blockbench/lib/GLTFExporter.js

2365 lines
55 KiB
JavaScript

/**
* @author fernandojsg / http://fernandojsg.com
* @author Don McCurdy / https://www.donmccurdy.com
* @author Takahiro / https://github.com/takahirox
*/
(function() {
let BufferAttribute = THREE.BufferAttribute;
let BufferGeometry = THREE.BufferGeometry;
let ClampToEdgeWrapping = THREE.ClampToEdgeWrapping;
let DoubleSide = THREE.DoubleSide;
let InterpolateDiscrete = THREE.InterpolateDiscrete;
let InterpolateLinear = THREE.InterpolateLinear;
let LinearFilter = THREE.LinearFilter;
let LinearMipmapLinearFilter = THREE.LinearMipmapLinearFilter;
let LinearMipmapNearestFilter = THREE.LinearMipmapNearestFilter;
let MathUtils = THREE.Math;
let MirroredRepeatWrapping = THREE.MirroredRepeatWrapping;
let NearestFilter = THREE.NearestFilter;
let NearestMipmapLinearFilter = THREE.NearestMipmapLinearFilter;
let NearestMipmapNearestFilter = THREE.NearestMipmapNearestFilter;
let PropertyBinding = THREE.PropertyBinding;
let RGBAFormat = THREE.RGBAFormat;
let RepeatWrapping = THREE.RepeatWrapping;
let Scene = THREE.Scene;
let Vector3 = THREE.Vector3;
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
var WEBGL_CONSTANTS = {
POINTS: 0x0000,
LINES: 0x0001,
LINE_LOOP: 0x0002,
LINE_STRIP: 0x0003,
TRIANGLES: 0x0004,
TRIANGLE_STRIP: 0x0005,
TRIANGLE_FAN: 0x0006,
UNSIGNED_BYTE: 0x1401,
UNSIGNED_SHORT: 0x1403,
FLOAT: 0x1406,
UNSIGNED_INT: 0x1405,
ARRAY_BUFFER: 0x8892,
ELEMENT_ARRAY_BUFFER: 0x8893,
NEAREST: 0x2600,
LINEAR: 0x2601,
NEAREST_MIPMAP_NEAREST: 0x2700,
LINEAR_MIPMAP_NEAREST: 0x2701,
NEAREST_MIPMAP_LINEAR: 0x2702,
LINEAR_MIPMAP_LINEAR: 0x2703,
CLAMP_TO_EDGE: 33071,
MIRRORED_REPEAT: 33648,
REPEAT: 10497
};
var img = this.img = new Image()
img.src = ''
var tex = new THREE.Texture(img)
img.tex = tex;
img.tex.magFilter = THREE.NearestFilter
img.tex.minFilter = THREE.NearestFilter
var invisibleMaterial = new THREE.MeshLambertMaterial({
color: 0xffffff,
map: tex,
transparent: true,
alphaTest: 0.2
});
var THREE_TO_WEBGL = {};
THREE_TO_WEBGL[ NearestFilter ] = WEBGL_CONSTANTS.NEAREST;
THREE_TO_WEBGL[ NearestMipmapNearestFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_NEAREST;
THREE_TO_WEBGL[ NearestMipmapLinearFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_LINEAR;
THREE_TO_WEBGL[ LinearFilter ] = WEBGL_CONSTANTS.LINEAR;
THREE_TO_WEBGL[ LinearMipmapNearestFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_NEAREST;
THREE_TO_WEBGL[ LinearMipmapLinearFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_LINEAR;
THREE_TO_WEBGL[ ClampToEdgeWrapping ] = WEBGL_CONSTANTS.CLAMP_TO_EDGE;
THREE_TO_WEBGL[ RepeatWrapping ] = WEBGL_CONSTANTS.REPEAT;
THREE_TO_WEBGL[ MirroredRepeatWrapping ] = WEBGL_CONSTANTS.MIRRORED_REPEAT;
var PATH_PROPERTIES = {
scale: 'scale',
position: 'translation',
quaternion: 'rotation',
morphTargetInfluences: 'weights'
};
//------------------------------------------------------------------------------
// GLTF Exporter
//------------------------------------------------------------------------------
var GLTFExporter = function () {};
GLTFExporter.prototype = {
constructor: GLTFExporter,
/**
* Parse scenes and generate GLTF output
* @param {Scene or [THREE.Scenes]} input Scene or Array of THREE.Scenes
* @param {Function} onDone Callback on completed
* @param {Object} options options
*/
parse: function ( input, onDone, options ) {
var DEFAULT_OPTIONS = {
binary: false,
trs: false,
onlyVisible: true,
truncateDrawRange: true,
embedImages: true,
maxTextureSize: Infinity,
exportFaceColors: true,
animations: [],
forceIndices: false,
forcePowerOfTwoTextures: false,
includeCustomExtensions: false
};
options = Object.assign( {}, DEFAULT_OPTIONS, options );
if ( options.animations.length > 0 ) {
// Only TRS properties, and not matrices, may be targeted by animation.
options.trs = true;
}
var outputJSON = {
asset: {
version: `2.0`,
generator: `Blockbench ${appVersion} glTF exporter`
}
};
var byteOffset = 0;
var buffers = [];
var pending = [];
var nodeMap = new Map();
var skins = [];
var extensionsUsed = {};
var cachedData = {
meshes: new Map(),
attributes: new Map(),
attributesNormalized: new Map(),
materials: new Map(),
textures: new Map(),
images: new Map()
};
var cachedCanvas;
var uids = new Map();
var uid = 0;
/**
* Assign and return a temporal unique id for an object
* especially which doesn't have .uuid
* @param {Object} object
* @return {Integer}
*/
function getUID( object ) {
if ( ! uids.has( object ) ) uids.set( object, uid ++ );
return uids.get( object );
}
/**
* Compare two arrays
* @param {Array} array1 Array 1 to compare
* @param {Array} array2 Array 2 to compare
* @return {Boolean} Returns true if both arrays are equal
*/
function equalArray( array1, array2 ) {
return ( array1.length === array2.length ) && array1.every( function ( element, index ) {
return element === array2[ index ];
} );
}
/**
* Converts a string to an ArrayBuffer.
* @param {string} text
* @return {ArrayBuffer}
*/
function stringToArrayBuffer( text ) {
if ( window.TextEncoder !== undefined ) {
return new TextEncoder().encode( text ).buffer;
}
var array = new Uint8Array( new ArrayBuffer( text.length ) );
for ( var i = 0, il = text.length; i < il; i ++ ) {
var value = text.charCodeAt( i );
// Replacing multi-byte character with space(0x20).
array[ i ] = value > 0xFF ? 0x20 : value;
}
return array.buffer;
}
/**
* Get the min and max vectors from the given attribute
* @param {BufferAttribute} attribute Attribute to find the min/max in range from start to start + count
* @param {Integer} start
* @param {Integer} count
* @return {Object} Object containing the `min` and `max` values (As an array of attribute.itemSize components)
*/
function getMinMax( attribute, start, count ) {
var output = {
min: new Array( attribute.itemSize ).fill( Number.POSITIVE_INFINITY ),
max: new Array( attribute.itemSize ).fill( Number.NEGATIVE_INFINITY )
};
for ( var i = start; i < start + count; i ++ ) {
for ( var a = 0; a < attribute.itemSize; a ++ ) {
var value = attribute.array[ i * attribute.itemSize + a ];
output.min[ a ] = Math.min( output.min[ a ], value );
output.max[ a ] = Math.max( output.max[ a ], value );
}
}
return output;
}
/**
* Checks if image size is POT.
*
* @param {Image} image The image to be checked.
* @returns {Boolean} Returns true if image size is POT.
*
*/
function isPowerOfTwo( image ) {
return MathUtils.isPowerOfTwo( image.width ) && MathUtils.isPowerOfTwo( image.height );
}
/**
* Checks if normal attribute values are normalized.
*
* @param {BufferAttribute} normal
* @returns {Boolean}
*
*/
function isNormalizedNormalAttribute( normal ) {
if ( cachedData.attributesNormalized.has( normal ) ) {
return false;
}
var v = new Vector3();
for ( var i = 0, il = normal.count; i < il; i ++ ) {
// 0.0005 is from glTF-validator
if ( Math.abs( v.fromArray( normal.array, i * 3 ).length() - 1.0 ) > 0.0005 ) return false;
}
return true;
}
/**
* Creates normalized normal buffer attribute.
*
* @param {BufferAttribute} normal
* @returns {BufferAttribute}
*
*/
function createNormalizedNormalAttribute( normal ) {
if ( cachedData.attributesNormalized.has( normal ) ) {
return cachedData.attributesNormalized.get( normal );
}
var attribute = normal.clone();
var v = new Vector3();
for ( var i = 0, il = attribute.count; i < il; i ++ ) {
v.fromArray( attribute.array, i * 3 );
if ( v.x === 0 && v.y === 0 && v.z === 0 ) {
// if values can't be normalized set (1, 0, 0)
v.setX( 1.0 );
} else {
v.normalize();
}
v.toArray( attribute.array, i * 3 );
}
cachedData.attributesNormalized.set( normal, attribute );
return attribute;
}
/**
* Get the required size + padding for a buffer, rounded to the next 4-byte boundary.
* https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment
*
* @param {Integer} bufferSize The size the original buffer.
* @returns {Integer} new buffer size with required padding.
*
*/
function getPaddedBufferSize( bufferSize ) {
return Math.ceil( bufferSize / 4 ) * 4;
}
/**
* Returns a buffer aligned to 4-byte boundary.
*
* @param {ArrayBuffer} arrayBuffer Buffer to pad
* @param {Integer} paddingByte (Optional)
* @returns {ArrayBuffer} The same buffer if it's already aligned to 4-byte boundary or a new buffer
*/
function getPaddedArrayBuffer( arrayBuffer, paddingByte ) {
paddingByte = paddingByte || 0;
var paddedLength = getPaddedBufferSize( arrayBuffer.byteLength );
if ( paddedLength !== arrayBuffer.byteLength ) {
var array = new Uint8Array( paddedLength );
array.set( new Uint8Array( arrayBuffer ) );
if ( paddingByte !== 0 ) {
for ( var i = arrayBuffer.byteLength; i < paddedLength; i ++ ) {
array[ i ] = paddingByte;
}
}
return array.buffer;
}
return arrayBuffer;
}
/**
* Serializes a userData.
*
* @param {THREE.Object3D|THREE.Material} object
* @param {Object} gltfProperty
*/
function serializeUserData( object, gltfProperty ) {
if ( Object.keys( object.userData ).length === 0 ) {
return;
}
try {
var json = JSON.parse( JSON.stringify( object.userData ) );
if ( options.includeCustomExtensions && json.gltfExtensions ) {
if ( gltfProperty.extensions === undefined ) {
gltfProperty.extensions = {};
}
for ( var extensionName in json.gltfExtensions ) {
gltfProperty.extensions[ extensionName ] = json.gltfExtensions[ extensionName ];
extensionsUsed[ extensionName ] = true;
}
delete json.gltfExtensions;
}
if ( Object.keys( json ).length > 0 ) {
gltfProperty.extras = json;
}
} catch ( error ) {
console.warn( 'THREE.GLTFExporter: userData of \'' + object.name + '\' ' +
'won\'t be serialized because of JSON.stringify error - ' + error.message );
}
}
/**
* Applies a texture transform, if present, to the map definition. Requires
* the KHR_texture_transform extension.
*/
function applyTextureTransform( mapDef, texture ) {
var didTransform = false;
var transformDef = {};
if ( texture.offset.x !== 0 || texture.offset.y !== 0 ) {
transformDef.offset = texture.offset.toArray();
didTransform = true;
}
if ( texture.rotation !== 0 ) {
transformDef.rotation = texture.rotation;
didTransform = true;
}
if ( texture.repeat.x !== 1 || texture.repeat.y !== 1 ) {
transformDef.scale = texture.repeat.toArray();
didTransform = true;
}
if ( didTransform ) {
mapDef.extensions = mapDef.extensions || {};
mapDef.extensions[ 'KHR_texture_transform' ] = transformDef;
extensionsUsed[ 'KHR_texture_transform' ] = true;
}
}
/**
* Process a buffer to append to the default one.
* @param {ArrayBuffer} buffer
* @return {Integer}
*/
function processBuffer( buffer ) {
if ( ! outputJSON.buffers ) {
outputJSON.buffers = [ { byteLength: 0 } ];
}
// All buffers are merged before export.
buffers.push( buffer );
return 0;
}
/**
* Process and generate a BufferView
* @param {BufferAttribute} attribute
* @param {number} componentType
* @param {number} start
* @param {number} count
* @param {number} target (Optional) Target usage of the BufferView
* @return {Object}
*/
function processBufferView( attribute, componentType, start, count, target ) {
if ( ! outputJSON.bufferViews ) {
outputJSON.bufferViews = [];
}
// Create a new dataview and dump the attribute's array into it
var componentSize;
if ( componentType === WEBGL_CONSTANTS.UNSIGNED_BYTE ) {
componentSize = 1;
} else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_SHORT ) {
componentSize = 2;
} else {
componentSize = 4;
}
var byteLength = getPaddedBufferSize( count * attribute.itemSize * componentSize );
var dataView = new DataView( new ArrayBuffer( byteLength ) );
var offset = 0;
for ( var i = start; i < start + count; i ++ ) {
for ( var a = 0; a < attribute.itemSize; a ++ ) {
// @TODO Fails on InterleavedBufferAttribute, and could probably be
// optimized for normal BufferAttribute.
var value = attribute.array[ i * attribute.itemSize + a ];
if ( componentType === WEBGL_CONSTANTS.FLOAT ) {
dataView.setFloat32( offset, value, true );
} else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_INT ) {
dataView.setUint32( offset, value, true );
} else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_SHORT ) {
dataView.setUint16( offset, value, true );
} else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_BYTE ) {
dataView.setUint8( offset, value );
}
offset += componentSize;
}
}
var gltfBufferView = {
buffer: processBuffer( dataView.buffer ),
byteOffset: byteOffset,
byteLength: byteLength
};
if ( target !== undefined ) gltfBufferView.target = target;
if ( target === WEBGL_CONSTANTS.ARRAY_BUFFER ) {
// Only define byteStride for vertex attributes.
gltfBufferView.byteStride = attribute.itemSize * componentSize;
}
byteOffset += byteLength;
outputJSON.bufferViews.push( gltfBufferView );
// @TODO Merge bufferViews where possible.
var output = {
id: outputJSON.bufferViews.length - 1,
byteLength: 0
};
return output;
}
/**
* Process and generate a BufferView from an image Blob.
* @param {Blob} blob
* @return {Promise<Integer>}
*/
function processBufferViewImage( blob ) {
if ( ! outputJSON.bufferViews ) {
outputJSON.bufferViews = [];
}
return new Promise( function ( resolve ) {
var reader = new window.FileReader();
reader.readAsArrayBuffer( blob );
reader.onloadend = function () {
var buffer = getPaddedArrayBuffer( reader.result );
var bufferView = {
buffer: processBuffer( buffer ),
byteOffset: byteOffset,
byteLength: buffer.byteLength
};
byteOffset += buffer.byteLength;
outputJSON.bufferViews.push( bufferView );
resolve( outputJSON.bufferViews.length - 1 );
};
} );
}
/**
* Process attribute to generate an accessor
* @param {BufferAttribute} attribute Attribute to process
* @param {BufferGeometry} geometry (Optional) Geometry used for truncated draw range
* @param {Integer} start (Optional)
* @param {Integer} count (Optional)
* @return {Integer} Index of the processed accessor on the "accessors" array
*/
function processAccessor( attribute, geometry, start, count ) {
var types = {
1: 'SCALAR',
2: 'VEC2',
3: 'VEC3',
4: 'VEC4',
16: 'MAT4'
};
var componentType;
// Detect the component type of the attribute array (float, uint or ushort)
if ( attribute.array.constructor === Float32Array ) {
componentType = WEBGL_CONSTANTS.FLOAT;
} else if ( attribute.array.constructor === Uint32Array ) {
componentType = WEBGL_CONSTANTS.UNSIGNED_INT;
} else if ( attribute.array.constructor === Uint16Array ) {
componentType = WEBGL_CONSTANTS.UNSIGNED_SHORT;
} else if ( attribute.array.constructor === Uint8Array ) {
componentType = WEBGL_CONSTANTS.UNSIGNED_BYTE;
} else {
throw new Error( 'THREE.GLTFExporter: Unsupported bufferAttribute component type.' );
}
if ( start === undefined ) start = 0;
if ( count === undefined ) count = attribute.count;
// @TODO Indexed buffer geometry with drawRange not supported yet
if ( options.truncateDrawRange && geometry !== undefined && geometry.index === null ) {
var end = start + count;
var end2 = geometry.drawRange.count === Infinity
? attribute.count
: geometry.drawRange.start + geometry.drawRange.count;
start = Math.max( start, geometry.drawRange.start );
count = Math.min( end, end2 ) - start;
if ( count < 0 ) count = 0;
}
// Skip creating an accessor if the attribute doesn't have data to export
if ( count === 0 ) {
return null;
}
var minMax = getMinMax( attribute, start, count );
var bufferViewTarget;
// If geometry isn't provided, don't infer the target usage of the bufferView. For
// animation samplers, target must not be set.
if ( geometry !== undefined ) {
bufferViewTarget = attribute === geometry.index ? WEBGL_CONSTANTS.ELEMENT_ARRAY_BUFFER : WEBGL_CONSTANTS.ARRAY_BUFFER;
}
var bufferView = processBufferView( attribute, componentType, start, count, bufferViewTarget );
var gltfAccessor = {
bufferView: bufferView.id,
byteOffset: bufferView.byteOffset,
componentType: componentType,
count: count,
max: minMax.max,
min: minMax.min,
type: types[ attribute.itemSize ]
};
if ( ! outputJSON.accessors ) {
outputJSON.accessors = [];
}
outputJSON.accessors.push( gltfAccessor );
return outputJSON.accessors.length - 1;
}
/**
* Process image
* @param {Image} image to process
* @param {Integer} format of the image (e.g. THREE.RGBFormat, RGBAFormat etc)
* @param {Boolean} flipY before writing out the image
* @return {Integer} Index of the processed texture in the "images" array
*/
function processImage( image, format, flipY ) {
if ( ! cachedData.images.has( image ) ) {
cachedData.images.set( image, {} );
}
var cachedImages = cachedData.images.get( image );
var mimeType = format === RGBAFormat ? 'image/png' : 'image/jpeg';
var key = mimeType + ":flipY/" + flipY.toString();
if ( cachedImages[ key ] !== undefined ) {
return cachedImages[ key ];
}
if ( ! outputJSON.images ) {
outputJSON.images = [];
}
var gltfImage = { mimeType: mimeType };
if ( options.embedImages ) {
var canvas = cachedCanvas = cachedCanvas || document.createElement( 'canvas' );
canvas.width = Math.min( image.width, options.maxTextureSize );
canvas.height = Math.min( image.height, options.maxTextureSize );
if ( options.forcePowerOfTwoTextures && ! isPowerOfTwo( canvas ) ) {
canvas.width = MathUtils.ceilPowerOfTwo( canvas.width );
canvas.height = MathUtils.ceilPowerOfTwo( canvas.height );
}
var ctx = canvas.getContext( '2d' );
if ( flipY === true ) {
ctx.translate( 0, canvas.height );
ctx.scale( 1, - 1 );
}
ctx.drawImage( image, 0, 0, image.width, image.height );
if ( options.binary === true ) {
pending.push( new Promise( function ( resolve ) {
canvas.toBlob( function ( blob ) {
processBufferViewImage( blob ).then( function ( bufferViewIndex ) {
gltfImage.bufferView = bufferViewIndex;
resolve();
} );
}, mimeType );
} ) );
} else {
gltfImage.uri = canvas.toDataURL( mimeType );
}
} else {
gltfImage.uri = image.src;
}
outputJSON.images.push( gltfImage );
var index = outputJSON.images.length - 1;
cachedImages[ key ] = index;
return index;
}
/**
* Process sampler
* @param {Texture} map Texture to process
* @return {Integer} Index of the processed texture in the "samplers" array
*/
function processSampler( map ) {
if ( ! outputJSON.samplers ) {
outputJSON.samplers = [];
}
var gltfSampler = {
magFilter: THREE_TO_WEBGL[ map.magFilter ],
minFilter: THREE_TO_WEBGL[ map.minFilter ],
wrapS: THREE_TO_WEBGL[ map.wrapS ],
wrapT: THREE_TO_WEBGL[ map.wrapT ]
};
outputJSON.samplers.push( gltfSampler );
return outputJSON.samplers.length - 1;
}
/**
* Process texture
* @param {Texture} map Map to process
* @return {Integer} Index of the processed texture in the "textures" array
*/
function processTexture( map ) {
if ( cachedData.textures.has( map ) ) {
return cachedData.textures.get( map );
}
if ( ! outputJSON.textures ) {
outputJSON.textures = [];
}
var gltfTexture = {
sampler: processSampler( map ),
source: processImage( map.image, map.format, map.flipY )
};
if ( map.name ) {
gltfTexture.name = map.name;
}
outputJSON.textures.push( gltfTexture );
var index = outputJSON.textures.length - 1;
cachedData.textures.set( map, index );
return index;
}
/**
* Process material
* @param {THREE.Material} material Material to process
* @return {Integer} Index of the processed material in the "materials" array
*/
function processMaterial( material ) {
// blockbench custom material
if ( material == Canvas.transparentMaterial ) {
material = invisibleMaterial;
}
if ( cachedData.materials.has( material ) ) {
return cachedData.materials.get( material );
}
if ( ! outputJSON.materials ) {
outputJSON.materials = [];
}
if ( material.isShaderMaterial && ! material.isGLTFSpecularGlossinessMaterial ) {
console.warn( 'GLTFExporter: THREE.ShaderMaterial not supported.' );
return null;
}
// @QUESTION Should we avoid including any attribute that has the default value?
var gltfMaterial = {
pbrMetallicRoughness: {}
};
if ( material.isMeshBasicMaterial ) {
gltfMaterial.extensions = { KHR_materials_unlit: {} };
extensionsUsed[ 'KHR_materials_unlit' ] = true;
} else if ( material.isGLTFSpecularGlossinessMaterial ) {
gltfMaterial.extensions = { KHR_materials_pbrSpecularGlossiness: {} };
extensionsUsed[ 'KHR_materials_pbrSpecularGlossiness' ] = true;
}
// pbrMetallicRoughness.baseColorFactor
var color = material.color.toArray().concat( [ material.opacity ] );
if ( ! equalArray( color, [ 1, 1, 1, 1 ] ) ) {
gltfMaterial.pbrMetallicRoughness.baseColorFactor = color;
}
if ( material.isMeshStandardMaterial ) {
gltfMaterial.pbrMetallicRoughness.metallicFactor = material.metalness;
gltfMaterial.pbrMetallicRoughness.roughnessFactor = material.roughness;
} else if ( material.isMeshBasicMaterial ) {
gltfMaterial.pbrMetallicRoughness.metallicFactor = 0.0;
gltfMaterial.pbrMetallicRoughness.roughnessFactor = 0.9;
} else {
gltfMaterial.pbrMetallicRoughness.metallicFactor = 0;
gltfMaterial.pbrMetallicRoughness.roughnessFactor = 1;
}
// pbrSpecularGlossiness diffuse, specular and glossiness factor
if ( material.isGLTFSpecularGlossinessMaterial ) {
if ( gltfMaterial.pbrMetallicRoughness.baseColorFactor ) {
gltfMaterial.extensions.KHR_materials_pbrSpecularGlossiness.diffuseFactor = gltfMaterial.pbrMetallicRoughness.baseColorFactor;
}
var specularFactor = [ 1, 1, 1 ];
material.specular.toArray( specularFactor, 0 );
gltfMaterial.extensions.KHR_materials_pbrSpecularGlossiness.specularFactor = specularFactor;
gltfMaterial.extensions.KHR_materials_pbrSpecularGlossiness.glossinessFactor = material.glossiness;
}
// pbrMetallicRoughness.metallicRoughnessTexture
if ( material.metalnessMap || material.roughnessMap ) {
if ( material.metalnessMap === material.roughnessMap ) {
var metalRoughMapDef = { index: processTexture( material.metalnessMap ) };
applyTextureTransform( metalRoughMapDef, material.metalnessMap );
gltfMaterial.pbrMetallicRoughness.metallicRoughnessTexture = metalRoughMapDef;
} else {
console.warn( 'THREE.GLTFExporter: Ignoring metalnessMap and roughnessMap because they are not the same Texture.' );
}
}
// pbrMetallicRoughness.baseColorTexture or pbrSpecularGlossiness diffuseTexture
if ( material.map ) {
var baseColorMapDef = { index: processTexture( material.map ) };
applyTextureTransform( baseColorMapDef, material.map );
if ( material.isGLTFSpecularGlossinessMaterial ) {
gltfMaterial.extensions.KHR_materials_pbrSpecularGlossiness.diffuseTexture = baseColorMapDef;
}
gltfMaterial.pbrMetallicRoughness.baseColorTexture = baseColorMapDef;
}
// pbrSpecularGlossiness specular map
if ( material.isGLTFSpecularGlossinessMaterial && material.specularMap ) {
var specularMapDef = { index: processTexture( material.specularMap ) };
applyTextureTransform( specularMapDef, material.specularMap );
gltfMaterial.extensions.KHR_materials_pbrSpecularGlossiness.specularGlossinessTexture = specularMapDef;
}
if ( material.emissive ) {
// emissiveFactor
var emissive = material.emissive.clone().multiplyScalar( material.emissiveIntensity ).toArray();
if ( ! equalArray( emissive, [ 0, 0, 0 ] ) ) {
gltfMaterial.emissiveFactor = emissive;
}
// emissiveTexture
if ( material.emissiveMap ) {
var emissiveMapDef = { index: processTexture( material.emissiveMap ) };
applyTextureTransform( emissiveMapDef, material.emissiveMap );
gltfMaterial.emissiveTexture = emissiveMapDef;
}
}
// normalTexture
if ( material.normalMap ) {
var normalMapDef = { index: processTexture( material.normalMap ) };
if ( material.normalScale && material.normalScale.x !== - 1 ) {
if ( material.normalScale.x !== material.normalScale.y ) {
console.warn( 'THREE.GLTFExporter: Normal scale components are different, ignoring Y and exporting X.' );
}
normalMapDef.scale = material.normalScale.x;
}
applyTextureTransform( normalMapDef, material.normalMap );
gltfMaterial.normalTexture = normalMapDef;
}
// occlusionTexture
if ( material.aoMap ) {
var occlusionMapDef = {
index: processTexture( material.aoMap ),
texCoord: 1
};
if ( material.aoMapIntensity !== 1.0 ) {
occlusionMapDef.strength = material.aoMapIntensity;
}
applyTextureTransform( occlusionMapDef, material.aoMap );
gltfMaterial.occlusionTexture = occlusionMapDef;
}
// alphaMode
if ( material.alphaTest > 0.0 ) {
gltfMaterial.alphaMode = 'MASK';
gltfMaterial.alphaCutoff = material.alphaTest;
} else if ( material.transparent ) {
gltfMaterial.alphaMode = 'BLEND';
}
// doubleSided
if ( material.side === DoubleSide ) {
gltfMaterial.doubleSided = true;
}
if ( material.name !== '' ) {
gltfMaterial.name = material.name;
}
serializeUserData( material, gltfMaterial );
outputJSON.materials.push( gltfMaterial );
var index = outputJSON.materials.length - 1;
cachedData.materials.set( material, index );
return index;
}
/**
* Process mesh
* @param {THREE.Mesh} mesh Mesh to process
* @return {Integer} Index of the processed mesh in the "meshes" array
*/
function processMesh( mesh ) {
var cacheKey = mesh.geometry.uuid + ':' + mesh.material.uuid;
if ( cachedData.meshes.has( cacheKey ) ) {
return cachedData.meshes.get( cacheKey );
}
var geometry = mesh.geometry;
if (!geometry.isBufferGeometry && geometry._bufferGeometry) {
geometry = geometry._bufferGeometry;
}
var mode;
// Use the correct mode
if ( mesh.isLineSegments ) {
mode = WEBGL_CONSTANTS.LINES;
} else if ( mesh.isLineLoop ) {
mode = WEBGL_CONSTANTS.LINE_LOOP;
} else if ( mesh.isLine ) {
mode = WEBGL_CONSTANTS.LINE_STRIP;
} else if ( mesh.isPoints ) {
mode = WEBGL_CONSTANTS.POINTS;
} else {
if ( ! geometry.isBufferGeometry ) {
console.warn( 'GLTFExporter: Exporting THREE.Geometry will increase file size. Use BufferGeometry instead.' );
var geometryTemp = new BufferGeometry();
geometryTemp.fromGeometry( geometry );
geometry = geometryTemp;
}
mode = mesh.material.wireframe ? WEBGL_CONSTANTS.LINES : WEBGL_CONSTANTS.TRIANGLES;
}
var gltfMesh = {};
var attributes = {};
var primitives = [];
var targets = [];
// Conversion between attributes names in threejs and gltf spec
var nameConversion = {
uv: 'TEXCOORD_0',
uv2: 'TEXCOORD_1',
color: 'COLOR_0',
skinWeight: 'WEIGHTS_0',
skinIndex: 'JOINTS_0'
};
var originalNormal = geometry.getAttribute instanceof Function ? geometry.getAttribute( 'normal' ) : undefined;
if ( originalNormal !== undefined && ! isNormalizedNormalAttribute( originalNormal ) && typeof geometry.setAttribute == 'function' ) {
console.warn( 'THREE.GLTFExporter: Creating normalized normal attribute from the non-normalized one.' );
geometry.setAttribute( 'normal', createNormalizedNormalAttribute( originalNormal ) );
}
// @QUESTION Detect if .vertexColors = THREE.VertexColors?
// For every attribute create an accessor
var modifiedAttribute = null;
for ( var attributeName in geometry.attributes ) {
// Ignore morph target attributes, which are exported later.
if ( attributeName.substr( 0, 5 ) === 'morph' ) continue;
var attribute = geometry.attributes[ attributeName ];
attributeName = nameConversion[ attributeName ] || attributeName.toUpperCase();
if (!options.exportFaceColors && attributeName === 'COLOR_0' ) continue;
// Prefix all geometry attributes except the ones specifically
// listed in the spec; non-spec attributes are considered custom.
var validVertexAttributes =
/^(POSITION|NORMAL|TANGENT|TEXCOORD_\d+|COLOR_\d+|JOINTS_\d+|WEIGHTS_\d+)$/;
if ( ! validVertexAttributes.test( attributeName ) ) {
attributeName = '_' + attributeName;
}
if ( cachedData.attributes.has( getUID( attribute ) ) ) {
attributes[ attributeName ] = cachedData.attributes.get( getUID( attribute ) );
continue;
}
// JOINTS_0 must be UNSIGNED_BYTE or UNSIGNED_SHORT.
modifiedAttribute = null;
var array = attribute.array;
if ( attributeName === 'JOINTS_0' &&
! ( array instanceof Uint16Array ) &&
! ( array instanceof Uint8Array ) ) {
console.warn( 'GLTFExporter: Attribute "skinIndex" converted to type UNSIGNED_SHORT.' );
modifiedAttribute = new BufferAttribute( new Uint16Array( array ), attribute.itemSize, attribute.normalized );
}
if ( options.forcePowerOfTwoTextures && attributeName.substr(0, 8) === 'TEXCOORD' ) {
// Blockbench: Modify UV mapping for poweroftwo texture conversion
modifiedAttribute = new BufferAttribute( new Float32Array( array ), attribute.itemSize, attribute.normalized );
let isCube = mesh.type == 'cube';
if (!isCube) {
var map = mesh.material.map;
}
modifiedAttribute.array.forEach((v, i) => {
if (isCube) {
var map = mesh.material[Math.floor(i / 12)].map;
}
if (map && map.image) {
if (i%2 == 0) {
modifiedAttribute.array[i] = v * (map.image.width / THREE.Math.ceilPowerOfTwo(map.image.width));
} else {
modifiedAttribute.array[i] = 1-(1-v) * (map.image.height / THREE.Math.ceilPowerOfTwo(map.image.height));
}
}
})
}
var accessor = processAccessor( modifiedAttribute || attribute, geometry );
if ( accessor !== null ) {
attributes[ attributeName ] = accessor;
cachedData.attributes.set( getUID( attribute ), accessor );
}
}
if ( originalNormal !== undefined && typeof geometry.setAttribute == 'function' ) geometry.setAttribute( 'normal', originalNormal );
// Skip if no exportable attributes found
if ( Object.keys( attributes ).length === 0 ) {
return null;
}
// Morph targets
if ( mesh.morphTargetInfluences !== undefined && mesh.morphTargetInfluences.length > 0 ) {
var weights = [];
var targetNames = [];
var reverseDictionary = {};
if ( mesh.morphTargetDictionary !== undefined ) {
for ( var key in mesh.morphTargetDictionary ) {
reverseDictionary[ mesh.morphTargetDictionary[ key ] ] = key;
}
}
for ( var i = 0; i < mesh.morphTargetInfluences.length; ++ i ) {
var target = {};
var warned = false;
for ( var attributeName in geometry.morphAttributes ) {
// glTF 2.0 morph supports only POSITION/NORMAL/TANGENT.
// Three.js doesn't support TANGENT yet.
if ( attributeName !== 'position' && attributeName !== 'normal' ) {
if ( ! warned ) {
console.warn( 'GLTFExporter: Only POSITION and NORMAL morph are supported.' );
warned = true;
}
continue;
}
var attribute = geometry.morphAttributes[ attributeName ][ i ];
var gltfAttributeName = attributeName.toUpperCase();
// Three.js morph attribute has absolute values while the one of glTF has relative values.
//
// glTF 2.0 Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#morph-targets
var baseAttribute = geometry.attributes[ attributeName ];
if ( cachedData.attributes.has( getUID( attribute ) ) ) {
target[ gltfAttributeName ] = cachedData.attributes.get( getUID( attribute ) );
continue;
}
// Clones attribute not to override
var relativeAttribute = attribute.clone();
if ( ! geometry.morphTargetsRelative ) {
for ( var j = 0, jl = attribute.count; j < jl; j ++ ) {
relativeAttribute.setXYZ(
j,
attribute.getX( j ) - baseAttribute.getX( j ),
attribute.getY( j ) - baseAttribute.getY( j ),
attribute.getZ( j ) - baseAttribute.getZ( j )
);
}
}
target[ gltfAttributeName ] = processAccessor( relativeAttribute, geometry );
cachedData.attributes.set( getUID( baseAttribute ), target[ gltfAttributeName ] );
}
targets.push( target );
weights.push( mesh.morphTargetInfluences[ i ] );
if ( mesh.morphTargetDictionary !== undefined ) targetNames.push( reverseDictionary[ i ] );
}
gltfMesh.weights = weights;
if ( targetNames.length > 0 ) {
gltfMesh.extras = {};
gltfMesh.extras.targetNames = targetNames;
}
}
var forceIndices = options.forceIndices;
var isMultiMaterial = Array.isArray( mesh.material );
if ( isMultiMaterial && geometry.groups.length === 0 ) return null;
if ( ! forceIndices && geometry.index === null && isMultiMaterial ) {
// temporal workaround.
// console.warn( 'THREE.GLTFExporter: Creating index for non-indexed multi-material mesh.' );
forceIndices = true;
}
var didForceIndices = false;
if ( geometry.index === null && forceIndices ) {
var indices = [];
for ( var i = 0, il = geometry.attributes.position.count; i < il; i ++ ) {
indices[ i ] = i;
}
geometry.setIndex( indices );
didForceIndices = true;
}
var materials = isMultiMaterial ? mesh.material : [ mesh.material ];
var groups = isMultiMaterial ? geometry.groups : [ { materialIndex: 0, start: undefined, count: undefined } ];
for ( var i = 0, il = groups.length; i < il; i ++ ) {
var primitive = {
mode: mode,
attributes: attributes,
};
serializeUserData( geometry, primitive );
if ( targets.length > 0 ) primitive.targets = targets;
if ( geometry.index !== null ) {
var cacheKey = getUID( geometry.index );
if ( groups[ i ].start !== undefined || groups[ i ].count !== undefined ) {
cacheKey += ':' + groups[ i ].start + ':' + groups[ i ].count;
}
if ( cachedData.attributes.has( cacheKey ) ) {
primitive.indices = cachedData.attributes.get( cacheKey );
} else {
primitive.indices = processAccessor( geometry.index, geometry, groups[ i ].start, groups[ i ].count );
cachedData.attributes.set( cacheKey, primitive.indices );
}
if ( primitive.indices === null ) delete primitive.indices;
}
var material = processMaterial( materials[ groups[ i ].materialIndex ] );
if ( material !== null ) {
primitive.material = material;
}
primitives.push( primitive );
}
if ( didForceIndices ) {
geometry.setIndex( null );
}
gltfMesh.primitives = primitives;
if ( ! outputJSON.meshes ) {
outputJSON.meshes = [];
}
outputJSON.meshes.push( gltfMesh );
var index = outputJSON.meshes.length - 1;
cachedData.meshes.set( cacheKey, index );
return index;
}
/**
* Process camera
* @param {THREE.Camera} camera Camera to process
* @return {Integer} Index of the processed mesh in the "camera" array
*/
function processCamera( camera ) {
if ( ! outputJSON.cameras ) {
outputJSON.cameras = [];
}
var isOrtho = camera.isOrthographicCamera;
var gltfCamera = {
type: isOrtho ? 'orthographic' : 'perspective'
};
if ( isOrtho ) {
gltfCamera.orthographic = {
xmag: camera.right * 2,
ymag: camera.top * 2,
zfar: camera.far <= 0 ? 0.001 : camera.far,
znear: camera.near < 0 ? 0 : camera.near
};
} else {
gltfCamera.perspective = {
aspectRatio: camera.aspect,
yfov: MathUtils.degToRad( camera.fov ),
zfar: camera.far <= 0 ? 0.001 : camera.far,
znear: camera.near < 0 ? 0 : camera.near
};
}
if ( camera.name !== '' ) {
gltfCamera.name = camera.type;
}
outputJSON.cameras.push( gltfCamera );
return outputJSON.cameras.length - 1;
}
/**
* Creates glTF animation entry from AnimationClip object.
*
* Status:
* - Only properties listed in PATH_PROPERTIES may be animated.
*
* @param {THREE.AnimationClip} clip
* @param {THREE.Object3D} root
* @return {number}
*/
function processAnimation( clip, root ) {
if ( ! outputJSON.animations ) {
outputJSON.animations = [];
}
clip = GLTFExporter.Utils.mergeMorphTargetTracks( clip.clone(), root );
var tracks = clip.tracks;
var channels = [];
var samplers = [];
for ( var i = 0; i < tracks.length; ++ i ) {
var track = tracks[ i ];
var trackBinding = PropertyBinding.parseTrackName( track.name );
var trackNode = PropertyBinding.findNode( root, trackBinding.nodeName );
var trackProperty = PATH_PROPERTIES[ trackBinding.propertyName ];
if ( trackBinding.objectName === 'bones' ) {
if ( trackNode.isSkinnedMesh === true ) {
trackNode = trackNode.skeleton.getBoneByName( trackBinding.objectIndex );
} else {
trackNode = undefined;
}
}
if ( ! trackNode || ! trackProperty ) {
console.warn( 'THREE.GLTFExporter: Could not export animation track "%s".', track.name );
return null;
}
var inputItemSize = 1;
var outputItemSize = track.values.length / track.times.length;
if ( trackProperty === PATH_PROPERTIES.morphTargetInfluences ) {
outputItemSize /= trackNode.morphTargetInfluences.length;
}
var interpolation;
// @TODO export CubicInterpolant(InterpolateSmooth) as CUBICSPLINE
// Detecting glTF cubic spline interpolant by checking factory method's special property
// GLTFCubicSplineInterpolant is a custom interpolant and track doesn't return
// valid value from .getInterpolation().
if ( track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline === true ) {
interpolation = 'CUBICSPLINE';
// itemSize of CUBICSPLINE keyframe is 9
// (VEC3 * 3: inTangent, splineVertex, and outTangent)
// but needs to be stored as VEC3 so dividing by 3 here.
outputItemSize /= 3;
} else if ( track.getInterpolation() === InterpolateDiscrete ) {
interpolation = 'STEP';
} else {
interpolation = 'LINEAR';
}
samplers.push( {
input: processAccessor( new BufferAttribute( track.times, inputItemSize ) ),
output: processAccessor( new BufferAttribute( track.values, outputItemSize ) ),
interpolation: interpolation
} );
channels.push( {
sampler: samplers.length - 1,
target: {
node: nodeMap.get( trackNode ),
path: trackProperty
}
} );
}
outputJSON.animations.push( {
name: clip.name || 'clip_' + outputJSON.animations.length,
samplers: samplers,
channels: channels
} );
return outputJSON.animations.length - 1;
}
function processSkin( object ) {
var node = outputJSON.nodes[ nodeMap.get( object ) ];
var skeleton = object.skeleton;
if ( skeleton === undefined ) return null;
var rootJoint = object.skeleton.bones[ 0 ];
if ( rootJoint === undefined ) return null;
var joints = [];
var inverseBindMatrices = new Float32Array( skeleton.bones.length * 16 );
for ( var i = 0; i < skeleton.bones.length; ++ i ) {
joints.push( nodeMap.get( skeleton.bones[ i ] ) );
skeleton.boneInverses[ i ].toArray( inverseBindMatrices, i * 16 );
}
if ( outputJSON.skins === undefined ) {
outputJSON.skins = [];
}
outputJSON.skins.push( {
inverseBindMatrices: processAccessor( new BufferAttribute( inverseBindMatrices, 16 ) ),
joints: joints,
skeleton: nodeMap.get( rootJoint )
} );
var skinIndex = node.skin = outputJSON.skins.length - 1;
return skinIndex;
}
function processLight( light ) {
var lightDef = {};
if ( light.name ) lightDef.name = light.name;
lightDef.color = light.color.toArray();
lightDef.intensity = light.intensity;
if ( light.isDirectionalLight ) {
lightDef.type = 'directional';
} else if ( light.isPointLight ) {
lightDef.type = 'point';
if ( light.distance > 0 ) lightDef.range = light.distance;
} else if ( light.isSpotLight ) {
lightDef.type = 'spot';
if ( light.distance > 0 ) lightDef.range = light.distance;
lightDef.spot = {};
lightDef.spot.innerConeAngle = ( light.penumbra - 1.0 ) * light.angle * - 1.0;
lightDef.spot.outerConeAngle = light.angle;
}
if ( light.decay !== undefined && light.decay !== 2 ) {
console.warn( 'THREE.GLTFExporter: Light decay may be lost. glTF is physically-based, '
+ 'and expects light.decay=2.' );
}
if ( light.target
&& ( light.target.parent !== light
|| light.target.position.x !== 0
|| light.target.position.y !== 0
|| light.target.position.z !== - 1 ) ) {
console.warn( 'THREE.GLTFExporter: Light direction may be lost. For best results, '
+ 'make light.target a child of the light with position 0,0,-1.' );
}
var lights = outputJSON.extensions[ 'KHR_lights_punctual' ].lights;
lights.push( lightDef );
return lights.length - 1;
}
/**
* Process Object3D node
* @param {THREE.Object3D} node Object3D to processNode
* @return {Integer} Index of the node in the nodes list
*/
function processNode( object ) {
if (object.no_export) return null;
if (OutlinerElement.uuids[object.name] && OutlinerElement.uuids[object.name].export == false) return null;
if ( ! outputJSON.nodes ) {
outputJSON.nodes = [];
}
var gltfNode = {};
if ( options.trs ) {
var rotation = object.quaternion.toArray();
var position = object.position.toArray();
var scale = object.scale.toArray();
if ( ! equalArray( rotation, [ 0, 0, 0, 1 ] ) ) {
gltfNode.rotation = rotation;
}
if ( ! equalArray( position, [ 0, 0, 0 ] ) ) {
gltfNode.translation = position;
}
if ( ! equalArray( scale, [ 1, 1, 1 ] ) ) {
gltfNode.scale = scale;
}
} else {
if ( object.matrixAutoUpdate ) {
object.updateMatrix();
}
if ( ! equalArray( object.matrix.elements, [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] ) ) {
gltfNode.matrix = object.matrix.elements;
}
}
// We don't export empty strings name because it represents no-name in Three.js.
if ( object.name !== '' ) {
gltfNode.name = String( object.name );
}
serializeUserData( object, gltfNode );
if ( object.isMesh || object.isLine || object.isPoints ) {
var mesh = processMesh( object );
if ( mesh !== null ) {
gltfNode.mesh = mesh;
}
} else if ( object.isCamera ) {
gltfNode.camera = processCamera( object );
} else if ( object.isDirectionalLight || object.isPointLight || object.isSpotLight ) {
if ( ! extensionsUsed[ 'KHR_lights_punctual' ] ) {
outputJSON.extensions = outputJSON.extensions || {};
outputJSON.extensions[ 'KHR_lights_punctual' ] = { lights: [] };
extensionsUsed[ 'KHR_lights_punctual' ] = true;
}
gltfNode.extensions = gltfNode.extensions || {};
gltfNode.extensions[ 'KHR_lights_punctual' ] = { light: processLight( object ) };
} else if ( object.isLight ) {
console.warn( 'THREE.GLTFExporter: Only directional, point, and spot lights are supported.', object );
return null;
}
if ( object.isSkinnedMesh ) {
skins.push( object );
}
if ( object.children.length > 0 ) {
var children = [];
for ( var i = 0, l = object.children.length; i < l; i ++ ) {
var child = object.children[ i ];
if ( child.visible || options.onlyVisible === false ) {
var node = processNode( child );
if ( node !== null ) {
children.push( node );
}
}
}
if ( children.length > 0 ) {
gltfNode.children = children;
}
}
outputJSON.nodes.push( gltfNode );
var nodeIndex = outputJSON.nodes.length - 1;
nodeMap.set( object, nodeIndex );
return nodeIndex;
}
/**
* Process Scene
* @param {Scene} node Scene to process
*/
function processScene( scene ) {
if ( ! outputJSON.scenes ) {
outputJSON.scenes = [];
outputJSON.scene = 0;
}
var gltfScene = {
nodes: []
};
if ( scene.name !== '' ) {
gltfScene.name = scene.name;
}
if ( scene.userData && Object.keys( scene.userData ).length > 0 ) {
gltfScene.extras = serializeUserData( scene );
}
outputJSON.scenes.push( gltfScene );
var nodes = [];
for ( var i = 0, l = scene.children.length; i < l; i ++ ) {
var child = scene.children[ i ];
if ( child.visible || options.onlyVisible === false ) {
var node = processNode( child );
if ( node !== null ) {
nodes.push( node );
}
}
}
if ( nodes.length > 0 ) {
gltfScene.nodes = nodes;
}
serializeUserData( scene, gltfScene );
}
/**
* Creates a Scene to hold a list of objects and parse it
* @param {Array} objects List of objects to process
*/
function processObjects( objects ) {
var scene = new Scene();
scene.name = 'AuxScene';
for ( var i = 0; i < objects.length; i ++ ) {
// We push directly to children instead of calling `add` to prevent
// modify the .parent and break its original scene and hierarchy
scene.children.push( objects[ i ] );
}
processScene( scene );
}
function processInput( input ) {
input = input instanceof Array ? input : [ input ];
var objectsWithoutScene = [];
for ( var i = 0; i < input.length; i ++ ) {
if ( input[ i ] instanceof Scene ) {
processScene( input[ i ] );
} else {
objectsWithoutScene.push( input[ i ] );
}
}
if ( objectsWithoutScene.length > 0 ) {
processObjects( objectsWithoutScene );
}
for ( var i = 0; i < skins.length; ++ i ) {
processSkin( skins[ i ] );
}
for ( var i = 0; i < options.animations.length; ++ i ) {
processAnimation( options.animations[ i ], input[ 0 ] );
}
}
processInput( input );
Promise.all( pending ).then( function () {
// Merge buffers.
var blob = new Blob( buffers, { type: 'application/octet-stream' } );
// Declare extensions.
var extensionsUsedList = Object.keys( extensionsUsed );
if ( extensionsUsedList.length > 0 ) outputJSON.extensionsUsed = extensionsUsedList;
if ( outputJSON.buffers && outputJSON.buffers.length > 0 ) {
// Update bytelength of the single buffer.
outputJSON.buffers[ 0 ].byteLength = blob.size;
var reader = new window.FileReader();
if ( options.binary === true ) {
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#glb-file-format-specification
var GLB_HEADER_BYTES = 12;
var GLB_HEADER_MAGIC = 0x46546C67;
var GLB_VERSION = 2;
var GLB_CHUNK_PREFIX_BYTES = 8;
var GLB_CHUNK_TYPE_JSON = 0x4E4F534A;
var GLB_CHUNK_TYPE_BIN = 0x004E4942;
reader.readAsArrayBuffer( blob );
reader.onloadend = function () {
// Binary chunk.
var binaryChunk = getPaddedArrayBuffer( reader.result );
var binaryChunkPrefix = new DataView( new ArrayBuffer( GLB_CHUNK_PREFIX_BYTES ) );
binaryChunkPrefix.setUint32( 0, binaryChunk.byteLength, true );
binaryChunkPrefix.setUint32( 4, GLB_CHUNK_TYPE_BIN, true );
// JSON chunk.
var jsonChunk = getPaddedArrayBuffer( stringToArrayBuffer( JSON.stringify( outputJSON ) ), 0x20 );
var jsonChunkPrefix = new DataView( new ArrayBuffer( GLB_CHUNK_PREFIX_BYTES ) );
jsonChunkPrefix.setUint32( 0, jsonChunk.byteLength, true );
jsonChunkPrefix.setUint32( 4, GLB_CHUNK_TYPE_JSON, true );
// GLB header.
var header = new ArrayBuffer( GLB_HEADER_BYTES );
var headerView = new DataView( header );
headerView.setUint32( 0, GLB_HEADER_MAGIC, true );
headerView.setUint32( 4, GLB_VERSION, true );
var totalByteLength = GLB_HEADER_BYTES
+ jsonChunkPrefix.byteLength + jsonChunk.byteLength
+ binaryChunkPrefix.byteLength + binaryChunk.byteLength;
headerView.setUint32( 8, totalByteLength, true );
var glbBlob = new Blob( [
header,
jsonChunkPrefix,
jsonChunk,
binaryChunkPrefix,
binaryChunk
], { type: 'application/octet-stream' } );
var glbReader = new window.FileReader();
glbReader.readAsArrayBuffer( glbBlob );
glbReader.onloadend = function () {
onDone( glbReader.result );
};
};
} else {
reader.readAsDataURL( blob );
reader.onloadend = function () {
var base64data = reader.result;
outputJSON.buffers[ 0 ].uri = base64data;
onDone( outputJSON );
};
}
} else {
onDone( outputJSON );
}
} );
}
};
GLTFExporter.Utils = {
insertKeyframe: function ( track, time ) {
var tolerance = 0.001; // 1ms
var valueSize = track.getValueSize();
var times = new track.TimeBufferType( track.times.length + 1 );
var values = new track.ValueBufferType( track.values.length + valueSize );
var interpolant = track.createInterpolant( new track.ValueBufferType( valueSize ) );
var index;
if ( track.times.length === 0 ) {
times[ 0 ] = time;
for ( var i = 0; i < valueSize; i ++ ) {
values[ i ] = 0;
}
index = 0;
} else if ( time < track.times[ 0 ] ) {
if ( Math.abs( track.times[ 0 ] - time ) < tolerance ) return 0;
times[ 0 ] = time;
times.set( track.times, 1 );
values.set( interpolant.evaluate( time ), 0 );
values.set( track.values, valueSize );
index = 0;
} else if ( time > track.times[ track.times.length - 1 ] ) {
if ( Math.abs( track.times[ track.times.length - 1 ] - time ) < tolerance ) {
return track.times.length - 1;
}
times[ times.length - 1 ] = time;
times.set( track.times, 0 );
values.set( track.values, 0 );
values.set( interpolant.evaluate( time ), track.values.length );
index = times.length - 1;
} else {
for ( var i = 0; i < track.times.length; i ++ ) {
if ( Math.abs( track.times[ i ] - time ) < tolerance ) return i;
if ( track.times[ i ] < time && track.times[ i + 1 ] > time ) {
times.set( track.times.slice( 0, i + 1 ), 0 );
times[ i + 1 ] = time;
times.set( track.times.slice( i + 1 ), i + 2 );
values.set( track.values.slice( 0, ( i + 1 ) * valueSize ), 0 );
values.set( interpolant.evaluate( time ), ( i + 1 ) * valueSize );
values.set( track.values.slice( ( i + 1 ) * valueSize ), ( i + 2 ) * valueSize );
index = i + 1;
break;
}
}
}
track.times = times;
track.values = values;
return index;
},
mergeMorphTargetTracks: function ( clip, root ) {
var tracks = [];
var mergedTracks = {};
var sourceTracks = clip.tracks;
for ( var i = 0; i < sourceTracks.length; ++ i ) {
var sourceTrack = sourceTracks[ i ];
var sourceTrackBinding = PropertyBinding.parseTrackName( sourceTrack.name );
var sourceTrackNode = PropertyBinding.findNode( root, sourceTrackBinding.nodeName );
if ( sourceTrackBinding.propertyName !== 'morphTargetInfluences' || sourceTrackBinding.propertyIndex === undefined ) {
// Tracks that don't affect morph targets, or that affect all morph targets together, can be left as-is.
tracks.push( sourceTrack );
continue;
}
if ( sourceTrack.createInterpolant !== sourceTrack.InterpolantFactoryMethodDiscrete
&& sourceTrack.createInterpolant !== sourceTrack.InterpolantFactoryMethodLinear ) {
if ( sourceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) {
// This should never happen, because glTF morph target animations
// affect all targets already.
throw new Error( 'THREE.GLTFExporter: Cannot merge tracks with glTF CUBICSPLINE interpolation.' );
}
console.warn( 'THREE.GLTFExporter: Morph target interpolation mode not yet supported. Using LINEAR instead.' );
sourceTrack = sourceTrack.clone();
sourceTrack.setInterpolation( InterpolateLinear );
}
var targetCount = sourceTrackNode.morphTargetInfluences.length;
var targetIndex = sourceTrackNode.morphTargetDictionary[ sourceTrackBinding.propertyIndex ];
if ( targetIndex === undefined ) {
throw new Error( 'THREE.GLTFExporter: Morph target name not found: ' + sourceTrackBinding.propertyIndex );
}
var mergedTrack;
// If this is the first time we've seen this object, create a new
// track to store merged keyframe data for each morph target.
if ( mergedTracks[ sourceTrackNode.uuid ] === undefined ) {
mergedTrack = sourceTrack.clone();
var values = new mergedTrack.ValueBufferType( targetCount * mergedTrack.times.length );
for ( var j = 0; j < mergedTrack.times.length; j ++ ) {
values[ j * targetCount + targetIndex ] = mergedTrack.values[ j ];
}
mergedTrack.name = '.morphTargetInfluences';
mergedTrack.values = values;
mergedTracks[ sourceTrackNode.uuid ] = mergedTrack;
tracks.push( mergedTrack );
continue;
}
var sourceInterpolant = sourceTrack.createInterpolant( new sourceTrack.ValueBufferType( 1 ) );
mergedTrack = mergedTracks[ sourceTrackNode.uuid ];
// For every existing keyframe of the merged track, write a (possibly
// interpolated) value from the source track.
for ( var j = 0; j < mergedTrack.times.length; j ++ ) {
mergedTrack.values[ j * targetCount + targetIndex ] = sourceInterpolant.evaluate( mergedTrack.times[ j ] );
}
// For every existing keyframe of the source track, write a (possibly
// new) keyframe to the merged track. Values from the previous loop may
// be written again, but keyframes are de-duplicated.
for ( var j = 0; j < sourceTrack.times.length; j ++ ) {
var keyframeIndex = this.insertKeyframe( mergedTrack, sourceTrack.times[ j ] );
mergedTrack.values[ keyframeIndex * targetCount + targetIndex ] = sourceTrack.values[ j ];
}
}
clip.tracks = tracks;
return clip;
}
};
THREE.GLTFExporter = GLTFExporter;
})()