezone" : 'Asia/Shanghai', }, "yAxis": { "type": "value", "boundaryGap": false, "axisLine":{ //y轴 "show":false }, "axisTick":{ //y轴刻度线 "show":true }, "splitLine": { //网格线 "show": true, "color": '#f1f2f6' } }, "series": {{services_metric}} } ''' # print(services_metrics) rtemplate = Environment(loader=BaseLoader, undefined=DebugUndefined).from_string(option) option = rtemplate.render( legend=legend, services_metric=json.dumps(services_metrics,ensure_ascii=False,indent=4), start_point=start_point, end_point=end_point, today=datetime.datetime.now().strftime('%Y/%m/%d'), tomorrow=(datetime.datetime.now()+datetime.timedelta(days=1)).strftime('%Y/%m/%d'), ) # global_all_service_load['check_time']=datetime.datetime.now() global_all_service_load['data']=option # print(option) # file = open('myapp/test.txt',mode='w') # file.write(option) # file.close() return option class InferenceService_ModelView(InferenceService_ModelView_base,MyappModelView): datamodel = SQLAInterface(InferenceService) appbuilder.add_view_no_menu(InferenceService_ModelView) # 添加api class InferenceService_ModelView_Api(InferenceService_ModelView_base,MyappModelRestApi): datamodel = SQLAInterface(InferenceService) route_base = '/inferenceservice_modelview/api' def add_more_info(self,response,**kwargs): online_services = db.session.query(InferenceService).filter(InferenceService.model_status=='online').filter(InferenceService.resource_gpu!='0').all() if len(online_services)>0: response['echart']=True else: response['echart'] = False def set_columns_related(self,exist_add_args,response_add_columns): exist_service_type = exist_add_args.get('service_type','') service_model_path = { "tfserving": "/mnt/.../saved_model", "torch-server": "/mnt/.../$model_name.mar", "onnxruntime": "/mnt/.../$model_name.onnx", "triton-server": "onnx:/mnt/.../model.onnx(model.plan,model.bin,model.savedmodel/,model.pt,model.dali)" } response_add_columns['images']['values'] = [{"id":x,"value":x} for x in conf.get('INFERNENCE_IMAGES',{}).get(exist_service_type,[])] response_add_columns['model_path']['default']=service_model_path.get(exist_service_type,'') response_add_columns['command']['default'] = conf.get('INFERNENCE_COMMAND',{}).get(exist_service_type,'') response_add_columns['env']['default'] = '\n'.join(conf.get('INFERNENCE_ENV',{}).get(exist_service_type,[])) response_add_columns['ports']['default'] = conf.get('INFERNENCE_PORTS',{}).get(exist_service_type,'80') response_add_columns['metrics']['default'] = conf.get('INFERNENCE_METRICS',{}).get(exist_service_type,'') response_add_columns['health']['default'] = conf.get('INFERNENCE_HEALTH',{}).get(exist_service_type,'') # if exist_service_type!='triton-server' and "inference_config" in response_add_columns: # del response_add_columns['inference_config'] appbuilder.add_api(InferenceService_ModelView_Api)