blockbench/js/modeling/mesh_editing.js
JannisX11 d7fb09bd02 Optimize extruding with edges
Fix edge drag selection not selecting all vertices
2023-01-20 20:36:37 +01:00

1707 lines
60 KiB
JavaScript

function sameMeshEdge(edge_a, edge_b) {
return edge_a.equals(edge_b) || (edge_a[0] == edge_b[1] && edge_a[1] == edge_b[0])
}
BARS.defineActions(function() {
let add_mesh_dialog = new Dialog({
id: 'add_primitive',
title: 'action.add_mesh',
form: {
shape: {label: 'dialog.add_primitive.shape', type: 'select', options: {
cube: 'dialog.add_primitive.shape.cube',
pyramid: 'dialog.add_primitive.shape.pyramid',
plane: 'dialog.add_primitive.shape.plane',
circle: 'dialog.add_primitive.shape.circle',
cylinder: 'dialog.add_primitive.shape.cylinder',
tube: 'dialog.add_primitive.shape.tube',
cone: 'dialog.add_primitive.shape.cone',
sphere: 'dialog.add_primitive.shape.sphere',
torus: 'dialog.add_primitive.shape.torus',
}},
diameter: {label: 'dialog.add_primitive.diameter', type: 'number', value: 16},
align_edges: {label: 'dialog.add_primitive.align_edges', type: 'checkbox', value: true, condition: ({shape}) => !['cube', 'pyramid', 'plane'].includes(shape)},
height: {label: 'dialog.add_primitive.height', type: 'number', value: 8, condition: ({shape}) => ['cylinder', 'cone', 'cube', 'pyramid', 'tube'].includes(shape)},
sides: {label: 'dialog.add_primitive.sides', type: 'number', value: 12, min: 3, max: 48, condition: ({shape}) => ['cylinder', 'cone', 'circle', 'torus', 'sphere', 'tube'].includes(shape)},
minor_diameter: {label: 'dialog.add_primitive.minor_diameter', type: 'number', value: 4, condition: ({shape}) => ['torus', 'tube'].includes(shape)},
minor_sides: {label: 'dialog.add_primitive.minor_sides', type: 'number', value: 8, min: 2, max: 32, condition: ({shape}) => ['torus'].includes(shape)},
},
onConfirm(result) {
let original_selection_group = Group.selected && Group.selected.uuid;
function runEdit(amended, result) {
let elements = [];
if (original_selection_group && !Group.selected) {
let group_to_select = Group.all.find(g => g.uuid == original_selection_group);
if (group_to_select) {
Group.selected = group_to_select;
}
}
Undo.initEdit({elements, selection: true}, amended);
let mesh = new Mesh({
name: result.shape,
vertices: {}
});
let group = getCurrentGroup();
if (group) {
mesh.addTo(group)
mesh.color = group.color;
}
let diameter_factor = result.align_edges ? 1 / Math.cos(Math.PI/result.sides) : 1;
let off_ang = result.align_edges ? 0.5 : 0;
if (result.shape == 'circle') {
let vertex_keys = mesh.addVertices([0, 0, 0]);
let [m] = vertex_keys;
for (let i = 0; i < result.sides; i++) {
let x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
let z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
vertex_keys.push(...mesh.addVertices([x, 0, z]));
}
for (let i = 0; i < result.sides; i++) {
let [a, b] = vertex_keys.slice(i+2, i+2 + 2);
if (!a) {
b = vertex_keys[2];
a = vertex_keys[1];
} else if (!b) {
b = vertex_keys[1];
}
mesh.addFaces(new MeshFace( mesh, {vertices: [a, b, m]} ));
}
}
if (result.shape == 'cone') {
let vertex_keys = mesh.addVertices([0, 0, 0], [0, result.height, 0]);
let [m0, m1] = vertex_keys;
for (let i = 0; i < result.sides; i++) {
let x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
let z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
vertex_keys.push(...mesh.addVertices([x, 0, z]));
}
for (let i = 0; i < result.sides; i++) {
let [a, b] = vertex_keys.slice(i+2, i+2 + 2);
if (!b) {
b = vertex_keys[2];
}
mesh.addFaces(
new MeshFace( mesh, {vertices: [b, a, m0]} ),
new MeshFace( mesh, {vertices: [a, b, m1]} )
);
}
}
if (result.shape == 'cylinder') {
let vertex_keys = mesh.addVertices([0, 0, 0], [0, result.height, 0]);
let [m0, m1] = vertex_keys;
for (let i = 0; i < result.sides; i++) {
let x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
let z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
vertex_keys.push(...mesh.addVertices([x, 0, z], [x, result.height, z]));
}
for (let i = 0; i < result.sides; i++) {
let [a, b, c, d] = vertex_keys.slice(2*i+2, 2*i+2 + 4);
if (!c) {
c = vertex_keys[2];
d = vertex_keys[3];
}
mesh.addFaces(
new MeshFace( mesh, {vertices: [c, a, m0]}),
new MeshFace( mesh, {vertices: [a, c, d, b]} ),
new MeshFace( mesh, {vertices: [b, d, m1]} )
);
}
}
if (result.shape == 'tube') {
let vertex_keys = [];
let outer_r = result.diameter/2 * diameter_factor;
let inner_r = (outer_r - result.minor_diameter/2) * diameter_factor;
for (let i = 0; i < result.sides; i++) {
let x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2);
let z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2);
vertex_keys.push(...mesh.addVertices(
[x * outer_r, 0, z * outer_r],
[x * outer_r, result.height, z * outer_r],
[x * inner_r, 0, z * inner_r],
[x * inner_r, result.height, z * inner_r],
));
}
for (let i = 0; i < result.sides; i++) {
let [a1, b1, c1, d1, a2, b2, c2, d2] = vertex_keys.slice(4*i, 4*i + 8);
if (!a2) {
a2 = vertex_keys[0];
b2 = vertex_keys[1];
c2 = vertex_keys[2];
d2 = vertex_keys[3];
}
if (a1 && b1 && c1 && d1 && a2 && b2 && c2 && d2) {
mesh.addFaces(
new MeshFace( mesh, {vertices: [a1, a2, b2, b1]} ),
new MeshFace( mesh, {vertices: [d1, d2, c2, c1]} ),
new MeshFace( mesh, {vertices: [c1, c2, a2, a1]} ),
new MeshFace( mesh, {vertices: [b1, b2, d2, d1]} ),
);
}
}
}
if (result.shape == 'torus') {
let rings = [];
for (let i = 0; i < result.sides; i++) {
let circle_x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2);
let circle_z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2);
let vertices = [];
for (let j = 0; j < result.minor_sides; j++) {
let slice_x = Math.sin((j / result.minor_sides) * Math.PI * 2) * result.minor_diameter/2*diameter_factor;
let x = circle_x * (result.diameter/2*diameter_factor + slice_x)
let y = Math.cos((j / result.minor_sides) * Math.PI * 2) * result.minor_diameter/2*diameter_factor;
let z = circle_z * (result.diameter/2*diameter_factor + slice_x)
vertices.push(...mesh.addVertices([x, y, z]));
}
rings.push(vertices);
}
for (let i = 0; i < result.sides; i++) {
let this_ring = rings[i];
let next_ring = rings[i+1] || rings[0];
for (let j = 0; j < result.minor_sides; j++) {
mesh.addFaces(new MeshFace( mesh, {vertices: [
this_ring[j+1] || this_ring[0],
next_ring[j+1] || next_ring[0],
this_ring[j],
next_ring[j],
]} ));
}
}
}
if (result.shape == 'sphere') {
let rings = [];
let sides = Math.round(result.sides/2)*2;
let [bottom] = mesh.addVertices([0, -result.diameter/2, 0]);
let [top] = mesh.addVertices([0, result.diameter/2, 0]);
for (let i = 0; i < result.sides; i++) {
let circle_x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2);
let circle_z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2);
let vertices = [];
for (let j = 1; j < (sides/2); j++) {
let slice_x = Math.sin((j / sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
let x = circle_x * slice_x
let y = Math.cos((j / sides) * Math.PI * 2) * result.diameter/2;
let z = circle_z * slice_x
vertices.push(...mesh.addVertices([x, y, z]));
}
rings.push(vertices);
}
for (let i = 0; i < result.sides; i++) {
let this_ring = rings[i];
let next_ring = rings[i+1] || rings[0];
for (let j = 0; j < (sides/2); j++) {
if (j == 0) {
mesh.addFaces(new MeshFace( mesh, {vertices: [
this_ring[j],
next_ring[j],
top
]} ));
} else if (!this_ring[j]) {
mesh.addFaces(new MeshFace( mesh, {vertices: [
next_ring[j-1],
this_ring[j-1],
bottom
]} ));
} else {
mesh.addFaces(new MeshFace( mesh, {vertices: [
this_ring[j],
next_ring[j],
this_ring[j-1],
next_ring[j-1],
]} ));
}
}
}
}
if (result.shape == 'cube') {
let r = result.diameter/2;
let h = result.height;
mesh.addVertices([r, h, r], [r, h, -r], [r, 0, r], [r, 0, -r], [-r, h, r], [-r, h, -r], [-r, 0, r], [-r, 0, -r]);
let vertex_keys = Object.keys(mesh.vertices);
mesh.addFaces(
new MeshFace( mesh, {vertices: [vertex_keys[0], vertex_keys[2], vertex_keys[1], vertex_keys[3]]} ), // East
new MeshFace( mesh, {vertices: [vertex_keys[4], vertex_keys[5], vertex_keys[6], vertex_keys[7]]} ), // West
new MeshFace( mesh, {vertices: [vertex_keys[0], vertex_keys[1], vertex_keys[4], vertex_keys[5]]} ), // Up
new MeshFace( mesh, {vertices: [vertex_keys[2], vertex_keys[6], vertex_keys[3], vertex_keys[7]]} ), // Down
new MeshFace( mesh, {vertices: [vertex_keys[0], vertex_keys[4], vertex_keys[2], vertex_keys[6]]} ), // South
new MeshFace( mesh, {vertices: [vertex_keys[1], vertex_keys[3], vertex_keys[5], vertex_keys[7]]} ), // North
);
}
if (result.shape == 'pyramid') {
let r = result.diameter/2;
let h = result.height;
mesh.addVertices([0, h, 0], [r, 0, r], [r, 0, -r], [-r, 0, r], [-r, 0, -r]);
let vertex_keys = Object.keys(mesh.vertices);
mesh.addFaces(
new MeshFace( mesh, {vertices: [vertex_keys[1], vertex_keys[3], vertex_keys[2], vertex_keys[4]]} ), // Down
new MeshFace( mesh, {vertices: [vertex_keys[1], vertex_keys[2], vertex_keys[0]]} ), // east
new MeshFace( mesh, {vertices: [vertex_keys[3], vertex_keys[1], vertex_keys[0]]} ), // south
new MeshFace( mesh, {vertices: [vertex_keys[2], vertex_keys[4], vertex_keys[0]]} ), // north
new MeshFace( mesh, {vertices: [vertex_keys[4], vertex_keys[3], vertex_keys[0]]} ), // west
);
}
if (result.shape == 'plane') {
let r = result.diameter/2;
mesh.addVertices([r, 0, r], [r, 0, -r], [-r, 0, r], [-r, 0, -r]);
let vertex_keys = Object.keys(mesh.vertices);
mesh.addFaces(
new MeshFace( mesh, {vertices: [vertex_keys[0], vertex_keys[1], vertex_keys[3], vertex_keys[2]]} )
);
}
if (Texture.all.length && Format.single_texture) {
for (var face in mesh.faces) {
mesh.faces[face].texture = Texture.getDefault().uuid
}
UVEditor.loadData()
}
if (Format.bone_rig) {
if (group) {
var pos1 = group.origin.slice()
mesh.extend({
origin: pos1.slice()
})
}
}
elements.push(mesh);
mesh.init()
if (Group.selected) Group.selected.unselect()
mesh.select()
UVEditor.setAutoSize(null, true, Object.keys(mesh.faces));
UVEditor.selected_faces.empty();
Undo.finishEdit('Add primitive');
Blockbench.dispatchEvent( 'add_mesh', {object: mesh} )
Vue.nextTick(function() {
if (settings.create_rename.value) {
mesh.rename()
}
})
}
runEdit(false, result);
Undo.amendEdit({
diameter: {label: 'dialog.add_primitive.diameter', type: 'number', value: result.diameter, interval_type: 'position'},
height: {label: 'dialog.add_primitive.height', type: 'number', value: result.height, condition: ['cylinder', 'cone', 'cube', 'pyramid', 'tube'].includes(result.shape), interval_type: 'position'},
sides: {label: 'dialog.add_primitive.sides', type: 'number', value: result.sides, min: 3, max: 48, condition: ['cylinder', 'cone', 'circle', 'torus', 'sphere', 'tube'].includes(result.shape)},
minor_diameter: {label: 'dialog.add_primitive.minor_diameter', type: 'number', value: result.minor_diameter, condition: ['torus', 'tube'].includes(result.shape), interval_type: 'position'},
minor_sides: {label: 'dialog.add_primitive.minor_sides', type: 'number', value: result.minor_sides, min: 2, max: 32, condition: ['torus'].includes(result.shape)},
}, form => {
Object.assign(result, form);
runEdit(true, result);
})
}
})
new Action('add_mesh', {
icon: 'fa-gem',
category: 'edit',
condition: {modes: ['edit'], method: () => (Format.meshes)},
click: function () {
add_mesh_dialog.show();
}
})
let previous_selection_mode = 'object';
new BarSelect('selection_mode', {
options: {
object: {name: true, icon: 'far.fa-gem'},
cluster: {name: true, icon: 'fas.fa-link'},
face: {name: true, icon: 'crop_portrait'},
edge: {name: true, icon: 'fa-grip-lines-vertical'},
vertex: {name: true, icon: 'fiber_manual_record'},
},
icon_mode: true,
condition: () => Modes.edit && Mesh.all.length,
onChange({value}) {
if (value === previous_selection_mode) return;
if (value === 'object') {
Mesh.selected.forEach(mesh => {
delete Project.mesh_selection[mesh.uuid];
})
} else if (value === 'face') {
UVEditor.vue.selected_faces.empty();
Mesh.selected.forEach(mesh => {
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.isSelected()) {
UVEditor.vue.selected_faces.safePush(fkey);
}
}
})
}
if (value == 'edge') {
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
edges.empty();
})
}
if (value == 'edge' && ['face', 'cluster'].includes(previous_selection_mode)) {
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
let faces = mesh.getSelectedFaces(true);
faces.forEach(fkey => {
let face = mesh.faces[fkey];
let vertices = face.getSortedVertices();
vertices.forEach((vkey_a, i) => {
let edge = [vkey_a, (vertices[i+1] || vertices[0])];
if (!edges.find(edge2 => sameMeshEdge(edge2, edge))) {
edges.push(edge);
}
})
})
faces.empty();
})
}
if (value == 'edge' && ['vertex', 'cluster'].includes(previous_selection_mode)) {
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
let vertices = mesh.getSelectedFaces(true);
if (!vertices.length) return;
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let f_vertices = face.getSortedVertices();
f_vertices.forEach((vkey_a, i) => {
let edge = [vkey_a, (f_vertices[i+1] || f_vertices[0])];
if (!vertices.includes(edge[0]) || !vertices.includes(edge[1])) return;
if (edges.find(edge2 => sameMeshEdge(edge2, edge))) return;
edges.push(edge);
})
}
})
}
if (value == 'vertex' && ['face', 'cluster'].includes(previous_selection_mode)) {
Mesh.selected.forEach(mesh => {
let faces = mesh.getSelectedFaces(true);
faces.empty();
})
}
if (value == 'vertex' && ['edge', 'cluster'].includes(previous_selection_mode)) {
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
edges.empty();
})
}
/**
* Face To Edge
* Edge To Face
*
*/
updateSelection();
previous_selection_mode = value;
}
})
let seam_timeout;
new Tool('seam_tool', {
icon: 'content_cut',
transformerMode: 'hidden',
toolbar: 'seam_tool',
category: 'tools',
selectElements: true,
modes: ['edit'],
condition: () => Modes.edit && Mesh.all.length,
onCanvasClick(data) {
if (!seam_timeout) {
seam_timeout = setTimeout(() => {
seam_timeout = null;
}, 200)
} else {
clearTimeout(seam_timeout);
seam_timeout = null;
BarItems.select_seam.trigger();
}
},
onSelect: function() {
BarItems.selection_mode.set('edge');
BarItems.view_mode.set('solid');
BarItems.view_mode.onChange();
},
onUnselect: function() {
BarItems.selection_mode.set('object');
BarItems.view_mode.set('textured');
BarItems.view_mode.onChange();
}
})
new BarSelect('select_seam', {
options: {
auto: true,
divide: true,
join: true,
},
condition: () => Modes.edit && Mesh.all.length,
onChange({value}) {
if (value == 'auto') value = null;
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
let selected_vertices = mesh.getSelectedVertices();
mesh.forAllFaces((face) => {
let vertices = face.getSortedVertices();
vertices.forEach((vkey_a, i) => {
let vkey_b = vertices[i+1] || vertices[0];
if (selected_vertices.includes(vkey_a) && selected_vertices.includes(vkey_b)) {
mesh.setSeam([vkey_a, vkey_b], value);
}
})
});
Mesh.preview_controller.updateSelection(mesh);
})
Undo.finishEdit('Set mesh seam');
}
})
new Action('create_face', {
icon: 'fas.fa-draw-polygon',
category: 'edit',
keybind: new Keybind({key: 'f', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length > 1)},
click() {
let vec1 = new THREE.Vector3(),
vec2 = new THREE.Vector3(),
vec3 = new THREE.Vector3(),
vec4 = new THREE.Vector3();
Undo.initEdit({elements: Mesh.selected});
let faces_to_autouv = [];
Mesh.selected.forEach(mesh => {
UVEditor.selected_faces.empty();
let selected_vertices = mesh.getSelectedVertices();
if (selected_vertices.length >= 2 && selected_vertices.length <= 4) {
let reference_face;
let reference_face_strength = 0;
for (let key in mesh.faces) {
let face = mesh.faces[key];
let match_strength = face.vertices.filter(vkey => selected_vertices.includes(vkey)).length;
if (match_strength > reference_face_strength) {
reference_face = face;
reference_face_strength = match_strength;
}
if (face.isSelected()) {
delete mesh.faces[key];
}
}
// Split face
if (
(selected_vertices.length == 2 || selected_vertices.length == 3) &&
reference_face.vertices.length == 4 &&
reference_face.vertices.filter(vkey => selected_vertices.includes(vkey)).length == selected_vertices.length
) {
let sorted_vertices = reference_face.getSortedVertices();
let unselected_vertices = sorted_vertices.filter(vkey => !selected_vertices.includes(vkey));
let side_index_diff = Math.abs(sorted_vertices.indexOf(selected_vertices[0]) - sorted_vertices.indexOf(selected_vertices[1]));
if (side_index_diff != 1 || selected_vertices.length == 3) {
let new_face = new MeshFace(mesh, reference_face);
new_face.vertices.remove(unselected_vertices[0]);
delete new_face.uv[unselected_vertices[0]];
let reference_corner_vertex = unselected_vertices[1]
|| sorted_vertices[sorted_vertices.indexOf(unselected_vertices[0]) + 2]
|| sorted_vertices[sorted_vertices.indexOf(unselected_vertices[0]) - 2];
reference_face.vertices.remove(reference_corner_vertex);
delete reference_face.uv[reference_corner_vertex];
let [face_key] = mesh.addFaces(new_face);
UVEditor.selected_faces.push(face_key);
if (reference_face.getAngleTo(new_face) > 90) {
new_face.invert();
}
}
} else {
let new_face = new MeshFace(mesh, {
vertices: selected_vertices,
texture: reference_face.texture,
} );
let [face_key] = mesh.addFaces(new_face);
UVEditor.selected_faces.push(face_key);
faces_to_autouv.push(face_key);
// Correct direction
if (selected_vertices.length > 2) {
// find face with shared line to compare
let fixed_via_face;
for (let key in mesh.faces) {
let face = mesh.faces[key];
let common = face.vertices.filter(vertex_key => selected_vertices.includes(vertex_key))
if (common.length == 2) {
let old_vertices = face.getSortedVertices();
let new_vertices = new_face.getSortedVertices();
let index_diff = old_vertices.indexOf(common[0]) - old_vertices.indexOf(common[1]);
let new_index_diff = new_vertices.indexOf(common[0]) - new_vertices.indexOf(common[1]);
if (index_diff == 1 - face.vertices.length) index_diff = 1;
if (new_index_diff == 1 - new_face.vertices.length) new_index_diff = 1;
if (Math.abs(index_diff) == 1 && Math.abs(new_index_diff) == 1) {
if (index_diff == new_index_diff) {
new_face.invert();
}
fixed_via_face = true;
break;
}
}
}
// If no face available, orient based on camera orientation
if (!fixed_via_face) {
let normal = new THREE.Vector3().fromArray(new_face.getNormal());
normal.applyQuaternion(mesh.mesh.getWorldQuaternion(new THREE.Quaternion()))
let cam_direction = Preview.selected.camera.getWorldDirection(new THREE.Vector3());
let angle = normal.angleTo(cam_direction);
if (angle < Math.PI/2) {
new_face.invert();
}
}
}
}
} else if (selected_vertices.length > 4) {
let reference_face;
for (let key in mesh.faces) {
let face = mesh.faces[key];
if (!reference_face && face.vertices.find(vkey => selected_vertices.includes(vkey))) {
reference_face = face;
}
}
let vertices = selected_vertices.slice();
let v1 = vec1.fromArray(mesh.vertices[vertices[1]].slice().V3_subtract(mesh.vertices[vertices[0]]));
let v2 = vec2.fromArray(mesh.vertices[vertices[2]].slice().V3_subtract(mesh.vertices[vertices[0]]));
let normal = v2.cross(v1);
let plane = new THREE.Plane().setFromNormalAndCoplanarPoint(
normal,
new THREE.Vector3().fromArray(mesh.vertices[vertices[0]])
)
let center = [0, 0];
let vertex_uvs = {};
vertices.forEach((vkey) => {
let coplanar_pos = plane.projectPoint(vec3.fromArray(mesh.vertices[vkey]), vec4);
let q = Reusable.quat1.setFromUnitVectors(normal, THREE.NormalY)
coplanar_pos.applyQuaternion(q);
vertex_uvs[vkey] = [
Math.roundTo(coplanar_pos.x, 4),
Math.roundTo(coplanar_pos.z, 4),
]
center[0] += vertex_uvs[vkey][0];
center[1] += vertex_uvs[vkey][1];
})
center[0] /= vertices.length;
center[1] /= vertices.length;
vertices.forEach(vkey => {
vertex_uvs[vkey][0] -= center[0];
vertex_uvs[vkey][1] -= center[1];
vertex_uvs[vkey][2] = Math.atan2(vertex_uvs[vkey][0], vertex_uvs[vkey][1]);
})
vertices.sort((a, b) => vertex_uvs[a][2] - vertex_uvs[b][2]);
let start_index = 0;
while (start_index < vertices.length) {
let face_vertices = vertices.slice(start_index, start_index+4);
vertices.push(face_vertices[0]);
let new_face = new MeshFace(mesh, {vertices: face_vertices, texture: reference_face.texture});
let [face_key] = mesh.addFaces(new_face);
UVEditor.selected_faces.push(face_key);
if (face_vertices.length < 4) break;
start_index += 3;
}
}
})
UVEditor.setAutoSize(null, true, faces_to_autouv);
Undo.finishEdit('Create mesh face')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
})
new Action('convert_to_mesh', {
icon: 'fa-gem',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Cube.selected.length)},
click() {
Undo.initEdit({elements: Cube.selected});
let new_meshes = [];
Cube.selected.forEach(cube => {
let mesh = new Mesh({
name: cube.name,
color: cube.color,
origin: cube.origin,
rotation: cube.rotation,
vertices: [
[cube.to[0] + cube.inflate - cube.origin[0], cube.to[1] + cube.inflate - cube.origin[1], cube.to[2] + cube.inflate - cube.origin[2]],
[cube.to[0] + cube.inflate - cube.origin[0], cube.to[1] + cube.inflate - cube.origin[1], cube.from[2] - cube.inflate - cube.origin[2]],
[cube.to[0] + cube.inflate - cube.origin[0], cube.from[1] - cube.inflate - cube.origin[1], cube.to[2] + cube.inflate - cube.origin[2]],
[cube.to[0] + cube.inflate - cube.origin[0], cube.from[1] - cube.inflate - cube.origin[1], cube.from[2] - cube.inflate - cube.origin[2]],
[cube.from[0] - cube.inflate - cube.origin[0], cube.to[1] + cube.inflate - cube.origin[1], cube.to[2] + cube.inflate - cube.origin[2]],
[cube.from[0] - cube.inflate - cube.origin[0], cube.to[1] + cube.inflate - cube.origin[1], cube.from[2] - cube.inflate - cube.origin[2]],
[cube.from[0] - cube.inflate - cube.origin[0], cube.from[1] - cube.inflate - cube.origin[1], cube.to[2] + cube.inflate - cube.origin[2]],
[cube.from[0] - cube.inflate - cube.origin[0], cube.from[1] - cube.inflate - cube.origin[1], cube.from[2] - cube.inflate - cube.origin[2]],
],
})
let vertex_keys = Object.keys(mesh.vertices);
let unused_vkeys = vertex_keys.slice();
function addFace(direction, vertices) {
let cube_face = cube.faces[direction];
if (cube_face.texture === null) return;
let uv = {
[vertices[0]]: [cube_face.uv[2], cube_face.uv[1]],
[vertices[1]]: [cube_face.uv[0], cube_face.uv[1]],
[vertices[2]]: [cube_face.uv[2], cube_face.uv[3]],
[vertices[3]]: [cube_face.uv[0], cube_face.uv[3]],
};
mesh.addFaces(
new MeshFace( mesh, {
vertices,
uv,
texture: cube_face.texture,
}
));
vertices.forEach(vkey => unused_vkeys.remove(vkey));
}
addFace('east', [vertex_keys[1], vertex_keys[0], vertex_keys[3], vertex_keys[2]]);
addFace('west', [vertex_keys[4], vertex_keys[5], vertex_keys[6], vertex_keys[7]]);
addFace('up', [vertex_keys[1], vertex_keys[5], vertex_keys[0], vertex_keys[4]]); // 4 0 5 1
addFace('down', [vertex_keys[2], vertex_keys[6], vertex_keys[3], vertex_keys[7]]);
addFace('south', [vertex_keys[0], vertex_keys[4], vertex_keys[2], vertex_keys[6]]);
addFace('north', [vertex_keys[5], vertex_keys[1], vertex_keys[7], vertex_keys[3]]);
unused_vkeys.forEach(vkey => {
delete mesh.vertices[vkey];
})
mesh.sortInBefore(cube).init();
new_meshes.push(mesh);
selected.push(mesh);
cube.remove();
})
updateSelection();
Undo.finishEdit('Convert cubes to meshes', {elements: new_meshes});
}
})
new Action('invert_face', {
icon: 'flip_to_back',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedFaces().length)},
click() {
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
for (let key in mesh.faces) {
let face = mesh.faces[key];
if (face.isSelected()) {
face.invert();
}
}
})
Undo.finishEdit('Invert mesh faces');
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}});
}
})
new Action('extrude_mesh_selection', {
icon: 'upload',
category: 'edit',
keybind: new Keybind({key: 'e', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length)},
click() {
function runEdit(amended, extend = 1) {
Undo.initEdit({elements: Mesh.selected, selection: true}, amended);
Mesh.selected.forEach(mesh => {
let original_vertices = mesh.getSelectedVertices().slice();
let selected_edges = mesh.getSelectedEdges();
let new_vertices;
let new_face_keys = [];
let selected_face_keys = mesh.getSelectedFaces();
let selected_faces = selected_face_keys.map(fkey => mesh.faces[fkey]);
let combined_direction;
selected_faces.forEach(face => {
original_vertices.safePush(...face.vertices);
})
selected_edges.forEach(edge => {
original_vertices.safePush(...edge);
})
if (original_vertices.length >= 3 && !selected_faces.length) {
let [a, b, c] = original_vertices.slice(0, 3).map(vkey => mesh.vertices[vkey].slice());
let normal = new THREE.Vector3().fromArray(a.V3_subtract(c));
normal.cross(new THREE.Vector3().fromArray(b.V3_subtract(c))).normalize();
let face;
for (let fkey in mesh.faces) {
let face2 = mesh.faces[fkey];
let face_selected_vertices = face2.vertices.filter(vkey => original_vertices.includes(vkey));
if (face_selected_vertices.length >= 2 && face_selected_vertices.length < face2.vertices.length && face2.vertices.length > 2) {
face = face2;
break;
}
}
if (face) {
let selected_corner = mesh.vertices[face.vertices.find(vkey => original_vertices.includes(vkey))];
let opposite_corner = mesh.vertices[face.vertices.find(vkey => !original_vertices.includes(vkey))];
let face_geo_dir = opposite_corner.slice().V3_subtract(selected_corner);
if (Reusable.vec1.fromArray(face_geo_dir).angleTo(normal) < 1) {
normal.negate();
}
}
combined_direction = normal.toArray();
}
new_vertices = mesh.addVertices(...original_vertices.map(key => {
let vector = mesh.vertices[key].slice();
let direction;
let count = 0;
selected_faces.forEach(face => {
if (face.vertices.includes(key)) {
count++;
if (!direction) {
direction = face.getNormal(true);
} else {
direction.V3_add(face.getNormal(true));
}
}
})
if (count > 1) {
direction.V3_divide(count);
}
if (!direction) {
let match;
let match_level = 0;
let match_count = 0;
for (let key in mesh.faces) {
let face = mesh.faces[key];
let matches = face.vertices.filter(vkey => original_vertices.includes(vkey));
if (match_level < matches.length) {
match_level = matches.length;
match_count = 1;
match = face;
} else if (match_level === matches.length) {
match_count++;
}
if (match_level == 3) break;
}
if (match_level < 3 && match_count > 2 && original_vertices.length > 2) {
// If multiple faces connect to the line, there is no point in choosing one for the normal
// Instead, construct the normal between the first 2 selected vertices
direction = combined_direction;
} else if (match) {
direction = match.getNormal(true);
}
}
vector.V3_add(direction.map(v => v * extend));
return vector;
}))
Project.mesh_selection[mesh.uuid].vertices.replace(new_vertices);
// Move Faces
selected_faces.forEach(face => {
face.vertices.forEach((key, index) => {
face.vertices[index] = new_vertices[original_vertices.indexOf(key)];
let uv = face.uv[key];
delete face.uv[key];
face.uv[face.vertices[index]] = uv;
})
})
// Create extra quads on sides
let remaining_vertices = new_vertices.slice();
selected_faces.forEach((face, face_index) => {
let vertices = face.getSortedVertices();
vertices.forEach((a, i) => {
let b = vertices[i+1] || vertices[0];
if (vertices.length == 2 && i) return; // Only create one quad when extruding line
if (selected_faces.find(f => f != face && f.vertices.includes(a) && f.vertices.includes(b))) return;
let new_face = new MeshFace(mesh, mesh.faces[selected_face_keys[face_index]]).extend({
vertices: [
b,
a,
original_vertices[new_vertices.indexOf(a)],
original_vertices[new_vertices.indexOf(b)],
]
});
let [face_key] = mesh.addFaces(new_face);
new_face_keys.push(face_key);
remaining_vertices.remove(a);
remaining_vertices.remove(b);
})
if (vertices.length == 2) delete mesh.faces[selected_face_keys[face_index]];
})
// Create Face between extruded edges
let new_faces = [];
selected_edges.forEach(edge => {
let face, sorted_vertices;
for (let fkey in mesh.faces) {
let face2 = mesh.faces[fkey];
let vertices = face2.getSortedVertices();
if (vertices.includes(edge[0]) && vertices.includes(edge[1])) {
face = face2;
sorted_vertices = vertices;
break;
}
}
if (sorted_vertices[0] == edge[0] && sorted_vertices[1] != edge[1]) {
edge.reverse();
}
let [a, b] = edge.map(vkey => new_vertices[original_vertices.indexOf(vkey)]);
let [c, d] = edge;
let new_face = new MeshFace(mesh, face).extend({
vertices: [a, b, c, d]
});
let [face_key] = mesh.addFaces(new_face);
new_face_keys.push(face_key);
new_faces.push(new_face);
remaining_vertices.remove(a);
remaining_vertices.remove(b);
})
// Create line between points
remaining_vertices.forEach(a => {
let b = original_vertices[new_vertices.indexOf(a)]
let b_in_face = false;
mesh.forAllFaces(face => {
if (face.vertices.includes(b)) b_in_face = true;
})
if (selected_faces.find(f => f.vertices.includes(a)) && !b_in_face) {
// Remove line if in the middle of other faces
delete mesh.vertices[b];
} else {
let new_face = new MeshFace(mesh, {
vertices: [b, a]
});
mesh.addFaces(new_face);
}
})
UVEditor.setAutoSize(null, true, new_face_keys);
})
Undo.finishEdit('Extrude mesh selection');
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true});
}
runEdit();
Undo.amendEdit({
extend: {type: 'number', value: 1, label: 'edit.extrude_mesh_selection.extend', interval_type: 'position'},
}, form => {
runEdit(true, form.extend);
})
}
})
new Action('inset_mesh_selection', {
icon: 'fa-compress-arrows-alt',
category: 'edit',
keybind: new Keybind({key: 'i', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length >= 3)},
click() {
function runEdit(amended, offset = 50) {
Undo.initEdit({elements: Mesh.selected, selection: true}, amended);
Mesh.selected.forEach(mesh => {
let original_vertices = mesh.getSelectedVertices();
if (original_vertices.length < 3) return;
original_vertices = original_vertices.slice();
let new_vertices;
let selected_faces = [];
let selected_face_keys = [];
for (let key in mesh.faces) {
let face = mesh.faces[key];
if (face.isSelected()) {
selected_faces.push(face);
selected_face_keys.push(key);
}
}
new_vertices = mesh.addVertices(...original_vertices.map(vkey => {
let vector = mesh.vertices[vkey].slice();
affected_faces = selected_faces.filter(face => {
return face.vertices.includes(vkey)
})
if (affected_faces.length == 0) return;
let inset = [0, 0, 0];
if (affected_faces.length == 3 || affected_faces.length == 1) {
affected_faces.sort((a, b) => {
let ax = 0;
a.vertices.forEach(vkey => {
ax += affected_faces.filter(face => face.vertices.includes(vkey)).length;
})
let bx = 0;
b.vertices.forEach(vkey => {
bx += affected_faces.filter(face => face.vertices.includes(vkey)).length;
})
return bx - ax;
})
affected_faces[0].vertices.forEach(vkey2 => {
inset.V3_add(mesh.vertices[vkey2]);
})
inset.V3_divide(affected_faces[0].vertices.length);
vector = vector.map((v, i) => Math.lerp(v, inset[i], offset/100));
}
if (affected_faces.length == 2) {
let vkey2 = affected_faces[0].vertices.find(_vkey => _vkey != vkey && affected_faces[1].vertices.includes(_vkey));
vector = vector.map((v, i) => Math.lerp(v, mesh.vertices[vkey2][i], offset/200));
}
return vector;
}).filter(vec => vec instanceof Array))
if (!new_vertices.length) return;
Project.mesh_selection[mesh.uuid].vertices.replace(new_vertices);
// Move Faces
selected_faces.forEach(face => {
face.vertices.forEach((key, index) => {
face.vertices[index] = new_vertices[original_vertices.indexOf(key)];
let uv = face.uv[key];
delete face.uv[key];
face.uv[face.vertices[index]] = uv;
})
})
// Create extra quads on sides
let remaining_vertices = new_vertices.slice();
selected_faces.forEach((face, face_index) => {
let vertices = face.getSortedVertices();
vertices.forEach((a, i) => {
let b = vertices[i+1] || vertices[0];
if (vertices.length == 2 && i) return; // Only create one quad when extruding line
if (selected_faces.find(f => f != face && f.vertices.includes(a) && f.vertices.includes(b))) return;
let new_face = new MeshFace(mesh, mesh.faces[selected_face_keys[face_index]]).extend({
vertices: [
b,
a,
original_vertices[new_vertices.indexOf(a)],
original_vertices[new_vertices.indexOf(b)],
]
});
mesh.addFaces(new_face);
remaining_vertices.remove(a);
remaining_vertices.remove(b);
})
if (vertices.length == 2) delete mesh.faces[selected_face_keys[face_index]];
})
remaining_vertices.forEach(a => {
let b = original_vertices[new_vertices.indexOf(a)];
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.vertices.includes(b)) {
face.vertices.splice(face.vertices.indexOf(b), 1, a);
face.uv[a] = face.uv[b];
delete face.uv[b];
}
}
delete mesh.vertices[b];
})
})
Undo.finishEdit('Extrude mesh selection')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
runEdit();
Undo.amendEdit({
offset: {type: 'number', value: 50, label: 'edit.loop_cut.offset', min: 0, max: 100, interval_type: 'position'},
}, form => {
runEdit(true, form.offset);
})
}
})
new Action('loop_cut', {
icon: 'carpenter',
category: 'edit',
keybind: new Keybind({key: 'r', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length > 1)},
click() {
let selected_face;
let saved_direction = 0;
Mesh.selected.forEach(mesh => {
if (!selected_face) {
selected_face = mesh.faces[mesh.getSelectedFaces()[0]];
}
})
function getLength(direction = 0) {
if (selected_face) {
let vertices = selected_face.getSortedVertices();
let pos1 = Mesh.selected[0].vertices[vertices[(0 + direction) % selected_face.vertices.length]];
let pos2 = Mesh.selected[0].vertices[vertices[(1 + direction) % selected_face.vertices.length]];
return Math.sqrt(Math.pow(pos2[0] - pos1[0], 2) + Math.pow(pos2[1] - pos1[1], 2) + Math.pow(pos2[2] - pos1[2], 2));
} else {
let vertices = Mesh.selected[0].getSelectedVertices();
let pos1 = Mesh.selected[0].vertices[vertices[0]];
let pos2 = Mesh.selected[0].vertices[vertices[1]];
return Math.sqrt(Math.pow(pos2[0] - pos1[0], 2) + Math.pow(pos2[1] - pos1[1], 2) + Math.pow(pos2[2] - pos1[2], 2));
}
}
let length = getLength();
function runEdit(amended, offset, direction = 0) {
Undo.initEdit({elements: Mesh.selected, selection: true}, amended);
if (offset == undefined) offset = length / 2;
Mesh.selected.forEach(mesh => {
let selected_vertices = mesh.getSelectedVertices();
let start_face;
let start_face_quality = 1;
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.vertices.length < 2) continue;
let vertices = face.vertices.filter(vkey => selected_vertices.includes(vkey))
if (vertices.length > start_face_quality) {
start_face = face;
start_face_quality = vertices.length;
}
}
if (!start_face) return;
let processed_faces = [start_face];
let center_vertices = {};
function getCenterVertex(vertices) {
let existing_key = center_vertices[vertices[0]] || center_vertices[vertices[1]];
if (existing_key) return existing_key;
let ratio = offset/length;
let vector = mesh.vertices[vertices[0]].map((v, i) => Math.lerp(v, mesh.vertices[vertices[1]][i], ratio))
let [vkey] = mesh.addVertices(vector);
center_vertices[vertices[0]] = center_vertices[vertices[1]] = vkey;
return vkey;
}
function splitFace(face, side_vertices, double_side) {
processed_faces.push(face);
let sorted_vertices = face.getSortedVertices();
let side_index_diff = sorted_vertices.indexOf(side_vertices[0]) - sorted_vertices.indexOf(side_vertices[1]);
if (side_index_diff == -1 || side_index_diff > 2) side_vertices.reverse();
if (face.vertices.length == 4) {
let opposite_vertices = sorted_vertices.filter(vkey => !side_vertices.includes(vkey));
let opposite_index_diff = sorted_vertices.indexOf(opposite_vertices[0]) - sorted_vertices.indexOf(opposite_vertices[1]);
if (opposite_index_diff == 1 || opposite_index_diff < -2) opposite_vertices.reverse();
let center_vertices = [
getCenterVertex(side_vertices),
getCenterVertex(opposite_vertices)
]
let c1_uv_coords = [
Math.lerp(face.uv[side_vertices[0]][0], face.uv[side_vertices[1]][0], offset/length),
Math.lerp(face.uv[side_vertices[0]][1], face.uv[side_vertices[1]][1], offset/length),
];
let c2_uv_coords = [
Math.lerp(face.uv[opposite_vertices[0]][0], face.uv[opposite_vertices[1]][0], offset/length),
Math.lerp(face.uv[opposite_vertices[0]][1], face.uv[opposite_vertices[1]][1], offset/length),
];
let new_face = new MeshFace(mesh, face).extend({
vertices: [side_vertices[1], center_vertices[0], center_vertices[1], opposite_vertices[1]],
uv: {
[side_vertices[1]]: face.uv[side_vertices[1]],
[center_vertices[0]]: c1_uv_coords,
[center_vertices[1]]: c2_uv_coords,
[opposite_vertices[1]]: face.uv[opposite_vertices[1]],
}
})
face.extend({
vertices: [opposite_vertices[0], center_vertices[0], center_vertices[1], side_vertices[0]],
uv: {
[opposite_vertices[0]]: face.uv[opposite_vertices[0]],
[center_vertices[0]]: c1_uv_coords,
[center_vertices[1]]: c2_uv_coords,
[side_vertices[0]]: face.uv[side_vertices[0]],
}
})
mesh.addFaces(new_face);
// Find next (and previous) face
for (let fkey in mesh.faces) {
let ref_face = mesh.faces[fkey];
if (ref_face.vertices.length < 3 || processed_faces.includes(ref_face)) continue;
let vertices = ref_face.vertices.filter(vkey => opposite_vertices.includes(vkey))
if (vertices.length >= 2) {
splitFace(ref_face, opposite_vertices, ref_face.vertices.length == 4);
break;
}
}
if (double_side) {
for (let fkey in mesh.faces) {
let ref_face = mesh.faces[fkey];
if (ref_face.vertices.length < 3 || processed_faces.includes(ref_face)) continue;
let vertices = ref_face.vertices.filter(vkey => side_vertices.includes(vkey))
if (vertices.length >= 2) {
let ref_sorted_vertices = ref_face.getSortedVertices();
let ref_opposite_vertices = ref_sorted_vertices.filter(vkey => !side_vertices.includes(vkey));
if(ref_opposite_vertices.length == 2)
{
splitFace(ref_face, ref_opposite_vertices, ref_face.vertices.length == 4);
break;
}
}
}
}
} else {
let opposite_vertex = sorted_vertices.find(vkey => !side_vertices.includes(vkey));
let center_vertex = getCenterVertex(side_vertices);
let c1_uv_coords = [
Math.lerp(face.uv[side_vertices[0]][0], face.uv[side_vertices[1]][0], offset/length),
Math.lerp(face.uv[side_vertices[0]][1], face.uv[side_vertices[1]][1], offset/length),
];
let new_face = new MeshFace(mesh, face).extend({
vertices: [side_vertices[1], center_vertex, opposite_vertex],
uv: {
[side_vertices[1]]: face.uv[side_vertices[1]],
[center_vertex]: c1_uv_coords,
[opposite_vertex]: face.uv[opposite_vertex],
}
})
face.extend({
vertices: [opposite_vertex, center_vertex, side_vertices[0]],
uv: {
[opposite_vertex]: face.uv[opposite_vertex],
[center_vertex]: c1_uv_coords,
[side_vertices[0]]: face.uv[side_vertices[0]],
}
})
mesh.addFaces(new_face);
}
}
let start_vertices = start_face.getSortedVertices().filter((vkey, i) => selected_vertices.includes(vkey));
let start_edge = [start_vertices[direction % start_vertices.length], start_vertices[(direction+1) % start_vertices.length]];
if (start_edge.length == 1) start_edge.splice(0, 0, start_vertices[0]);
splitFace(start_face, start_edge, start_face.vertices.length == 4);
selected_vertices.empty();
for (let key in center_vertices) {
selected_vertices.safePush(center_vertices[key]);
}
})
Undo.finishEdit('Create loop cut')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
runEdit();
Undo.amendEdit({
direction: {type: 'number', value: 0, label: 'edit.loop_cut.direction', condition: !!selected_face, min: 0},
//cuts: {type: 'number', value: 1, label: 'edit.loop_cut.cuts', min: 0, max: 16},
offset: {type: 'number', value: length/2, label: 'edit.loop_cut.offset', min: 0, max: length, interval_type: 'position'},
}, (form, form_options) => {
let direction = form.direction || 0;
length = getLength(direction);
form_options.offset.slider.settings.max = length;
if(saved_direction !== direction)
{
form_options.offset.slider.value = length/2;
form_options.offset.slider.update();
saved_direction = direction;
}
if (form_options.direction) {
form_options.direction.slider.value = direction % selected_face.vertices.length;
}
runEdit(true, form_options.offset.slider.value, form_options.direction ? form_options.direction.slider.value : 0);
})
}
})
new Action('dissolve_edges', {
icon: 'border_vertical',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length > 1)},
click() {
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
let selected_vertices = mesh.getSelectedVertices(true);
for (let edge of edges) {
let adjacent_faces = [];
let adjacent_fkeys = [];
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (!face.vertices.includes(edge[0]) || !face.vertices.includes(edge[1])) continue;
let vertices = face.getSortedVertices();
let index_a = vertices.indexOf(edge[0]), index_b = vertices.indexOf(edge[1]);
if (vertices.length < 4 || (Math.abs(index_a - index_b) != 2)) {
adjacent_faces.push(face);
adjacent_fkeys.push(fkey);
}
}
// Connect adjacent faces
let keep_faces = adjacent_fkeys.length >= 2;
if (keep_faces) {
let face_a = mesh.faces[adjacent_fkeys[0]],
face_b = mesh.faces[adjacent_fkeys[1]];
let vertices_from_a = face_a.vertices.filter(vkey => edge.indexOf(vkey) == -1);
delete mesh.faces[adjacent_fkeys[0]];
adjacent_fkeys.remove(adjacent_fkeys[0]);
face_b.vertices.safePush(...vertices_from_a);
vertices_from_a.forEach((vkey, i) => {
face_b.uv[vkey] = face_a.uv[vkey] ? face_a.uv[vkey].slice() : [0, 0];
})
// Ensure face has no more than 4 vertices
edge.forEach(edge_vkey => {
if (face_b.vertices.length > 4) {
face_b.vertices.remove(edge_vkey);
delete face_b.uv[edge_vkey];
}
})
}
// Remove all other faces and lines
adjacent_fkeys.forEach((fkey, i) => {
let face = mesh.faces[fkey];
if (face && (i > 1 || !keep_faces)) {
delete mesh.faces[fkey];
}
})
}
// Remove leftover vertices
let vertices_used = [];
for (let edge of edges) {
vertices_used.safePush(...edge);
}
for (let vkey in vertices_used) {
let used = false;
for (let fkey in mesh.faces) {
if (mesh.faces[fkey].vertices.includes(vkey)) {
used = true;
break;
}
}
if (!used) {
delete mesh.vertices[vkey];
}
}
selected_vertices.empty();
})
Undo.finishEdit('Dissolve edges')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
})
function mergeVertices(by_distance, in_center) {
let found = 0, result = 0;
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
let selected_vertices = mesh.getSelectedVertices();
if (selected_vertices.length < 2) return;
if (!by_distance) {
let first_vertex = selected_vertices[0];
if (in_center) {
let center = [0, 0, 0];
selected_vertices.forEach(vkey => {
center.V3_add(mesh.vertices[vkey]);
})
center.V3_divide(selected_vertices.length);
mesh.vertices[first_vertex].V3_set(center);
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let matches = selected_vertices.filter(vkey => face.vertices.includes(vkey));
if (matches.length < 2) continue;
let center = [0, 0];
matches.forEach(vkey => {
center[0] += face.uv[vkey][0];
center[1] += face.uv[vkey][1];
})
center[0] /= matches.length;
center[1] /= matches.length;
matches.forEach(vkey => {
face.uv[vkey][0] = center[0];
face.uv[vkey][1] = center[1];
})
}
}
selected_vertices.forEach(vkey => {
if (vkey == first_vertex) return;
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let index = face.vertices.indexOf(vkey);
if (index === -1) continue;
if (face.vertices.includes(first_vertex)) {
face.vertices.remove(vkey);
delete face.uv[vkey];
if (face.vertices.length < 2) {
delete mesh.faces[fkey];
}
} else {
let uv = face.uv[vkey];
face.vertices.splice(index, 1, first_vertex);
face.uv[first_vertex] = uv;
delete face.uv[vkey];
}
}
delete mesh.vertices[vkey];
})
selected_vertices.splice(1, selected_vertices.length);
} else {
let selected_vertices = mesh.getSelectedVertices().slice();
if (selected_vertices.length < 2) return;
let groups = {};
let i = 0;
while (selected_vertices[i]) {
let vkey1 = selected_vertices[i];
let j = i+1;
while (selected_vertices[j]) {
let vkey2 = selected_vertices[j];
let vector1 = mesh.vertices[vkey1];
let vector2 = mesh.vertices[vkey2];
if (Math.sqrt(Math.pow(vector2[0] - vector1[0], 2) + Math.pow(vector2[1] - vector1[1], 2) + Math.pow(vector2[2] - vector1[2], 2)) < settings.vertex_merge_distance.value) {
if (!groups[vkey1]) groups[vkey1] = [];
groups[vkey1].push(vkey2);
}
j++;
}
if (groups[vkey1]) {
groups[vkey1].forEach(vkey2 => {
selected_vertices.remove(vkey2);
})
}
i++;
}
let current_selected_vertices = mesh.getSelectedVertices();
for (let first_vertex in groups) {
let group = groups[first_vertex];
if (in_center) {
let group_all = [first_vertex, ...group];
let center = [0, 0, 0];
group_all.forEach(vkey => {
center.V3_add(mesh.vertices[vkey]);
})
center.V3_divide(group_all.length);
mesh.vertices[first_vertex].V3_set(center);
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let matches = group_all.filter(vkey => face.vertices.includes(vkey));
if (matches.length < 2) continue;
let center = [0, 0];
matches.forEach(vkey => {
center[0] += face.uv[vkey][0];
center[1] += face.uv[vkey][1];
})
center[0] /= matches.length;
center[1] /= matches.length;
matches.forEach(vkey => {
face.uv[vkey][0] = center[0];
face.uv[vkey][1] = center[1];
})
}
}
group.forEach(vkey => {
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let index = face.vertices.indexOf(vkey);
if (index === -1) continue;
if (face.vertices.includes(first_vertex)) {
face.vertices.remove(vkey);
delete face.uv[vkey];
if (face.vertices.length < 2) {
delete mesh.faces[fkey];
}
} else {
let uv = face.uv[vkey];
face.vertices.splice(index, 1, first_vertex);
face.uv[first_vertex] = uv;
delete face.uv[vkey];
}
}
found++;
delete mesh.vertices[vkey];
current_selected_vertices.remove(vkey);
})
found++;
result++;
}
}
})
Undo.finishEdit('Merge vertices')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
if (by_distance) {
Blockbench.showQuickMessage(tl('message.merged_vertices', [found, result]), 2000);
}
}
new Action('merge_vertices', {
icon: 'close_fullscreen',
category: 'edit',
keybind: new Keybind({key: 'm', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length > 1)},
click() {
new Menu(this.children).open('mouse');
},
children: [
{
id: 'merge_all',
name: 'action.merge_vertices.merge_all',
icon: 'north_east',
click() {mergeVertices(false, false);}
},
{
id: 'merge_all_in_center',
name: 'action.merge_vertices.merge_all_in_center',
icon: 'close_fullscreen',
click() {mergeVertices(false, true);}
},
{
id: 'merge_by_distance',
name: 'action.merge_vertices.merge_by_distance',
icon: 'expand_less',
click() {mergeVertices(true, false);}
},
{
id: 'merge_by_distance_in_center',
name: 'action.merge_vertices.merge_by_distance_in_center',
icon: 'unfold_less',
click() {mergeVertices(true, true);}
}
]
})
new Action('merge_meshes', {
icon: 'upload',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected.length >= 2)},
click() {
let elements = Mesh.selected.slice();
Undo.initEdit({elements});
let original = Mesh.selected[0];
let vector = new THREE.Vector3();
Mesh.selected.forEach(mesh => {
if (mesh == original) return;
let old_vertex_keys = Object.keys(mesh.vertices);
let new_vertex_keys = original.addVertices(...mesh.vertice_list.map(arr => {
vector.fromArray(arr);
mesh.mesh.localToWorld(vector);
original.mesh.worldToLocal(vector);
return vector.toArray()
}));
for (let key in mesh.faces) {
let old_face = mesh.faces[key];
let new_face = new MeshFace(original, old_face);
let uv = {};
for (let vkey in old_face.uv) {
let new_vkey = new_vertex_keys[old_vertex_keys.indexOf(vkey)]
uv[new_vkey] = old_face.uv[vkey];
}
new_face.extend({
vertices: old_face.vertices.map(v => new_vertex_keys[old_vertex_keys.indexOf(v)]),
uv
})
original.addFaces(new_face)
}
mesh.remove();
elements.remove(mesh);
Mesh.selected.remove(mesh)
})
updateSelection();
Undo.finishEdit('Merge meshes')
Canvas.updateView({elements, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
})
new Action('split_mesh', {
icon: 'call_split',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length)},
click() {
let elements = Mesh.selected.slice();
Undo.initEdit({elements});
Mesh.selected.forEach(mesh => {
let selected_vertices = mesh.getSelectedVertices();
let mesh_selection = Project.mesh_selection[mesh.uuid];
let copy = new Mesh(mesh);
elements.push(copy);
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.isSelected()) {
delete mesh.faces[fkey];
} else {
delete copy.faces[fkey];
}
}
selected_vertices.forEach(vkey => {
let used = false;
for (let key in mesh.faces) {
let face = mesh.faces[key];
if (face.vertices.includes(vkey)) used = true;
}
if (!used) {
delete mesh.vertices[vkey];
}
})
Object.keys(copy.vertices).filter(vkey => !selected_vertices.includes(vkey)).forEach(vkey => {
let used = false;
for (let key in copy.faces) {
let face = copy.faces[key];
if (face.vertices.includes(vkey)) used = true;
}
if (!used) {
delete copy.vertices[vkey];
}
})
copy.name += '_selection'
copy.sortInBefore(mesh, 1).init();
delete Project.mesh_selection[mesh.uuid];
Project.mesh_selection[copy.uuid] = mesh_selection;
mesh.preview_controller.updateGeometry(mesh);
selected[selected.indexOf(mesh)] = copy;
})
Undo.finishEdit('Merge meshes');
updateSelection();
Canvas.updateView({elements, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
})
new Action('import_obj', {
icon: 'fa-gem',
category: 'file',
condition: {modes: ['edit'], method: () => (Format.meshes)},
click: function () {
Blockbench.import({
resource_id: 'obj',
extensions: ['obj'],
name: 'OBJ Wavefront Model',
}, function(files) {
let {content} = files[0];
let lines = content.split(/[\r\n]+/);
function toVector(args, length) {
return args.map(v => parseFloat(v));
}
let mesh;
let vertices = [];
let vertex_keys = {};
let vertex_textures = [];
let vertex_normals = [];
let meshes = [];
let vector1 = new THREE.Vector3();
let vector2 = new THREE.Vector3();
Undo.initEdit({outliner: true, elements: meshes, selection: true});
lines.forEach(line => {
if (line.substr(0, 1) == '#' || !line) return;
let args = line.split(/\s+/).filter(arg => typeof arg !== 'undefined' && arg !== '');
let cmd = args.shift();
if (['o', 'g'].includes(cmd) || (cmd == 'v' && !mesh)) {
mesh = new Mesh({
name: ['o', 'g'].includes(cmd) ? args[0] : 'unknown',
vertices: {}
})
vertex_keys = {};
meshes.push(mesh);
}
if (cmd == 'v') {
vertices.push(toVector(args, 3).map(v => v * 16));
}
if (cmd == 'vt') {
vertex_textures.push(toVector(args, 2))
}
if (cmd == 'vn') {
vertex_normals.push(toVector(args, 3))
}
if (cmd == 'f') {
let f = {
vertices: [],
vertex_textures: [],
vertex_normals: [],
}
args.forEach(triplet => {
let [v, vt, vn] = triplet.split('/').map(v => parseInt(v));
if (!vertex_keys[ v-1 ]) {
vertex_keys[ v-1 ] = mesh.addVertices(vertices[v-1])[0];
}
f.vertices.push(vertex_keys[ v-1 ]);
f.vertex_textures.push(vertex_textures[ vt-1 ]);
f.vertex_normals.push(vertex_normals[ vn-1 ]);
})
let uv = {};
f.vertex_textures.forEach((vt, i) => {
let key = f.vertices[i];
if (vt instanceof Array) {
uv[key] = [
vt[0] * Project.texture_width,
(1-vt[1]) * Project.texture_width
];
} else {
uv[key] = [0, 0];
}
})
let face = new MeshFace(mesh, {
vertices: f.vertices,
uv
})
mesh.addFaces(face);
if (f.vertex_normals.find(v => v)) {
vector1.fromArray(face.getNormal());
vector2.fromArray(f.vertex_normals[0]);
let angle = vector1.angleTo(vector2);
if (angle > Math.PI/2) {
face.invert();
}
}
}
})
meshes.forEach(mesh => {
mesh.init();
})
Undo.finishEdit('Import OBJ');
})
}
})
})