cube-studio/job-template/job/spark/launcher.py

245 lines
9.3 KiB
Python
Raw Normal View History

2022-07-19 12:07:29 +08:00
import os,sys
base_dir = os.path.split(os.path.realpath(__file__))[0]
sys.path.append(base_dir)
import argparse
import datetime
import json
import time
import uuid
import os
import pysnooper
import os,sys
import re
import threading
import psutil
import copy
from kubernetes import client
# print(os.environ)
from job.pkgs.k8s.py_k8s import K8s
k8s_client = K8s()
KFJ_NAMESPACE = os.getenv('KFJ_NAMESPACE', '')
KFJ_TASK_ID = os.getenv('KFJ_TASK_ID', '')
KFJ_TASK_NAME = os.getenv('KFJ_TASK_NAME', '')
task_node_selectors = re.split(',|;|\n|\t', os.getenv('KFJ_TASK_NODE_SELECTOR', 'cpu=true,train=true'))
KFJ_TASK_NODE_SELECTOR = {}
for task_node_selector in task_node_selectors:
KFJ_TASK_NODE_SELECTOR[task_node_selector.split('=')[0]] = task_node_selector.split('=')[1]
KFJ_PIPELINE_ID = os.getenv('KFJ_PIPELINE_ID', '')
KFJ_RUN_ID = os.getenv('KFJ_RUN_ID', '')
KFJ_CREATOR = os.getenv('KFJ_CREATOR', '')
KFJ_RUNNER = os.getenv('KFJ_RUNNER','')
KFJ_PIPELINE_NAME = os.getenv('KFJ_PIPELINE_NAME', '')
KFJ_TASK_IMAGES = os.getenv('KFJ_TASK_IMAGES', '')
KFJ_TASK_VOLUME_MOUNT = os.getenv('KFJ_TASK_VOLUME_MOUNT', '')
KFJ_TASK_TIMEOUT = int(os.getenv('KFJ_TASK_TIMEOUT', 60 * 60 * 24 * 2))
KFJ_TASK_RESOURCE_CPU = os.getenv('KFJ_TASK_RESOURCE_CPU', '')
KFJ_TASK_RESOURCE_MEMORY = os.getenv('KFJ_TASK_RESOURCE_MEMORY', '')
INIT_FILE=''
crd_info={
"group": "sparkoperator.k8s.io",
"version": "v1beta2",
'kind': 'SparkApplication',
"plural": "sparkapplications",
"timeout": 60 * 60 * 24 * 2
}
k8s_volumes, k8s_volume_mounts = k8s_client.get_volume_mounts(KFJ_TASK_VOLUME_MOUNT,KFJ_CREATOR)
print(k8s_volumes)
print(k8s_volume_mounts)
GPU_TYPE= os.getenv('KFJ_GPU_TYPE', 'NVIDIA')
GPU_RESOURCE= os.getenv('KFJ_TASK_RESOURCE_GPU', '0')
print(GPU_TYPE,GPU_RESOURCE)
2022-09-08 14:41:40 +08:00
schedulerName = os.getenv('SCHEDULER', 'default-scheduler')
2022-07-19 12:07:29 +08:00
def default_job_name():
name = "sparkjob-" + KFJ_PIPELINE_NAME.replace('_','-')+"-"+uuid.uuid4().hex[:4]
return name[0:54]
2022-07-26 20:47:20 +08:00
import subprocess
# @pysnooper.snoop()
def run_shell(shell):
print('begin run shell: %s'%shell,flush=True)
cmd = subprocess.Popen(shell, stdin=subprocess.PIPE, stderr=subprocess.PIPE,
stdout=subprocess.PIPE, universal_newlines=True, shell=True, bufsize=1)
# 实时输出
while True:
line = cmd.stdout.readline()
status = subprocess.Popen.poll(cmd)
if status:
print(status,line,end='', flush=True)
else:
print(line, end='', flush=True)
if status == 0: # 判断子进程是否结束
print('shell finish %s'%status,flush=True)
break
if status==-9 or status==-15 or status==143: # 外界触发kill
# if status!=0: # 外界触发kill
print('shell finish %s'%status,flush=True)
break
return cmd.returncode
2022-07-19 12:07:29 +08:00
# @pysnooper.snoop()
def make_sparkjob(name,**kwargs):
label={
"run-id":KFJ_RUN_ID,
"run-rtx":KFJ_RUNNER,
"pipeline-rtx": KFJ_CREATOR,
"pipeline-id": KFJ_PIPELINE_ID,
"pipeline-name": KFJ_PIPELINE_NAME,
"task-id": KFJ_TASK_ID,
"task-name": KFJ_TASK_NAME,
}
spark_deploy = {
"apiVersion": "sparkoperator.k8s.io/v1beta2",
"kind": "SparkApplication",
"metadata": {
"namespace": KFJ_NAMESPACE,
"name": name,
"labels":label
},
"spec": {
"type": kwargs['code_type'], # Java Python R Scala
"mode": "cluster", # client cluster in-cluster-client
"proxyUser":KFJ_CREATOR,
"image": kwargs['image'],
"imagePullPolicy": "Always",
"mainClass": kwargs['code_class'], # Java/Scala
"mainApplicationFile": kwargs['code_file'], # JAR, Python, or R file
"arguments":kwargs['code_arguments'],
"sparkConf":kwargs['sparkConf'],
"hadoopConf":kwargs['hadoopConf'],
"nodeSelector":KFJ_TASK_NODE_SELECTOR,
"sparkVersion": "3.1.1",
"pythonVersion":"3",
2022-09-08 14:41:40 +08:00
# "batchScheduler": schedulerName,
2022-07-19 12:07:29 +08:00
"restartPolicy": {
"type": "Never"
},
"timeToLiveSeconds":KFJ_TASK_TIMEOUT,
"volumes": k8s_volumes,
"driver": {
"cores": int(KFJ_TASK_RESOURCE_CPU),
"coreLimit": str(KFJ_TASK_RESOURCE_CPU),
"memory": KFJ_TASK_RESOURCE_MEMORY,
# "memoryLimit": KFJ_TASK_RESOURCE_MEMORY,
"labels": label,
"serviceAccount": "spark",
"volumeMounts": k8s_volume_mounts
},
"executor": {
"instances": int(kwargs['num_worker']),
"cores": int(KFJ_TASK_RESOURCE_CPU),
"coreLimit": str(KFJ_TASK_RESOURCE_CPU),
"memory": KFJ_TASK_RESOURCE_MEMORY,
# "memoryLimit": KFJ_TASK_RESOURCE_MEMORY,
"labels": label,
"volumeMounts": k8s_volume_mounts,
"affinity":{
"podAntiAffinity": {
"preferredDuringSchedulingIgnoredDuringExecution": [
{
"weight": 5,
"podAffinityTerm": {
"topologyKey": "kubernetes.io/hostname",
"labelSelector": {
"matchLabels": {
"task-name": KFJ_TASK_NAME,
}
}
}
}
]
}
}
}
}
}
print(spark_deploy)
return spark_deploy
# @pysnooper.snoop()
def launch_sparkjob(name, **kwargs):
if KFJ_RUN_ID:
print('delete old spark, run-id %s'%KFJ_RUN_ID, flush=True)
k8s_client.delete_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=KFJ_NAMESPACE,labels={"run-id":KFJ_RUN_ID})
time.sleep(10)
# 删除旧的spark
k8s_client.delete_crd(group=crd_info['group'], version=crd_info['version'], plural=crd_info['plural'],namespace=KFJ_NAMESPACE, name=name)
time.sleep(10)
# 创建新的spark
sparkjob_json = make_sparkjob(name=name,**kwargs)
print('create new spark %s' % name, flush=True)
k8s_client.create_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=KFJ_NAMESPACE,body=sparkjob_json)
time.sleep(10)
while True:
time.sleep(10)
sparkjob = k8s_client.get_one_crd(group=crd_info['group'], version=crd_info['version'],plural=crd_info['plural'], namespace=KFJ_NAMESPACE, name=name)
2022-07-19 14:55:28 +08:00
if sparkjob:
status = json.loads(sparkjob['status_more']).get('applicationState', {}).get("state", '').upper()
if status=='COMPLETED' or 'FAILED' in status:
break
2022-07-19 12:07:29 +08:00
2022-07-19 14:55:28 +08:00
sparkjob = k8s_client.get_one_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=KFJ_NAMESPACE,name=name)
print("sparkjob %s finished, status %s"%(name, sparkjob['status_more']))
status = json.loads(sparkjob['status_more']).get('applicationState', {}).get("state", '').upper()
if 'FAILED' in status:
2022-07-19 12:07:29 +08:00
exit(1)
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser("sparkjob launcher")
arg_parser.add_argument('--image', type=str, help="运行job的镜像", default='ccr.ccs.tencentyun.com/cube-studio/spark-operator:spark-v3.1.1')
arg_parser.add_argument('--num_worker', type=int, help="分布式worker的数量", default=3)
2022-07-19 12:07:29 +08:00
arg_parser.add_argument('--code_type', type=str, help="代码类型", default='') # Java Python R Scala
arg_parser.add_argument('--code_class', type=str, help="代码类型", default='') #
arg_parser.add_argument('--code_file', type=str, help="代码地址", default='') # local://,http://,hdfs://,s3a://,gcs://
arg_parser.add_argument('--code_arguments', type=str, help="代码参数",default='') #
arg_parser.add_argument('--sparkConf', type=str, help="spark配置", default='') #
arg_parser.add_argument('--hadoopConf', type=str, help="hadoop配置", default='') #
# arg_parser.add_argument('--driver_memory', type=str, help="driver端的内存", default='2g')
# arg_parser.add_argument('--executor_memory', type=str, help="executor端的内存", default='2g')
# arg_parser.add_argument('--driver_cpu', type=str, help="driver端的cpu", default='2')
# arg_parser.add_argument('--executor_cpu', type=str, help="executor端的cpu", default='2')
args = arg_parser.parse_args().__dict__
print("{} args: {}".format(__file__, args))
sparkConf = [[x.split('=')[0], x.split('=')[1]] for x in args['sparkConf'].split('\n') if '=' in x]
args['sparkConf'] = dict(zip([x[0] for x in sparkConf],[x[1] for x in sparkConf]))
2022-07-19 14:55:28 +08:00
# args['sparkConf']['spark.driver.bindAddress']='0.0.0.0' # k8s模式下不能用
2022-07-19 12:07:29 +08:00
hadoopConf = [[x.split('=')[0], x.split('=')[1]] for x in args['hadoopConf'].split('\n') if '=' in x]
args['hadoopConf'] = dict(zip([x[0] for x in hadoopConf], [x[1] for x in hadoopConf]))
args['code_arguments'] = [x.strip() for x in args['code_arguments'].split(' ') if x.strip()]
launch_sparkjob(name=default_job_name(),**args)