cube-studio/job-template/job/tf_distributed_train_k8s/launcher.py

304 lines
11 KiB
Python
Raw Normal View History

2022-07-19 16:54:42 +08:00
import os,sys
base_dir = os.path.split(os.path.realpath(__file__))[0]
sys.path.append(base_dir)
import argparse
import datetime
import json
import time
import uuid
import os
import pysnooper
import os,sys
import re
import threading
import psutil
import copy
from kubernetes import client
# print(os.environ)
from job.pkgs.k8s.py_k8s import K8s
k8s_client = K8s()
KFJ_NAMESPACE = os.getenv('KFJ_NAMESPACE', '')
KFJ_TASK_ID = os.getenv('KFJ_TASK_ID', '')
KFJ_TASK_NAME = os.getenv('KFJ_TASK_NAME', '')
task_node_selectors = re.split(',|;|\n|\t', os.getenv('KFJ_TASK_NODE_SELECTOR', 'cpu=true,train=true'))
KFJ_TASK_NODE_SELECTOR = {}
for task_node_selector in task_node_selectors:
KFJ_TASK_NODE_SELECTOR[task_node_selector.split('=')[0]] = task_node_selector.split('=')[1]
KFJ_PIPELINE_ID = os.getenv('KFJ_PIPELINE_ID', '')
KFJ_RUN_ID = os.getenv('KFJ_RUN_ID', '')
KFJ_CREATOR = os.getenv('KFJ_CREATOR', '')
KFJ_RUNNER = os.getenv('KFJ_RUNNER','')
KFJ_PIPELINE_NAME = os.getenv('KFJ_PIPELINE_NAME', '')
KFJ_TASK_IMAGES = os.getenv('KFJ_TASK_IMAGES', '')
KFJ_TASK_VOLUME_MOUNT = os.getenv('KFJ_TASK_VOLUME_MOUNT', '')
KFJ_TASK_RESOURCE_CPU = os.getenv('KFJ_TASK_RESOURCE_CPU', '')
KFJ_TASK_RESOURCE_MEMORY = os.getenv('KFJ_TASK_RESOURCE_MEMORY', '')
NUM_WORKER = 3
HEADER_NAME = os.getenv('RAY_HOST', '')
WORKER_NAME = HEADER_NAME.replace('header', 'worker')
INIT_FILE=''
crd_info = {
"group": "kubeflow.org",
"version": "v1",
"plural": "tfjobs",
'kind':'TFJob',
"timeout": 60*60*24*2
}
k8s_volumes, k8s_volume_mounts = k8s_client.get_volume_mounts(KFJ_TASK_VOLUME_MOUNT,KFJ_CREATOR)
print(k8s_volumes)
print(k8s_volume_mounts)
GPU_TYPE= os.getenv('KFJ_GPU_TYPE', 'NVIDIA')
GPU_RESOURCE= os.getenv('KFJ_TASK_RESOURCE_GPU', '0')
print(GPU_TYPE,GPU_RESOURCE)
def default_job_name():
name = "tfjob-" + KFJ_PIPELINE_NAME.replace('_','-')+"-"+uuid.uuid4().hex[:4]
return name[0:54]
import subprocess
# @pysnooper.snoop()
def run_shell(shell):
print('begin run shell: %s'%shell,flush=True)
cmd = subprocess.Popen(shell, stdin=subprocess.PIPE, stderr=subprocess.PIPE,
stdout=subprocess.PIPE, universal_newlines=True, shell=True, bufsize=1)
# 实时输出
while True:
line = cmd.stdout.readline()
status = subprocess.Popen.poll(cmd)
if status:
print(status,line,end='', flush=True)
else:
print(line, end='', flush=True)
if status == 0: # 判断子进程是否结束
print('shell finish %s'%status,flush=True)
break
if status==-9 or status==-15 or status==143: # 外界触发kill
print('shell finish %s'%status,flush=True)
break
return cmd.returncode
# 监控指定名称的tfjob
def monitoring(crd_k8s,name,namespace):
time.sleep(10)
# 杀掉stern 进程
def get_pid(name):
'''
作用根据进程名获取进程pid
'''
pids = psutil.process_iter()
print("[" + name + "]'s pid is:", flush=True)
back=[]
for pid in pids:
if name in pid.name():
print(pid.pid, flush=True)
back.append(pid.pid)
return back
check_time = datetime.datetime.now()
while(True):
tfjob = crd_k8s.get_one_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=namespace,name=name)
if tfjob:
print('tfjob status %s'%tfjob['status'], flush=True)
else:
print('tfjob not exist', flush=True)
if tfjob and (tfjob['status']=="Succeeded" or tfjob['status']=="Failed"): # Created, Running, Restarting, Succeeded, or Failed
pids = get_pid("stern")
if pids:
for pid in pids:
pro = psutil.Process(int(pid))
pro.terminate()
print('kill process %s'%pid, flush=True)
break
if (datetime.datetime.now()-check_time).seconds>3600:
pids = get_pid("stern")
if pids:
for pid in pids:
pro = psutil.Process(int(pid))
pro.terminate()
print('kill process %s'%pid, flush=True)
check_time=datetime.datetime.now()
time.sleep(60)
# @pysnooper.snoop()
def make_tfjob(name,num_workers,image,working_dir,command):
# if type(command)==str:
# command=command.split(" ")
# command = [c for c in command if c]
pod_spec={
"replicas": 1,
"restartPolicy": "Never",
"template": {
"metadata": {
"labels": {
"pipeline-id": KFJ_PIPELINE_ID,
"pipeline-name": KFJ_PIPELINE_NAME,
"task-id": KFJ_TASK_ID,
"task-name": KFJ_TASK_NAME,
'rtx-user': KFJ_RUNNER,
"component": name,
"type": "tfjob",
"run-id": KFJ_RUN_ID,
}
},
"spec": {
"schedulerName": "kube-batch",
"restartPolicy": "Never",
"volumes": k8s_volumes,
"nodeSelector":KFJ_TASK_NODE_SELECTOR,
"affinity": {
"podAntiAffinity": {
"preferredDuringSchedulingIgnoredDuringExecution": [
{
"weight": 5,
"podAffinityTerm": {
"topologyKey": "kubernetes.io/hostname",
"labelSelector": {
"matchLabels": {
"component": name,
"type": "tfjob"
}
}
}
}
]
}
},
"containers": [
{
"name": "tfjob",
"image": image if image else KFJ_TASK_IMAGES,
"imagePullPolicy": "Always",
"workingDir":working_dir,
"env":[],
"command": ['bash','-c',command],
"volumeMounts": k8s_volume_mounts,
"resources": {
"requests": {
"cpu": KFJ_TASK_RESOURCE_CPU,
"memory": KFJ_TASK_RESOURCE_MEMORY,
},
"limits": {
"cpu": KFJ_TASK_RESOURCE_CPU,
"memory": KFJ_TASK_RESOURCE_MEMORY
}
}
}
]
}
}
}
if GPU_TYPE=='NVIDIA' and GPU_RESOURCE:
pod_spec['template']['spec']['containers'][0]['resources']['requests']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
pod_spec['template']['spec']['containers'][0]['resources']['limits']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
worker_pod_spec = copy.deepcopy(pod_spec)
worker_pod_spec['replicas']=int(num_workers)
tfjob_deploy = {
"apiVersion": "kubeflow.org/v1",
"kind": "TFJob",
"metadata": {
"namespace": KFJ_NAMESPACE,
"name": name,
"labels":{
"run-id":KFJ_RUN_ID,
"run-rtx":KFJ_RUNNER,
"pipeline-rtx": KFJ_CREATOR,
"pipeline-id": KFJ_PIPELINE_ID,
"pipeline-name": KFJ_PIPELINE_NAME,
"task-id": KFJ_TASK_ID,
"task-name": KFJ_TASK_NAME,
}
},
"spec": {
"backoffLimit":num_workers,
"cleanPodPolicy": "None",
"tfReplicaSpecs": {
"Worker":worker_pod_spec
}
}
}
return tfjob_deploy
# @pysnooper.snoop()
def launch_tfjob(name, num_workers, image,working_dir, worker_command):
if KFJ_RUN_ID:
print('delete old tfjob, run-id %s'%KFJ_RUN_ID, flush=True)
k8s_client.delete_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=KFJ_NAMESPACE,labels={"run-id":KFJ_RUN_ID})
time.sleep(10)
# 删除旧的tfjob
k8s_client.delete_crd(group=crd_info['group'], version=crd_info['version'], plural=crd_info['plural'],namespace=KFJ_NAMESPACE, name=name)
time.sleep(10)
# 创建新的tfjob
tfjob_json = make_tfjob(name=name,num_workers= num_workers,image = image,working_dir=working_dir,command=worker_command)
print('create new tfjob %s' % name, flush=True)
k8s_client.create_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=KFJ_NAMESPACE,body=tfjob_json)
time.sleep(10)
print('begin start monitoring thred', flush=True)
# # 后台启动监控脚本
monitoring_thred = threading.Thread(target=monitoring,args=(k8s_client,name,KFJ_NAMESPACE))
monitoring_thred.start()
while True:
# 实时打印日志
line='>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>'
print('begin follow log\n%s'%line, flush=True)
command = "stern %s --namespace %s --tail 10 --template '{{.PodName}} {{.Message}}'"%(name,KFJ_NAMESPACE)
print(command, flush=True)
run_shell(command)
print('%s\nend follow log'%line, flush=True)
time.sleep(10)
tfjob = k8s_client.get_one_crd(group=crd_info['group'], version=crd_info['version'],plural=crd_info['plural'], namespace=KFJ_NAMESPACE, name=name)
if tfjob and (tfjob['status'] == "Succeeded" or tfjob['status'] == "Failed"):
break
tfjob = k8s_client.get_one_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=KFJ_NAMESPACE,name=name)
print("tfjob %s finished, status %s"%(name, tfjob['status']))
if tfjob['status']!='Succeeded':
exit(1)
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser("TFjob launcher")
arg_parser.add_argument('--working_dir', type=str, help="运行job的工作目录", default='/mnt/')
arg_parser.add_argument('--command', type=str, help="运行job的命令", default='python3 mnist.py')
arg_parser.add_argument('--num_worker', type=int, help="运行job所在的机器", default=3)
arg_parser.add_argument('--image', type=str, help="运行job的镜像", default='')
args = arg_parser.parse_args()
print("{} args: {}".format(__file__, args))
launch_tfjob(name=default_job_name(),num_workers=args.num_worker,image=args.image,working_dir=args.working_dir,worker_command=args.command)