mirror of
https://github.com/tencentmusic/cube-studio.git
synced 2024-11-21 01:16:33 +08:00
add paddle job
This commit is contained in:
parent
4bd9b59f2b
commit
a8d85312d4
33
job-template/job/paddle/Dockerfile
Normal file
33
job-template/job/paddle/Dockerfile
Normal file
@ -0,0 +1,33 @@
|
||||
FROM ubuntu:18.04
|
||||
RUN apt-get update && apt-get -y install gcc g++ libjpeg-dev zlib1g-dev cmake
|
||||
|
||||
# 安装运维工具
|
||||
RUN apt install -y --force-yes --no-install-recommends vim apt-transport-https gnupg2 ca-certificates-java rsync jq wget git dnsutils iputils-ping net-tools curl mysql-client locales zip
|
||||
# 安装python
|
||||
RUN apt install -y python3.6-dev python3-pip libsasl2-dev libpq-dev \
|
||||
&& ln -s /usr/bin/python3 /usr/bin/python \
|
||||
&& ln -s /usr/bin/pip3 /usr/bin/pip
|
||||
|
||||
RUN wget https://github.com/stern/stern/releases/download/v1.21.0/stern_1.21.0_linux_amd64.tar.gz && tar -zxvf stern_1.21.0_linux_amd64.tar.gz && rm stern_1.21.0_linux_amd64.tar.gz && chmod +x stern && mv stern /usr/bin/stern
|
||||
|
||||
# 安装中文
|
||||
RUN apt install -y --force-yes --no-install-recommends locales ttf-wqy-microhei ttf-wqy-zenhei xfonts-wqy && locale-gen zh_CN && locale-gen zh_CN.utf8
|
||||
ENV LANG zh_CN.UTF-8
|
||||
ENV LC_ALL zh_CN.UTF-8
|
||||
ENV LANGUAGE zh_CN.UTF-8
|
||||
|
||||
# 便捷操作
|
||||
RUN echo "alias ll='ls -alF'" >> /root/.bashrc && \
|
||||
echo "alias la='ls -A'" >> /root/.bashrc && \
|
||||
echo "alias vi='vim'" >> /root/.bashrc && \
|
||||
/bin/bash -c "source /root/.bashrc"
|
||||
|
||||
RUN pip install kubernetes==20.13.0 pysnooper psutil
|
||||
COPY job/paddle/* /app/
|
||||
COPY job/pkgs /app/job/pkgs
|
||||
WORKDIR /app
|
||||
ENV PYTHONPATH=/app:$PYTHONPATH
|
||||
|
||||
ENTRYPOINT ["python3", "launcher.py"]
|
||||
|
||||
|
0
job-template/job/paddle/README.md
Normal file
0
job-template/job/paddle/README.md
Normal file
8
job-template/job/paddle/build.sh
Normal file
8
job-template/job/paddle/build.sh
Normal file
@ -0,0 +1,8 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
docker build -t ccr.ccs.tencentyun.com/cube-studio/paddle:20221010 -f job/paddle/Dockerfile .
|
||||
docker push ccr.ccs.tencentyun.com/cube-studio/paddle:20221010
|
||||
|
||||
|
322
job-template/job/paddle/launcher.py
Normal file
322
job-template/job/paddle/launcher.py
Normal file
@ -0,0 +1,322 @@
|
||||
|
||||
import os,sys
|
||||
base_dir = os.path.split(os.path.realpath(__file__))[0]
|
||||
sys.path.append(base_dir)
|
||||
|
||||
import argparse
|
||||
import datetime
|
||||
import json
|
||||
import time
|
||||
import uuid
|
||||
import os
|
||||
import pysnooper
|
||||
import os,sys
|
||||
import re
|
||||
import threading
|
||||
import psutil
|
||||
import copy
|
||||
|
||||
from kubernetes import client
|
||||
|
||||
# print(os.environ)
|
||||
from job.pkgs.k8s.py_k8s import K8s
|
||||
k8s_client = K8s()
|
||||
|
||||
KFJ_NAMESPACE = os.getenv('KFJ_NAMESPACE', '')
|
||||
KFJ_TASK_ID = os.getenv('KFJ_TASK_ID', '')
|
||||
KFJ_TASK_NAME = os.getenv('KFJ_TASK_NAME', '')
|
||||
task_node_selectors = re.split(',|;|\n|\t', os.getenv('KFJ_TASK_NODE_SELECTOR', 'cpu=true,train=true'))
|
||||
KFJ_TASK_NODE_SELECTOR = {}
|
||||
for task_node_selector in task_node_selectors:
|
||||
KFJ_TASK_NODE_SELECTOR[task_node_selector.split('=')[0]] = task_node_selector.split('=')[1]
|
||||
|
||||
KFJ_PIPELINE_ID = os.getenv('KFJ_PIPELINE_ID', '')
|
||||
KFJ_RUN_ID = os.getenv('KFJ_RUN_ID', '')
|
||||
KFJ_CREATOR = os.getenv('KFJ_CREATOR', '')
|
||||
KFJ_RUNNER = os.getenv('KFJ_RUNNER','')
|
||||
KFJ_PIPELINE_NAME = os.getenv('KFJ_PIPELINE_NAME', '')
|
||||
KFJ_TASK_IMAGES = os.getenv('KFJ_TASK_IMAGES', '')
|
||||
KFJ_TASK_VOLUME_MOUNT = os.getenv('KFJ_TASK_VOLUME_MOUNT', '')
|
||||
KFJ_TASK_RESOURCE_CPU = os.getenv('KFJ_TASK_RESOURCE_CPU', '')
|
||||
KFJ_TASK_RESOURCE_MEMORY = os.getenv('KFJ_TASK_RESOURCE_MEMORY', '')
|
||||
NUM_WORKER = 3
|
||||
INIT_FILE=''
|
||||
crd_info={
|
||||
"group": "batch.paddlepaddle.org",
|
||||
"version": "v1",
|
||||
'kind': 'PaddleJob',
|
||||
"plural": "paddlejobs",
|
||||
"timeout": 60 * 60 * 24 * 2
|
||||
}
|
||||
|
||||
|
||||
k8s_volumes, k8s_volume_mounts = k8s_client.get_volume_mounts(KFJ_TASK_VOLUME_MOUNT,KFJ_CREATOR)
|
||||
|
||||
print(k8s_volumes)
|
||||
print(k8s_volume_mounts)
|
||||
|
||||
GPU_TYPE= os.getenv('KFJ_GPU_TYPE', 'NVIDIA')
|
||||
GPU_RESOURCE= os.getenv('KFJ_TASK_RESOURCE_GPU', '0')
|
||||
print(GPU_TYPE,GPU_RESOURCE)
|
||||
|
||||
|
||||
|
||||
def default_job_name():
|
||||
name = "paddlejob-" + KFJ_PIPELINE_NAME.replace('_','-')+"-"+uuid.uuid4().hex[:4]
|
||||
return name[0:54]
|
||||
|
||||
|
||||
|
||||
|
||||
import subprocess
|
||||
# @pysnooper.snoop()
|
||||
def run_shell(shell):
|
||||
print('begin run shell: %s'%shell,flush=True)
|
||||
cmd = subprocess.Popen(shell, stdin=subprocess.PIPE, stderr=subprocess.PIPE,
|
||||
stdout=subprocess.PIPE, universal_newlines=True, shell=True, bufsize=1)
|
||||
# 实时输出
|
||||
while True:
|
||||
line = cmd.stdout.readline()
|
||||
status = subprocess.Popen.poll(cmd)
|
||||
if status:
|
||||
print(status,line,end='', flush=True)
|
||||
else:
|
||||
print(line, end='', flush=True)
|
||||
if status == 0: # 判断子进程是否结束
|
||||
print('shell finish %s'%status,flush=True)
|
||||
break
|
||||
if status==-9 or status==-15 or status==143: # 外界触发kill
|
||||
print('shell finish %s'%status,flush=True)
|
||||
break
|
||||
|
||||
return cmd.returncode
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# 监控指定名称的paddlejob
|
||||
def monitoring(crd_k8s,name,namespace):
|
||||
time.sleep(10)
|
||||
# 杀掉stern 进程
|
||||
def get_pid(name):
|
||||
'''
|
||||
作用:根据进程名获取进程pid
|
||||
'''
|
||||
pids = psutil.process_iter()
|
||||
print("[" + name + "]'s pid is:", flush=True)
|
||||
back=[]
|
||||
for pid in pids:
|
||||
if name in pid.name():
|
||||
print(pid.pid, flush=True)
|
||||
back.append(pid.pid)
|
||||
return back
|
||||
check_time = datetime.datetime.now()
|
||||
while(True):
|
||||
paddlejob = crd_k8s.get_one_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=namespace,name=name)
|
||||
if paddlejob:
|
||||
print('paddlejob status %s'%paddlejob['status'], flush=True)
|
||||
else:
|
||||
print('paddlejob not exist', flush=True)
|
||||
if paddlejob and (paddlejob['status']=="Succeeded" or paddlejob['status']=="Failed" or paddlejob['status']=='Completed'): # Created, Running, Restarting, Succeeded, or Failed
|
||||
pids = get_pid("stern")
|
||||
if pids:
|
||||
for pid in pids:
|
||||
pro = psutil.Process(int(pid))
|
||||
pro.terminate()
|
||||
print('kill process %s'%pid, flush=True)
|
||||
break
|
||||
if (datetime.datetime.now()-check_time).seconds>3600:
|
||||
pids = get_pid("stern")
|
||||
if pids:
|
||||
for pid in pids:
|
||||
pro = psutil.Process(int(pid))
|
||||
pro.terminate()
|
||||
print('kill process %s'%pid, flush=True)
|
||||
check_time=datetime.datetime.now()
|
||||
time.sleep(60)
|
||||
|
||||
|
||||
|
||||
# @pysnooper.snoop()
|
||||
def make_paddlejob(name,num_workers,num_ps,image,working_dir,command):
|
||||
pod_spec={
|
||||
"replicas": 1,
|
||||
"restartPolicy": "Never",
|
||||
"template": {
|
||||
"metadata": {
|
||||
"labels": {
|
||||
"pipeline-id": KFJ_PIPELINE_ID,
|
||||
"pipeline-name": KFJ_PIPELINE_NAME,
|
||||
"task-id": KFJ_TASK_ID,
|
||||
"task-name": KFJ_TASK_NAME,
|
||||
'rtx-user': KFJ_RUNNER,
|
||||
"component": name,
|
||||
"type": "paddlejob",
|
||||
"run-id": KFJ_RUN_ID,
|
||||
}
|
||||
},
|
||||
"spec": {
|
||||
# "schedulerName": "kube-batch",
|
||||
"restartPolicy": "Never",
|
||||
"volumes": k8s_volumes,
|
||||
"imagePullSecrets": [
|
||||
{
|
||||
"name": "hubsecret"
|
||||
}
|
||||
],
|
||||
"affinity": {
|
||||
"nodeAffinity": {
|
||||
"requiredDuringSchedulingIgnoredDuringExecution": {
|
||||
"nodeSelectorTerms": [
|
||||
{
|
||||
"matchExpressions": [
|
||||
{
|
||||
"key": node_selector_key,
|
||||
"operator": "In",
|
||||
"values": [
|
||||
KFJ_TASK_NODE_SELECTOR[node_selector_key]
|
||||
]
|
||||
} for node_selector_key in KFJ_TASK_NODE_SELECTOR
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"podAntiAffinity": {
|
||||
"preferredDuringSchedulingIgnoredDuringExecution": [
|
||||
{
|
||||
"weight": 5,
|
||||
"podAffinityTerm": {
|
||||
"topologyKey": "kubernetes.io/hostname",
|
||||
"labelSelector": {
|
||||
"matchLabels": {
|
||||
"component": name,
|
||||
"type": "paddlejob"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"containers": [
|
||||
{
|
||||
"name": "paddle",
|
||||
"image": image if image else KFJ_TASK_IMAGES,
|
||||
"imagePullPolicy": "Always",
|
||||
"workingDir":working_dir,
|
||||
"command": ['bash','-c',command],
|
||||
"volumeMounts": k8s_volume_mounts,
|
||||
"resources": {
|
||||
"requests": {
|
||||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||||
"memory": KFJ_TASK_RESOURCE_MEMORY,
|
||||
},
|
||||
"limits": {
|
||||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||||
"memory": KFJ_TASK_RESOURCE_MEMORY
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if GPU_TYPE=='NVIDIA' and GPU_RESOURCE:
|
||||
pod_spec['template']['spec']['containers'][0]['resources']['requests']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||||
pod_spec['template']['spec']['containers'][0]['resources']['limits']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||||
|
||||
worker_pod_spec = copy.deepcopy(pod_spec)
|
||||
worker_pod_spec['replicas']=int(num_workers)
|
||||
ps_pod_spec = copy.deepcopy(pod_spec)
|
||||
ps_pod_spec['replicas']=int(num_ps)
|
||||
paddle_deploy = {
|
||||
"apiVersion": "batch.paddlepaddle.org/v1",
|
||||
"kind": "PaddleJob",
|
||||
"metadata": {
|
||||
"namespace": KFJ_NAMESPACE,
|
||||
"name": name,
|
||||
"labels":{
|
||||
"run-id":KFJ_RUN_ID,
|
||||
"run-rtx":KFJ_RUNNER,
|
||||
"pipeline-rtx": KFJ_CREATOR,
|
||||
"pipeline-id": KFJ_PIPELINE_ID,
|
||||
"pipeline-name": KFJ_PIPELINE_NAME,
|
||||
"task-id": KFJ_TASK_ID,
|
||||
"task-name": KFJ_TASK_NAME,
|
||||
}
|
||||
},
|
||||
"spec": {
|
||||
# "withGloo":1, # withGloo的可选配置为0不启用,1只启动worker端,2启动所有(worker和server),建议设置1;
|
||||
"intranet":'PodIP',
|
||||
"cleanPodPolicy": "Never",
|
||||
"worker":worker_pod_spec
|
||||
}
|
||||
}
|
||||
if num_ps:
|
||||
paddle_deploy['spec']['ps']=ps_pod_spec
|
||||
|
||||
return paddle_deploy
|
||||
|
||||
|
||||
# @pysnooper.snoop()
|
||||
def launch_paddlejob(name, num_workers,num_ps, image,working_dir, worker_command):
|
||||
|
||||
if KFJ_RUN_ID:
|
||||
print('delete old paddle, run-id %s'%KFJ_RUN_ID, flush=True)
|
||||
k8s_client.delete_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=KFJ_NAMESPACE,labels={"run-id":KFJ_RUN_ID})
|
||||
time.sleep(10)
|
||||
# 删除旧的paddle
|
||||
k8s_client.delete_crd(group=crd_info['group'], version=crd_info['version'], plural=crd_info['plural'],namespace=KFJ_NAMESPACE, name=name)
|
||||
time.sleep(10)
|
||||
# 创建新的paddle
|
||||
paddlejob_json = make_paddlejob(name=name,num_workers= num_workers,num_ps=num_ps, image = image,working_dir=working_dir,command=worker_command)
|
||||
print('create new paddle %s' % name, flush=True)
|
||||
k8s_client.create_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=KFJ_NAMESPACE,body=paddlejob_json)
|
||||
time.sleep(10)
|
||||
|
||||
print('begin start monitoring thread', flush=True)
|
||||
# # 后台启动监控脚本
|
||||
monitoring_thread = threading.Thread(target=monitoring,args=(k8s_client,name,KFJ_NAMESPACE))
|
||||
monitoring_thread.start()
|
||||
while True:
|
||||
# 实时打印日志
|
||||
line='>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>'
|
||||
print('begin follow log\n%s'%line, flush=True)
|
||||
command = '''stern %s --namespace %s --exclude-container coord-paddle --since 10s --template '{{.PodName}} {{.Message}} {{"\\n"}}' '''%(name,KFJ_NAMESPACE)
|
||||
|
||||
print(command, flush=True)
|
||||
run_shell(command)
|
||||
print('%s\nend follow log'%line, flush=True)
|
||||
time.sleep(10)
|
||||
|
||||
paddlejob = k8s_client.get_one_crd(group=crd_info['group'], version=crd_info['version'],plural=crd_info['plural'], namespace=KFJ_NAMESPACE, name=name)
|
||||
if paddlejob and (paddlejob['status'] == "Succeeded" or paddlejob['status'] == "Failed" or paddlejob['status'] == "Completed"):
|
||||
break
|
||||
|
||||
paddlejob = k8s_client.get_one_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=KFJ_NAMESPACE,name=name)
|
||||
print("paddleJob %s finished, status %s"%(name, paddlejob['status']))
|
||||
|
||||
if paddlejob['status']!='Succeeded' and paddlejob['status']!="Completed":
|
||||
exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
arg_parser = argparse.ArgumentParser("Paddlejob launcher")
|
||||
arg_parser.add_argument('--working_dir', type=str, help="运行job的工作目录", default='/mnt/')
|
||||
arg_parser.add_argument('--command', type=str, help="运行job的命令", default='python3 mnist.py')
|
||||
arg_parser.add_argument('--num_ps', type=int, help="运行ps的pod数目", default=0)
|
||||
arg_parser.add_argument('--num_worker', type=int, help="运行worker的pod数目", default=3)
|
||||
arg_parser.add_argument('--image', type=str, help="运行job的镜像", default='')
|
||||
|
||||
args = arg_parser.parse_args()
|
||||
print("{} args: {}".format(__file__, args))
|
||||
|
||||
|
||||
launch_paddlejob(name=default_job_name(),num_workers=int(args.num_worker),num_ps=int(args.num_ps),image=args.image,working_dir=args.working_dir,worker_command=args.command)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user