mirror of
https://github.com/tencentmusic/cube-studio.git
synced 2025-02-17 14:40:28 +08:00
add readme_cn
This commit is contained in:
parent
1262ce1d2b
commit
788592582e
91
README.md
91
README.md
@ -1,74 +1,77 @@
|
||||
# Cube Studio
|
||||
|
||||
### 整体架构
|
||||
English | [简体中文](README_CN.md)
|
||||
|
||||
### Infra
|
||||
|
||||
|
||||

|
||||
|
||||
cube是 腾讯音乐 开源的一站式云原生机器学习平台,目前主要包含
|
||||
- 1、数据管理:特征平台,支持在/离线特征;数据源管理,支持结构数据和媒体标注数据管理;
|
||||
- 2、在线开发:在线的vscode/jupyter代码开发;在线镜像调试,支持免dockerfile,增量构建;
|
||||
- 3、训练编排:任务流编排,在线拖拉拽;开放的模板市场,支持tf/pytorch/mxnet/spark/ray/horovod/kaldi/volcano等分布式计算/训练任务;task的单节点debug,分布式任务的批量优先级调度,聚合日志;任务运行资源监控,报警;定时调度,支持补录,忽略,重试,依赖,并发限制,定时任务算力的智能修正;
|
||||
- 4、超参搜索:nni,katib,ray的超参搜索;
|
||||
- 5、推理服务:tf/pytorch/onnx模型的推理服务,serverless流量管控,triton gpu推理加速,依据gpu利用率/qps等指标的hpa能力,虚拟化gpu,虚拟显存等服务化能力;
|
||||
- 6、资源统筹:多集群多项目组资源统筹,联邦调度,边缘计算;
|
||||
cube-studio is a one-stop cloud-native machine learning platform open sourced by Tencent Music, Currently mainly includes the following functions:
|
||||
- 1、data management:Feature Store: Online and offline features;Dataset management,structure data and media data,Label Platform;
|
||||
- 2、develop: notrbook(vscode/jupyter); docker Image management; image build online;
|
||||
- 3、train:Pipeline Drag and drop online; Open Template Market; Distributed computing/training tasks, example tf/pytorch/mxnet/spark/ray/horovod/kaldi/volcano; batch priority scheduling; Resource Monitoring Alarm Balancing;Cron Scheduling
|
||||
- 4、Hyperparameter Search:nni,katib,ray;
|
||||
- 5、inference:model manager; serverless traffic control; tf/pytorch/onnx/tensorrt model deploy, tfserving/torchserver/onnxruntime/triton inference; VGPU; Load Balancing、High availability、Elastic scaling
|
||||
- 6、infra:Multi-user;Multi-project; Multi-cluster; Edge Cluster Mode; blockchain sharing;
|
||||
|
||||
# 帮助文档
|
||||
# Doc
|
||||
|
||||
https://github.com/tencentmusic/cube-studio/wiki
|
||||
|
||||
# 开源共建
|
||||
# WeChat group
|
||||
|
||||
学习、部署、体验、开源建设 欢迎来撩。或添加微信luanpeng1234,备注<开源建设>, [共建指南](https://github.com/tencentmusic/cube-studio/wiki/%E5%85%B1%E5%BB%BA%E6%8C%87%E5%8D%97)
|
||||
learning、deploy、experience、contributions join group, wechart id luanpeng1234 remark<open source>, [construction guide](https://github.com/tencentmusic/cube-studio/wiki/%E5%85%B1%E5%BB%BA%E6%8C%87%E5%8D%97)
|
||||
|
||||
<img border="0" width="20%" src="https://luanpeng.oss-cn-qingdao.aliyuncs.com/github/wechat.jpg" />
|
||||
|
||||
# 支持模板
|
||||
# Job Template
|
||||
|
||||
提示:
|
||||
- 1、可自由定制任务插件,更适用当前业务需求
|
||||
tips:
|
||||
- 1、Easy to develop and more suitable for your own scenarios
|
||||
|
||||
| 模板 | 类型 | 组件说明 |
|
||||
| template | type | describe |
|
||||
| :----- | :---- | :---- |
|
||||
| 自定义镜像 | 基础命令 | 完全自定义单机运行环境,可自由实现所有自定义单机功能 |
|
||||
| datax | 导入导出 | 异构数据源导入导出 |
|
||||
| media-download | 数据处理 | 分布式媒体文件下载 |
|
||||
| video-audio | 数据处理 | 分布式视频提取音频 |
|
||||
| video-img | 数据处理 | 分布式视频提取图片 |
|
||||
| sparkjob | 数据处理 | spark serverless 分布式数据计算 |
|
||||
| ray | 数据处理 | python ray框架 多机分布式功能,适用于超多文件在多机上的并发处理 |
|
||||
| xgb | 机器学习 | xgb模型训练 |
|
||||
| ray-sklearn | 机器学习 | 基于ray框架的sklearn支持算法多机分布式并行计算 |
|
||||
| volcano | 数据处理 | volcano框架的多机分布式,可紫玉控制代码,利用环境变量实现多机worker的工作与协同 |
|
||||
| pytorchjob-train | 训练 | pytorch的多机多卡分布式训练 |
|
||||
| horovod-train | 训练 | horovod的多机多卡分布式训练 |
|
||||
| tfjob | 训练 | tf分布式训练,k8s云原生方式 |
|
||||
| tfjob-train | 训练 | tf分布式训练,内部支持plain和runner两种方式 |
|
||||
| tfjob-runner | 训练 | tf分布式-runner方式 |
|
||||
| tfjob-plain | 训练 | tf分布式-plain方式 |
|
||||
| kaldi-train | 训练 | kaldi音频分布式训练 |
|
||||
| tf-model-evaluation | 模型评估 | tensorflow2.3分布式模型评估 |
|
||||
| tf-offline-predict | 离线推理 | tf模型离线推理 |
|
||||
| model-offline-predict | 离线推理 | 分布式模型离线推理 |
|
||||
| deploy-service | 服务部署 | 部署云原生推理服务 |
|
||||
| linux | base | Custom stand-alone operating environment, free to implement all custom stand-alone functions |
|
||||
| datax | import export | Import and export of heterogeneous data sources |
|
||||
| media-download | data processing | Distributed download of media files |
|
||||
| video-audio | data processing | Distributed extraction of audio from video |
|
||||
| video-img | data processing | Distributed extraction of pictures from video |
|
||||
| sparkjob | data processing | spark serverless |
|
||||
| ray | data processing | python ray multi-machine distributed framework |
|
||||
| volcano | data processing | volcano multi-machine distributed framework |
|
||||
| xgb | machine learning | xgb model training and inference |
|
||||
| ray-sklearn | machine learning | sklearn based on ray framework supports multi-machine distributed parallel computing |
|
||||
| pytorchjob-train | model train | Multi-machine distributed training of pytorch |
|
||||
| horovod-train | model train | Multi-machine distributed training of horovod |
|
||||
| tfjob | model train | Multi-machine distributed training of tensorflow |
|
||||
| tfjob-train | model train | distributed training of tensorflow: plain and runner |
|
||||
| tfjob-runner | model train | distributed training of tensorflow: runner method |
|
||||
| tfjob-plain | model train | distributed training of tensorflow: plain method |
|
||||
| kaldi-train | model train | Multi-machine distributed training of kaldi |
|
||||
| tf-model-evaluation | model evaluate | distributed model evaluation of tensorflow2.3 |
|
||||
| tf-offline-predict | model inference | distributed offline model inference of tensorflow2.3 |
|
||||
| model-offline-predict | model inference | distributed offline model inference of framework |
|
||||
| deploy-service | model deploy | deploy inference service |
|
||||
|
||||
|
||||
# 平台部署
|
||||
# Deploy
|
||||
|
||||
[参考wiki](https://github.com/tencentmusic/cube-studio/wiki/%E5%B9%B3%E5%8F%B0%E5%8D%95%E6%9C%BA%E9%83%A8%E7%BD%B2) 平台完成部署之后如下:
|
||||
[wiki](https://github.com/tencentmusic/cube-studio/wiki/%E5%B9%B3%E5%8F%B0%E5%8D%95%E6%9C%BA%E9%83%A8%E7%BD%B2)
|
||||
|
||||

|
||||
|
||||
|
||||
# 贡献
|
||||
算法:
|
||||
# Contributor
|
||||
|
||||
algorithm:
|
||||
@hujunaifuture <img width="5%" src="https://avatars.githubusercontent.com/u/19547589?v=4" />
|
||||
@jaffe-fly <img width="5%" src="https://avatars.githubusercontent.com/u/49515380?s=96&v=4" />
|
||||
@JLWLL <img width="5%" src="https://avatars.githubusercontent.com/u/86763551?s=96&v=4" />
|
||||
@ma-chengcheng<img width="5%" src="https://avatars.githubusercontent.com/u/15444349?s=96&v=4" />
|
||||
@chendile <img width="5%" src="https://avatars.githubusercontent.com/u/42484658?s=96&v=4" />
|
||||
|
||||
平台:
|
||||
platform:
|
||||
@xiaoyangmai <img width="5%" src="https://avatars.githubusercontent.com/u/10969390?s=96&v=4" />
|
||||
@VincentWei2021 <img width="5%" src="https://avatars.githubusercontent.com/u/77832074?v=4" />
|
||||
@SeibertronSS <img width="5%" src="https://avatars.githubusercontent.com/u/69496864?v=4" />
|
||||
@ -78,10 +81,6 @@ https://github.com/tencentmusic/cube-studio/wiki
|
||||
<br>
|
||||
<br>
|
||||
|
||||
[](https://github.com/tencentmusic/cube-studio/stargazers)
|
||||
|
||||
[](https://github.com/tencentmusic/cube-studio/network/members)
|
||||
|
||||
# 落地公司
|
||||
# Company
|
||||
|
||||

|
||||
|
83
README_CN.md
Normal file
83
README_CN.md
Normal file
@ -0,0 +1,83 @@
|
||||
# Cube Studio
|
||||
|
||||
### 整体架构
|
||||
|
||||
|
||||

|
||||
|
||||
cube是 腾讯音乐 开源的一站式云原生机器学习平台,目前主要包含
|
||||
- 1、数据管理:特征平台,支持在/离线特征;数据源管理,支持结构数据和媒体标注数据管理;
|
||||
- 2、在线开发:在线的vscode/jupyter代码开发;在线镜像调试,支持免dockerfile,增量构建;
|
||||
- 3、训练编排:任务流编排,在线拖拉拽;开放的模板市场,支持tf/pytorch/mxnet/spark/ray/horovod/kaldi/volcano等分布式计算/训练任务;task的单节点debug,分布式任务的批量优先级调度,聚合日志;任务运行资源监控,报警;定时调度,支持补录,忽略,重试,依赖,并发限制,定时任务算力的智能修正;
|
||||
- 4、超参搜索:nni,katib,ray的超参搜索;
|
||||
- 5、推理服务:tf/pytorch/onnx模型的推理服务,serverless流量管控,triton gpu推理加速,依据gpu利用率/qps等指标的hpa能力,虚拟化gpu,虚拟显存等服务化能力;
|
||||
- 6、资源统筹:多集群多项目组资源统筹,联邦调度,边缘计算;
|
||||
|
||||
# 帮助文档
|
||||
|
||||
https://github.com/tencentmusic/cube-studio/wiki
|
||||
|
||||
# 开源共建
|
||||
|
||||
学习、部署、体验、开源建设 欢迎来撩。或添加微信luanpeng1234,备注<开源建设>, [共建指南](https://github.com/tencentmusic/cube-studio/wiki/%E5%85%B1%E5%BB%BA%E6%8C%87%E5%8D%97)
|
||||
|
||||
<img border="0" width="20%" src="https://luanpeng.oss-cn-qingdao.aliyuncs.com/github/wechat.jpg" />
|
||||
|
||||
# 支持模板
|
||||
|
||||
提示:
|
||||
- 1、可自由定制任务插件,更适用当前业务需求
|
||||
|
||||
| 模板 | 类型 | 组件说明 |
|
||||
| :----- | :---- | :---- |
|
||||
| 自定义镜像 | 基础命令 | 完全自定义单机运行环境,可自由实现所有自定义单机功能 |
|
||||
| datax | 导入导出 | 异构数据源导入导出 |
|
||||
| media-download | 数据处理 | 分布式媒体文件下载 |
|
||||
| video-audio | 数据处理 | 分布式视频提取音频 |
|
||||
| video-img | 数据处理 | 分布式视频提取图片 |
|
||||
| sparkjob | 数据处理 | spark serverless 分布式数据计算 |
|
||||
| ray | 数据处理 | python ray框架 多机分布式功能,适用于超多文件在多机上的并发处理 |
|
||||
| xgb | 机器学习 | xgb模型训练 |
|
||||
| ray-sklearn | 机器学习 | 基于ray框架的sklearn支持算法多机分布式并行计算 |
|
||||
| volcano | 数据处理 | volcano框架的多机分布式,可自由控制代码,利用环境变量实现多机worker的工作与协同 |
|
||||
| pytorchjob-train | 训练 | pytorch的多机多卡分布式训练 |
|
||||
| horovod-train | 训练 | horovod的多机多卡分布式训练 |
|
||||
| tfjob | 训练 | tf分布式训练,k8s云原生方式 |
|
||||
| tfjob-train | 训练 | tf分布式训练,内部支持plain和runner两种方式 |
|
||||
| tfjob-runner | 训练 | tf分布式-runner方式 |
|
||||
| tfjob-plain | 训练 | tf分布式-plain方式 |
|
||||
| kaldi-train | 训练 | kaldi音频分布式训练 |
|
||||
| tf-model-evaluation | 模型评估 | tensorflow2.3分布式模型评估 |
|
||||
| tf-offline-predict | 离线推理 | tf模型离线推理 |
|
||||
| model-offline-predict | 离线推理 | 所有框架的分布式模型离线推理 |
|
||||
| deploy-service | 服务部署 | 部署云原生推理服务 |
|
||||
|
||||
|
||||
# 平台部署
|
||||
|
||||
[参考wiki](https://github.com/tencentmusic/cube-studio/wiki/%E5%B9%B3%E5%8F%B0%E5%8D%95%E6%9C%BA%E9%83%A8%E7%BD%B2) 平台完成部署之后如下:
|
||||
|
||||

|
||||
|
||||
|
||||
# 贡献
|
||||
算法:
|
||||
@hujunaifuture <img width="5%" src="https://avatars.githubusercontent.com/u/19547589?v=4" />
|
||||
@jaffe-fly <img width="5%" src="https://avatars.githubusercontent.com/u/49515380?s=96&v=4" />
|
||||
@JLWLL <img width="5%" src="https://avatars.githubusercontent.com/u/86763551?s=96&v=4" />
|
||||
@ma-chengcheng<img width="5%" src="https://avatars.githubusercontent.com/u/15444349?s=96&v=4" />
|
||||
@chendile <img width="5%" src="https://avatars.githubusercontent.com/u/42484658?s=96&v=4" />
|
||||
|
||||
平台:
|
||||
@xiaoyangmai <img width="5%" src="https://avatars.githubusercontent.com/u/10969390?s=96&v=4" />
|
||||
@VincentWei2021 <img width="5%" src="https://avatars.githubusercontent.com/u/77832074?v=4" />
|
||||
@SeibertronSS <img width="5%" src="https://avatars.githubusercontent.com/u/69496864?v=4" />
|
||||
@cyxnzb <img width="5%" src="https://avatars.githubusercontent.com/u/51886383?s=88&v=4" />
|
||||
@gilearn <img width="5%" src="https://avatars.githubusercontent.com/u/107160156?s=88&v=4" />
|
||||
@wulingling0108 <img width="5%" src="https://avatars.githubusercontent.com/u/45533757?v=4" />
|
||||
<br>
|
||||
<br>
|
||||
|
||||
# 落地公司
|
||||
|
||||

|
Loading…
Reference in New Issue
Block a user