cube-studio/myapp/views/view_total_resource.py

481 lines
24 KiB
Python
Raw Normal View History

2023-12-11 13:20:43 +08:00
import copy
2023-04-06 23:24:08 +08:00
import math
2023-12-11 13:20:43 +08:00
from flask import Markup,g
2023-04-06 23:24:08 +08:00
from jinja2 import Environment, BaseLoader, DebugUndefined
2023-09-03 21:15:58 +08:00
from myapp import app, appbuilder, db
2023-04-06 23:24:08 +08:00
from flask import request
from .baseFormApi import (
MyappFormRestApi
)
2023-12-11 13:20:43 +08:00
from flask_appbuilder.actions import action
from flask_babel import gettext as __
from flask_babel import lazy_gettext as _
2023-09-03 21:15:58 +08:00
import datetime, time, json
2023-12-11 13:20:43 +08:00
import pysnooper
from myapp.utils.py.py_k8s import K8s
2023-04-06 23:24:08 +08:00
conf = app.config
2023-09-03 21:15:58 +08:00
pipeline_resource_used = {
2023-04-06 23:24:08 +08:00
"check_time": None,
"data": {}
}
node_resource_used = {
"check_time": None,
"data": {}
}
global_cluster_load = {}
2023-09-03 21:15:58 +08:00
2023-04-06 23:24:08 +08:00
# 机器学习首页资源弹窗
# @pysnooper.snoop()
def node_traffic():
2023-12-11 13:20:43 +08:00
if not node_resource_used['check_time'] or node_resource_used['check_time'] < (datetime.datetime.now() - datetime.timedelta(seconds=10)):
2023-04-06 23:24:08 +08:00
2023-09-03 21:15:58 +08:00
all_node_json = {}
2023-04-06 23:24:08 +08:00
clusters = conf.get('CLUSTERS', {})
for cluster_name in clusters:
try:
cluster = clusters[cluster_name]
k8s_client = K8s(cluster.get('KUBECONFIG', ''))
all_node = k8s_client.get_node()
all_node_resource = k8s_client.get_all_node_allocated_resources()
2023-09-03 21:15:58 +08:00
all_node_json[cluster_name] = {}
2023-04-06 23:24:08 +08:00
for node in all_node:
2023-09-03 21:15:58 +08:00
all_node_json[cluster_name][node['hostip']] = node
node_allocated_resources = all_node_resource.get(node['name'], {
"used_cpu": 0,
"used_memory": 0,
"used_gpu": 0
2023-04-06 23:24:08 +08:00
})
2023-12-11 13:20:43 +08:00
# print(node_allocated_resources)
2023-04-06 23:24:08 +08:00
all_node_json[cluster_name][node['hostip']].update(node_allocated_resources)
except Exception as e:
print(e)
2023-09-03 21:15:58 +08:00
node_resource_used['data'] = all_node_json
2023-04-06 23:24:08 +08:00
node_resource_used['check_time'] = datetime.datetime.now()
all_node_json = node_resource_used['data']
2023-12-11 13:20:43 +08:00
# print(all_node_json)
2023-04-06 23:24:08 +08:00
# 数据格式说明 dict:
# 'delay': Integer 延时隐藏 单位: 毫秒 0为不隐藏
# 'hit': Boolean 是否命中
# 'target': String 当前目标
# 'type': String 类型 目前仅支持html类型
# 'title': String 标题
# 'content': String 内容html内容
# /static/appbuilder/mnt/make_pipeline.mp4
message = ''
td_html = '<td style="border: 1px solid black;padding: 10px">%s</th>'
message += "<tr>%s %s %s %s %s %s %s<tr>" % (
2023-12-11 13:20:43 +08:00
td_html % __("集群"), td_html % __("资源组"), td_html % __("机器"), td_html % __("机型"), td_html % __("cpu占用率"), td_html % __("内存占用率"),
td_html % __("AI加速卡"))
2023-04-06 23:24:08 +08:00
global global_cluster_load
for cluster_name in all_node_json:
global_cluster_load[cluster_name] = {
"cpu_req": 0,
"cpu_all": 0,
"mem_req": 0,
"mem_all": 0,
"gpu_req": 0,
"gpu_all": 0
}
nodes = all_node_json[cluster_name]
# nodes = sorted(nodes.items(), key=lambda item: item[1]['labels'].get('org','public'))
# ips = [node[0] for node in nodes]
# values = [node[1] for node in nodes]
# nodes = dict(zip(ips,values))
# 按项目组和设备类型分组
stored_nodes = {}
for ip in nodes:
org = nodes[ip]['labels'].get('org', 'public')
device = 'cpu'
2023-12-11 20:36:02 +08:00
if nodes[ip]['labels'].get('gpu','')=='true':
2023-04-06 23:24:08 +08:00
device = 'gpu/' + nodes[ip]['labels'].get('gpu-type', '')
2023-12-11 20:36:02 +08:00
if nodes[ip]['labels'].get('vgpu', '') == 'true':
2023-04-06 23:24:08 +08:00
device = 'vgpu/' + nodes[ip]['labels'].get('gpu-type', '')
if org not in stored_nodes:
stored_nodes[org] = {}
if device not in stored_nodes[org]:
stored_nodes[org][device] = {}
stored_nodes[org][device][ip] = nodes[ip]
nodes = {}
for org in stored_nodes:
for device in stored_nodes[org]:
nodes.update(stored_nodes[org][device])
cluster_config = conf.get('CLUSTERS', {}).get(cluster_name, {})
2023-09-03 21:15:58 +08:00
grafana_url = "//" + cluster_config.get('HOST', request.host) + conf.get('GRAFANA_CLUSTER_PATH')
2023-04-06 23:24:08 +08:00
for ip in nodes:
2023-09-03 21:15:58 +08:00
node_dashboard_url = "//"+ cluster_config.get('HOST', request.host) + conf.get('K8S_DASHBOARD_CLUSTER') + '#/node/%s?namespace=default' % nodes[ip]['name']
2023-04-06 23:24:08 +08:00
org = nodes[ip]['labels'].get('org', 'public')
enable_train = nodes[ip]['labels'].get('train', 'true')
2023-12-11 13:20:43 +08:00
ip_html = '<a target="_blank" href="%s">%s</a>' % (node_dashboard_url, ip if nodes[ip]['status']=='Ready' else f'<del>{ip}</del>')
2023-04-06 23:24:08 +08:00
share = nodes[ip]['labels'].get('share', 'true')
clolr = "#FFFFFF" if share == 'true' else '#F0F0F0'
2023-09-03 21:15:58 +08:00
device = ''
2023-12-11 20:36:02 +08:00
if nodes[ip]['labels'].get('cpu','') == 'true':
2023-09-03 21:15:58 +08:00
device = 'cpu/'
2023-12-11 20:36:02 +08:00
if nodes[ip]['labels'].get('gpu','')=='true':
2023-09-03 21:15:58 +08:00
device = device+'gpu/'
2023-12-11 20:36:02 +08:00
if nodes[ip]['labels'].get('vgpu','')=='true':
2023-09-03 21:15:58 +08:00
device = device+'vgpu/'
device = device + nodes[ip]['labels'].get('gpu-type', '')
device=device.strip('/')
2023-04-06 23:24:08 +08:00
2023-12-11 13:20:43 +08:00
gpu_used=0
gpu_total=0
gpu_mfrs='gpu'
gpu_resource = conf.get('GPU_RESOURCE')
for gpu_mfrs_temp in gpu_resource:
gpu_used_temp = round(nodes[ip].get(f'used_{gpu_mfrs_temp}',0), 2)
gpu_total_temp = nodes[ip][gpu_mfrs_temp]
if gpu_total_temp>0.01: # 存在指定卡型资源,就显示指定卡提供应简写
gpu_mfrs = gpu_mfrs_temp
gpu_used += gpu_used_temp
gpu_total += gpu_total_temp
2023-04-06 23:24:08 +08:00
message += '<tr bgcolor="%s">%s %s %s %s %s %s %s<tr>' % (
clolr,
td_html % cluster_name,
td_html % org,
td_html % ip_html,
td_html % ('<a target="blank" href="%s">%s</a>' % (grafana_url, device)),
td_html % ("cpu:%s/%s" % (nodes[ip]['used_cpu'], nodes[ip]['cpu'])),
td_html % ("mem:%s/%s" % (nodes[ip]['used_memory'], nodes[ip]['memory'])),
2023-12-11 13:20:43 +08:00
# td_html % ("gpu:%s/%s" % (round(nodes[ip]['used_gpu'],2) if 'vgpu' in device else int(float(nodes[ip]['used_gpu'])), nodes[ip]['gpu'])),
td_html % (f"{gpu_mfrs}:{gpu_used}/{gpu_total}"),
2023-04-06 23:24:08 +08:00
# td_html % (','.join(list(set(nodes[ip]['user']))[0:1]))
)
global_cluster_load[cluster_name]['cpu_req'] += int(nodes[ip]['used_cpu'])
global_cluster_load[cluster_name]['cpu_all'] += int(nodes[ip]['cpu'])
global_cluster_load[cluster_name]['mem_req'] += int(nodes[ip]['used_memory'])
global_cluster_load[cluster_name]['mem_all'] += int(nodes[ip]['memory'])
2023-12-11 13:20:43 +08:00
global_cluster_load[cluster_name]['gpu_req'] += round(gpu_used, 2)
global_cluster_load[cluster_name]['gpu_all'] += int(float(gpu_total))
2023-04-06 23:24:08 +08:00
message = Markup('<table style="margin:20px">%s</table>' % message)
data = {
'content': message,
'delay': 300000,
'hit': True,
'target': conf.get('MODEL_URLS', {}).get('total_resource', ''),
2023-12-11 13:20:43 +08:00
'title': __('机器负载'),
2023-04-06 23:24:08 +08:00
'style': {
'height': '600px'
},
'type': 'html',
}
# 返回模板
return data
2023-09-03 21:15:58 +08:00
2023-04-06 23:24:08 +08:00
# pipeline每个任务的资源占用情况
# @pysnooper.snoop()
def pod_resource():
2023-12-11 13:20:43 +08:00
if not pipeline_resource_used['check_time'] or pipeline_resource_used['check_time'] < (datetime.datetime.now() - datetime.timedelta(seconds=10)):
2023-04-06 23:24:08 +08:00
clusters = conf.get('CLUSTERS', {})
all_tasks_json = {}
for cluster_name in clusters:
cluster = clusters[cluster_name]
try:
k8s_client = K8s(cluster.get('KUBECONFIG', ''))
# 获取pod的资源占用
all_tasks_json[cluster_name] = {}
# print(all_node_json)
2023-09-03 21:15:58 +08:00
for namespace in ['jupyter', 'pipeline', 'automl', 'service', 'aihub']:
2023-04-06 23:24:08 +08:00
all_tasks_json[cluster_name][namespace] = {}
all_pods = k8s_client.get_pods(namespace=namespace)
for pod in all_pods:
org = pod['node_selector'].get("org", 'public')
if org not in all_tasks_json[cluster_name][namespace]:
all_tasks_json[cluster_name][namespace][org] = {}
2024-04-03 22:01:43 +08:00
if pod['status'] == 'Running' or pod['status_more'].get('phase','')=='Running':
2023-12-11 13:20:43 +08:00
user = pod['labels'].get('user', pod['labels'].get('username', pod['labels'].get('run-rtx',pod['labels'].get('rtx-user','admin'))))
2023-04-06 23:24:08 +08:00
if user:
2023-12-11 13:20:43 +08:00
request_gpu = 0
# 所有ai卡都算入xpu卡中
for gpu_mfrs in list(conf.get('GPU_RESOURCE',{}).keys()):
request_gpu +=float(pod.get(gpu_mfrs,0))
2023-04-06 23:24:08 +08:00
all_tasks_json[cluster_name][namespace][org][pod['name']] = {}
all_tasks_json[cluster_name][namespace][org][pod['name']]['username'] = user
all_tasks_json[cluster_name][namespace][org][pod['name']]['host_ip'] = pod['host_ip']
# print(namespace,pod)
all_tasks_json[cluster_name][namespace][org][pod['name']]['request_memory'] = pod['memory']
all_tasks_json[cluster_name][namespace][org][pod['name']]['request_cpu'] = pod['cpu']
2023-12-11 13:20:43 +08:00
all_tasks_json[cluster_name][namespace][org][pod['name']]['request_gpu'] = request_gpu
2023-04-06 23:24:08 +08:00
all_tasks_json[cluster_name][namespace][org][pod['name']]['used_memory'] = '0'
all_tasks_json[cluster_name][namespace][org][pod['name']]['used_cpu'] = '0'
all_tasks_json[cluster_name][namespace][org][pod['name']]['used_gpu'] = '0'
2024-01-03 22:40:42 +08:00
all_tasks_json[cluster_name][namespace][org][pod['name']]['label'] = pod['labels']
all_tasks_json[cluster_name][namespace][org][pod['name']]['annotations'] = pod['annotations']
2023-04-06 23:24:08 +08:00
# print(namespace,org,pod['name'])
# 获取pod的资源使用
all_pods_metrics = k8s_client.get_pod_metrics(namespace=namespace)
# print(all_pods_metrics)
for pod in all_pods_metrics:
for org in all_tasks_json[cluster_name][namespace]:
if pod['name'] in all_tasks_json[cluster_name][namespace][org]:
all_tasks_json[cluster_name][namespace][org][pod['name']]['used_memory'] = pod['memory']
all_tasks_json[cluster_name][namespace][org][pod['name']]['used_cpu'] = pod['cpu']
# print(namespace,org,pod['name'])
break
# print(all_tasks_json)
except Exception as e:
print(e)
pipeline_resource_used['data'] = all_tasks_json
pipeline_resource_used['check_time'] = datetime.datetime.now()
all_tasks_json = pipeline_resource_used['data']
2023-09-03 21:15:58 +08:00
all_pod_resource = []
2023-04-06 23:24:08 +08:00
for cluster_name in all_tasks_json:
cluster_config = conf.get('CLUSTERS', {}).get(cluster_name, {})
for namespace in all_tasks_json[cluster_name]:
for org in all_tasks_json[cluster_name][namespace]:
for pod_name in all_tasks_json[cluster_name][namespace][org]:
pod = all_tasks_json[cluster_name][namespace][org][pod_name]
2023-09-03 21:15:58 +08:00
dashboard_url = f'/k8s/web/search/{cluster_name}/{namespace}/{pod_name}'
task_grafana_url = "//" + cluster_config.get('HOST', request.host) + conf.get('GRAFANA_TASK_PATH')
node_grafana_url = "//" + cluster_config.get('HOST', request.host) + conf.get('GRAFANA_NODE_PATH')
2023-04-06 23:24:08 +08:00
pod_resource={
"cluster":cluster_name,
2024-02-28 15:04:36 +08:00
'project':pod['annotations'].get('project','unknown'),
2024-01-03 22:40:42 +08:00
"resource_group":org,
2023-04-06 23:24:08 +08:00
"namespace":Markup('<a target="blank" href="%s">%s</a>' % (dashboard_url, namespace)),
"pod":Markup('<a target="blank" href="%s">%s</a>' % (task_grafana_url + pod_name, pod_name)),
2023-12-11 13:20:43 +08:00
"pod_info":f"{cluster_name}:{namespace}:{org}:{pod_name}",
"label":pod['label'],
2023-04-06 23:24:08 +08:00
"username":pod['username'],
"node":Markup('<a target="blank" href="%s">%s</a>' % (node_grafana_url + pod["host_ip"], pod["host_ip"])),
"cpu":"%s/%s" % (math.ceil(int(pod.get('used_cpu', '0')) / 1000), int(pod.get('request_cpu', '0'))),
"memory":"%s/%s" % (int(pod.get('used_memory', '0')), int(pod.get('request_memory', '0'))),
"gpu":"%s" % str(round(float(pod.get('request_gpu', '0')),2)),
}
all_pod_resource.append(pod_resource)
return all_pod_resource
2023-09-03 21:15:58 +08:00
2023-04-06 23:24:08 +08:00
# 添加api
class Total_Resource_ModelView_Api(MyappFormRestApi):
route_base = '/total_resource/api/'
2023-09-03 21:15:58 +08:00
order_columns = ["cpu", "memory"]
2023-12-11 13:20:43 +08:00
primary_key = 'pod_info'
2023-09-03 21:15:58 +08:00
cols_width = {
2023-04-06 23:24:08 +08:00
"cluster": {"type": "ellip2", "width": 100},
2024-01-03 22:40:42 +08:00
"resource_group": {"type": "ellip2", "width": 100},
2023-04-06 23:24:08 +08:00
"project": {"type": "ellip2", "width": 100},
"namespace": {"type": "ellip2", "width": 100},
"node": {"type": "ellip2", "width": 150},
2024-01-03 22:40:42 +08:00
"pod": {"type": "ellip2", "width": 400},
"username": {"type": "ellip2", "width": 100},
2023-04-06 23:24:08 +08:00
"cpu": {"type": "ellip2", "width": 100},
"memory": {"type": "ellip2", "width": 100},
"gpu": {"type": "ellip2", "width": 100}
}
2023-09-03 21:15:58 +08:00
label_columns = {
2023-12-11 13:20:43 +08:00
"cluster": _("集群"),
"project": _("项目组"),
2024-01-03 22:40:42 +08:00
"resource_group": _("资源组"),
2023-12-11 13:20:43 +08:00
"namespace": _("类型"),
"label": _("标签"),
"pod": _("容器(资源使用)"),
"username": _("用户"),
"node": _("节点(资源使用)"),
"cpu": _("cpu使用"),
"memory": _("内存使用"),
"gpu": _("AI卡使用")
2023-04-06 23:24:08 +08:00
}
ops_link = [
{
2023-12-11 13:20:43 +08:00
"text": _("gpu资源监控"),
2023-04-06 23:24:08 +08:00
"url": conf.get('GRAFANA_GPU_PATH')
},
{
2023-12-11 13:20:43 +08:00
"text": _("集群负载"),
2023-04-06 23:24:08 +08:00
"url": conf.get('GRAFANA_CLUSTER_PATH')
}
]
2023-12-11 13:20:43 +08:00
label_title = _('整体资源')
list_title = _("运行中资源列表")
2023-09-03 21:15:58 +08:00
page_size = 1000
enable_echart = True
base_permissions = ['can_list']
2024-01-03 22:40:42 +08:00
list_columns = ['cluster', 'resource_group', 'namespace', 'pod', 'username', 'node', 'cpu', 'memory', 'gpu']
2023-04-06 23:24:08 +08:00
2023-09-03 21:15:58 +08:00
alert_config = {
conf.get('MODEL_URLS', {}).get('total_resource', ''): node_traffic
2023-04-06 23:24:08 +08:00
}
2023-09-03 21:15:58 +08:00
def query_list(self, order_column, order_direction, page_index, page_size, filters=None, **kargs):
2023-04-06 23:24:08 +08:00
2023-09-03 21:15:58 +08:00
lst = pod_resource()
2024-02-28 15:04:36 +08:00
# 非管理员只查看自己的
if not g.user.is_admin():
lst = [pod for pod in lst if pod['username']==g.user.username]
2023-04-06 23:24:08 +08:00
if order_column and lst:
lst = sorted(lst, key=lambda d:float(d[order_column].split('/')[0])/float(d[order_column].split('/')[1]) if '/0' not in d[order_column] else 0, reverse = False if order_direction=='asc' else True)
total_count=len(lst)
return total_count,lst
# @pysnooper.snoop()
2023-09-03 21:15:58 +08:00
def echart_option(self, filters=None):
2023-04-06 23:24:08 +08:00
global global_cluster_load
if not global_cluster_load:
2023-09-03 21:15:58 +08:00
node_resource_used['check_time'] = None
2023-04-06 23:24:08 +08:00
node_traffic()
2023-12-11 13:20:43 +08:00
from myapp.utils.py.py_prometheus import Prometheus
prometheus = Prometheus(conf.get('PROMETHEUS', 'prometheus-k8s.monitoring:9090'))
# prometheus = Prometheus('9.135.92.226:15046')
pod_resource_metric = prometheus.get_resource_metric()
all_resource={
"mem_all": sum([int(global_cluster_load[cluster_name]['mem_all']) for cluster_name in global_cluster_load]),
"cpu_all": sum([int(global_cluster_load[cluster_name]['cpu_all']) for cluster_name in global_cluster_load]),
"gpu_all": sum([int(global_cluster_load[cluster_name]['gpu_all']) for cluster_name in global_cluster_load]),
}
all_resource_req = {
"mem_req": sum([int(global_cluster_load[cluster_name]['mem_req']) for cluster_name in global_cluster_load]),
"cpu_req": sum([int(global_cluster_load[cluster_name]['cpu_req']) for cluster_name in global_cluster_load]),
"gpu_req": sum([int(global_cluster_load[cluster_name]['gpu_req']) for cluster_name in global_cluster_load]),
}
all_resource_used = {
"mem_used": sum([pod_resource_metric[x].get('memory',0) for x in pod_resource_metric]),
"cpu_used": sum([pod_resource_metric[x].get('cpu',0) for x in pod_resource_metric]),
"gpu_used": sum([pod_resource_metric[x].get('gpu',0) for x in pod_resource_metric]),
}
2023-04-06 23:24:08 +08:00
2023-12-11 13:20:43 +08:00
resource_options = open('myapp/utils/echart/resource.txt').read()
chat1 = copy.deepcopy(resource_options)
chat1 = chat1.replace('MEM_NAME', __('内存总量(G)')).replace('MEM_CENTER_X', '7%').replace('MEM_VALUE', str(int(all_resource['mem_all'])))
chat1 = chat1.replace('CPU_NAME', __('CPU总量(核)')).replace('CPU_CENTER_X', '17%').replace('CPU_VALUE', str(int(all_resource['cpu_all'])))
chat1 = chat1.replace('GPU_NAME', __('GPU总量(卡)')).replace('GPU_CENTER_X', '27%').replace('GPU_VALUE', str(int(all_resource['gpu_all'])))
chat1 = chat1.replace('MEM_MAX', str(int(all_resource['mem_all']*2))).replace('CPU_MAX', str(int(all_resource['cpu_all']*2))).replace('GPU_MAX', str(int(all_resource['gpu_all']*2)))
chat1 = chat1.strip('\n').strip(' ').strip(',')
chat2 = copy.deepcopy(resource_options)
chat2 = chat2.replace('MEM_NAME',__('内存占用率')).replace('MEM_CENTER_X','40%').replace('MEM_VALUE',str(int(100*all_resource_req['mem_req']/(0.001+all_resource['mem_all']))))
chat2 = chat2.replace('CPU_NAME',__('CPU占用率')).replace('CPU_CENTER_X','50%').replace('CPU_VALUE',str(int(100*all_resource_req['cpu_req']/(0.001+all_resource['cpu_all']))))
chat2 = chat2.replace('GPU_NAME',__('GPU占用率')).replace('GPU_CENTER_X','60%').replace('GPU_VALUE',str(int(100*all_resource_req['gpu_req']/(0.001+all_resource['gpu_all']))))
chat2 = chat2.replace('MEM_MAX', '100').replace('CPU_MAX', '100').replace('GPU_MAX', '100').replace('{a|{value}}','{a|{value}%}')
chat2 = chat2.strip('\n').strip(' ').strip(',')
chat3 = copy.deepcopy(resource_options)
chat3 = chat3.replace('MEM_NAME',__('内存利用率')).replace('MEM_CENTER_X','73%').replace('MEM_VALUE',str(min(100,int(100*all_resource_used['mem_used']/(0.001+all_resource['mem_all'])))))
chat3 = chat3.replace('CPU_NAME',__('CPU利用率')).replace('CPU_CENTER_X','83%').replace('CPU_VALUE',str(min(100,int(100*all_resource_used['cpu_used']/(0.001+all_resource['cpu_all'])))))
chat3 = chat3.replace('GPU_NAME',__('GPU利用率')).replace('GPU_CENTER_X','93%').replace('GPU_VALUE',str(min(100,int(100*all_resource_used['gpu_used']/(0.001+all_resource['gpu_all'])))))
chat3 = chat3.replace('MEM_MAX', '100').replace('CPU_MAX', '100').replace('GPU_MAX', '100').replace('{a|{value}}','{a|{value}%}')
chat3 = chat3.strip('\n').strip(' ').strip(',')
DATA = ',\n'.join([chat1,chat2,chat3])
2023-04-06 23:24:08 +08:00
option = '''
{
"title": [
{
2023-12-11 13:20:43 +08:00
"subtext": '集群信息',
"left": '17%',
2023-04-06 23:24:08 +08:00
"top": '75%',
"textAlign": 'center'
},
{
2023-12-11 13:20:43 +08:00
"subtext": '资源占用率',
2023-04-06 23:24:08 +08:00
"left": '50%',
"top": '75%',
"textAlign": 'center'
},
{
2023-12-11 13:20:43 +08:00
"subtext": '资源利用率',
"left": '83%',
2023-04-06 23:24:08 +08:00
"top": '75%',
"textAlign": 'center'
}
],
"series": [
2023-12-11 13:20:43 +08:00
DATA
2023-04-06 23:24:08 +08:00
]
}
'''
2023-12-11 13:20:43 +08:00
option=option.replace('DATA',DATA)
option = option.replace('集群信息',__('集群信息')).replace('资源占用率',__('资源占用率')).replace('资源利用率',__('资源利用率'))
2023-04-06 23:24:08 +08:00
return option
2023-12-11 13:20:43 +08:00
message = '如果是pipeline命名空间按照run-id进行删除。\n如果是jupyter命名空间直接删除pod\n'
@action("muldelete", "清理", "清理选中的pipelineservicenotebook的pod但并不删除他们?", "fa-trash", single=False)
# @pysnooper.snoop()
def muldelete(self, items):
pod_resource()
all_task_resource = pipeline_resource_used['data']
clusters = conf.get('CLUSTERS', {})
for item in items:
cluster_name,namespace,org,pod_name = item.split(":")
cluster = clusters[cluster_name]
print(cluster_name,namespace,pod_name)
k8s_client = K8s(cluster.get('KUBECONFIG', ''))
pod = all_task_resource[cluster_name][namespace][org][pod_name]
# 如果是jupyter命名空间直接删除pod
if namespace=='jupyter':
k8s_client.delete_pods(namespace=namespace,pod_name=pod_name)
k8s_client.delete_service(namespace=namespace,name=pod_name)
service_external_name = (pod_name + "-external").lower()[:60].strip('-')
k8s_client.delete_service(namespace=namespace, name=service_external_name)
k8s_client.delete_istio_ingress(namespace=namespace, name=pod_name)
# 如果是service命名空间需要删除deployment和service和虚拟服务
if namespace=='service':
2024-02-28 15:04:36 +08:00
service_name = pod['label'].get("app",'')
2023-12-11 13:20:43 +08:00
if service_name:
service_external_name = (service_name + "-external").lower()[:60].strip('-')
k8s_client.delete_deployment(namespace=namespace, name=service_name)
k8s_client.delete_service(namespace=namespace, name=service_name)
k8s_client.delete_service(namespace=namespace, name=service_external_name)
k8s_client.delete_istio_ingress(namespace=namespace, name=service_name)
# 如果是aihub命名空间需要删除 deployemnt和service和虚拟服务
if namespace == 'aihub':
2024-02-28 15:04:36 +08:00
service_name = pod['label'].get("app", '')
2023-12-11 13:20:43 +08:00
if service_name:
k8s_client.delete_deployment(namespace=namespace, name=service_name)
k8s_client.delete_service(namespace=namespace, name=service_name)
k8s_client.delete_istio_ingress(namespace=namespace, name=service_name)
# 如果是pipeline命名空间按照run-id进行删除这里先只删除pod也会造成任务停止
if namespace == 'pipeline':
k8s_client.delete_pods(namespace=namespace, pod_name=pod_name)
if namespace == 'automl':
2024-02-28 15:04:36 +08:00
vcjob_name = pod['label'].get("app", '')
2024-04-03 22:01:43 +08:00
k8s_client.delete_pods(namespace=namespace, pod_name=pod['name'])
2023-12-11 13:20:43 +08:00
if vcjob_name:
k8s_client.delete_volcano(namespace=namespace, name=vcjob_name)
2024-02-28 15:04:36 +08:00
k8s_client.delete_service(namespace=namespace,labels={'app':vcjob_name})
k8s_client.delete_istio_ingress(namespace=namespace,name=pod['name'])
2023-12-11 13:20:43 +08:00
return json.dumps(
{
"message": 'delete: '+str(items),
}, indent=4, ensure_ascii=False
)
2024-02-28 15:04:36 +08:00
# # @pysnooper.snoop()
# def add_more_info(self, response, **kwargs):
# if not g.user or not g.user.is_admin():
# response['action'] = {}
2023-04-06 23:24:08 +08:00
appbuilder.add_api(Total_Resource_ModelView_Api)
2023-12-11 13:20:43 +08:00