blockbench/js/modeling/mesh_editing.js
2024-05-12 11:55:20 +02:00

3363 lines
120 KiB
JavaScript

function sameMeshEdge(edge_a, edge_b) {
return edge_a.equals(edge_b) || (edge_a[0] == edge_b[1] && edge_a[1] == edge_b[0])
}
const ProportionalEdit = {
vertex_weights: {},
calculateWeights(mesh) {
if (!BarItems.proportional_editing.value) return;
let selected_vertices = mesh.getSelectedVertices();
let {range, falloff, selection} = StateMemory.proportional_editing_options;
let linear_distance = selection == 'linear';
let all_mesh_connections;
if (!linear_distance) {
all_mesh_connections = {};
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
face.getEdges().forEach(edge => {
if (!all_mesh_connections[edge[0]]) {
all_mesh_connections[edge[0]] = [edge[1]];
} else {
all_mesh_connections[edge[0]].safePush(edge[1]);
}
if (!all_mesh_connections[edge[1]]) {
all_mesh_connections[edge[1]] = [edge[0]];
} else {
all_mesh_connections[edge[1]].safePush(edge[0]);
}
})
}
}
ProportionalEdit.vertex_weights[mesh.uuid] = {};
for (let vkey in mesh.vertices) {
if (selected_vertices.includes(vkey)) continue;
let distance = Infinity;
if (linear_distance) {
// Linear Distance
selected_vertices.forEach(vkey2 => {
let pos1 = mesh.vertices[vkey];
let pos2 = mesh.vertices[vkey2];
let distance_square = Math.pow(pos1[0] - pos2[0], 2) + Math.pow(pos1[1] - pos2[1], 2) + Math.pow(pos1[2] - pos2[2], 2);
if (distance_square < distance) {
distance = distance_square;
}
})
distance = Math.sqrt(distance);
} else {
// Connection Distance
let found_match_depth = 0;
let scanned = [];
let frontier = [vkey];
depth_crawler:
for (let depth = 1; depth <= range; depth++) {
let new_frontier = [];
for (let vkey1 of frontier) {
let connections = all_mesh_connections[vkey1]?.filter(vkey2 => !scanned.includes(vkey2));
if (!connections || connections.length == 0) continue;
scanned.push(...connections);
new_frontier.push(...connections);
}
for (let vkey2 of new_frontier) {
if (selected_vertices.includes(vkey2)) {
found_match_depth = depth;
break depth_crawler;
}
}
frontier = new_frontier;
}
if (found_match_depth) {
distance = found_match_depth;
}
}
if (distance > range) continue;
let blend = 1 - (distance / (linear_distance ? range : range+1));
switch (falloff) {
case 'hermite_spline': blend = Math.hermiteBlend(blend); break;
case 'constant': blend = 1; break;
}
ProportionalEdit.vertex_weights[mesh.uuid][vkey] = blend;
}
},
editVertices(mesh, per_vertex) {
if (!BarItems.proportional_editing.value) return;
let selected_vertices = mesh.getSelectedVertices();
for (let vkey in mesh.vertices) {
if (selected_vertices.includes(vkey)) continue;
let blend = ProportionalEdit.vertex_weights[mesh.uuid][vkey];
per_vertex(vkey, blend);
}
}
}
class KnifeToolContext {
/**
* Click
* Create point
* Snap point to face or edge
* Connect points with lines
* Press something to apply
*
* Iterate over faces
* Remove former face, refill section between old edges and new edges
*/
constructor(mesh) {
this.mesh = mesh;
this.mesh_3d = mesh.mesh;
this.points = [];
this.hover_point = null;
this.points_geo = new THREE.BufferGeometry();
let points_material = new THREE.PointsMaterial({size: 9, sizeAttenuation: false, vertexColors: true});
this.points_mesh = new THREE.Points(this.points_geo, points_material);
this.points_mesh.renderOrder = 100;
//points_material.depthTest = false
this.lines_mesh = new THREE.Line(this.points_geo, Canvas.outlineMaterial);
this.points_mesh.frustumCulled = false;
this.lines_mesh.frustumCulled = false;
this.mesh_3d.add(this.points_mesh);
this.mesh_3d.add(this.lines_mesh);
this.unselect_listener = Blockbench.on('unselect_project', context => {
if (this == KnifeToolContext.current) {
this.remove();
}
})
}
showToast() {
this.toast = Blockbench.showToastNotification({
text: tl('message.knife_tool.confirm', [Keybinds.extra.confirm.keybind.label]),
icon: BarItems.knife_tool.icon,
click: () => {
this.apply();
}
});
}
hover(data) {
if (data.element != this.mesh || !data) {
if (this.hover_point) {
this.hover_point = null;
this.updatePreviewGeometry();
}
return;
}
let point = {
position: new THREE.Vector3().copy(data.intersects[0].point),
type: data.type == 'element' ? 'face' : data.type,
attached_vertex: data.vertex,
attached_line: data.vertices,
snapped: false,
fkey: data.face
}
data.element.mesh.worldToLocal(point.position);
// Snapping
if (data.type == 'vertex') {
point.position.fromArray(this.mesh.vertices[data.vertex]);
point.snapped = true;
} else if (data.type == 'line') {
// https://gamedev.stackexchange.com/questions/72528/how-can-i-project-a-3d-point-onto-a-3d-line
let point_a = Reusable.vec1.fromArray(this.mesh.vertices[data.vertices[0]]);
let point_b = Reusable.vec2.fromArray(this.mesh.vertices[data.vertices[1]]);
let a_b = new THREE.Vector3().copy(point_b).sub(point_a);
let a_p = new THREE.Vector3().copy(point.position).sub(point_a);
let subline_len = a_p.dot(a_b) / a_b.dot(a_b);
if (data.event.shiftKey || Pressing.overrides.shift) {
subline_len = Math.round(subline_len * 4) / 4;
}
point.position.copy(point_a).addScaledVector(a_b, subline_len);
point.snapped = true;
}
// Snap to existing points?
let pos = this.mesh_3d.localToWorld(Reusable.vec1.copy(point.position));
let threshold = Preview.selected.calculateControlScale(pos) * 0.6;
let matching_point = this.points.find(other => {
return point.position.distanceTo(other.position) < threshold && !other.reuse_of;
})
if (matching_point) {
point.position.copy(matching_point.position);
point.reuse_of = matching_point;
} else if (data.event && (data.event.ctrlOrCmd || Pressing.overrides.shift) && point.fkey) {
let face = this.mesh.faces[point.fkey];
let uv = face.localToUV(point.position);
let factor = (data.event.shiftKey || Pressing.overrides.shift) ? 4 : 1;
uv[0] = Math.round(uv[0] * factor) / factor;
uv[1] = Math.round(uv[1] * factor) / factor;
let target = face.UVToLocal(uv);
point.position.copy(target);
} else if (data.event && (data.event.shiftKey || Pressing.overrides.shift) && point.fkey) {
let face = this.mesh.faces[point.fkey];
point.position.fromArray(face.getCenter());
}
if (this.points.length && point.position.distanceToSquared(this.points.last().position) < 0.001) return;
this.hover_point = point;
this.updatePreviewGeometry();
}
updatePreviewGeometry() {
let point_positions = [];
let point_colors = [];
let displayed_points = this.points.slice();
if (this.hover_point) displayed_points.push(this.hover_point);
for (let point of displayed_points) {
point_positions.push(point.position.x, point.position.y, point.position.z);
if (point.snapped) {
point_colors.push(0.1, 0.9, 0.12);
} else {
point_colors.push(0.2, 0.4, 0.98);
}
}
this.points_geo.setAttribute('position', new THREE.BufferAttribute(new Float32Array(point_positions), 3));
this.points_geo.setAttribute('color', new THREE.BufferAttribute(new Float32Array(point_colors), 3));
return this;
}
addPoint(data) {
if (!this.hover_point) this.hover(data);
if (!this.hover_point) return;
let last_point = this.points.last();
if (last_point && this.hover_point) {
let this_point = this.hover_point;
let isSupported = (point_1, point_2) => {
if (point_1.type == 'face' && point_2.type == 'face') {
return point_1.fkey == point_2.fkey;
}
if (point_1.type == 'face' && point_2.type == 'line') {
let face = this.mesh.faces[point_1.fkey];
return (face && face.vertices.includes(point_2.attached_line[0]) && face.vertices.includes(point_2.attached_line[1]));
}
if (point_1.type == 'face' && point_2.type == 'vertex') {
let face = this.mesh.faces[point_1.fkey];
return (face && face.vertices.includes(point_2.attached_vertex));
}
if (point_1.type != 'face' && point_2.type != 'face' && (point_1.type != point_2.type || point_1 == last_point)) {
let pointInFace = (point, vertices) => {
if (point.type == 'line') {
return vertices.includes(point.attached_line[0]) && vertices.includes(point.attached_line[1]);
} else {
return vertices.includes(point.attached_vertex)
}
}
for (let fkey in this.mesh.faces) {
let vertices = this.mesh.faces[fkey]?.vertices;
if (pointInFace(point_1, vertices) && pointInFace(point_2, vertices)) {
return true;
}
}
}
}
if (!isSupported(last_point, this_point) && !isSupported(this_point, last_point)) {
Blockbench.showQuickMessage('message.knife_tool.skipped_face', 2200);
}
}
this.points.push(this.hover_point);
this.hover_point = null;
if (this.points.length == 1) this.showToast();
}
apply() {
if (!this.mesh || !this.points.length || !Mesh.all.includes(this.mesh)) {
this.cancel();
return;
}
function intersectLinesIgnoreTouching(p1, p2, p3, p4) {
let s1 = [ p2[0] - p1[0], p2[1] - p1[1] ];
let s2 = [ p4[0] - p3[0], p4[1] - p3[1] ];
let s = (-s1[1] * (p1[0] - p3[0]) + s1[0] * (p1[1] - p3[1])) / (-s2[0] * s1[1] + s1[0] * s2[1]);
let t = ( s2[0] * (p1[1] - p3[1]) - s2[1] * (p1[0] - p3[0])) / (-s2[0] * s1[1] + s1[0] * s2[1]);
return (s > 0.00001 && s < 0.99999 && t > 0.00001 && t < 0.99999);
}
function lineIntersectsTriangle(l1, l2, v1, v2, v3) {
if (l1.equals(l2)) return false;
let tri = [v1, v2, v3];
let l1_in_tri = tri.find(corner => corner.equals(l1));
let l2_in_tri = tri.find(corner => corner.equals(l2));
if (l1_in_tri && l2_in_tri) {
// Line is identical with tri edge
return false;
}/* else if (l1_in_tri) {
// Nudge away from triangle center
l1 = [
Math.lerp(l1[0], (v1[0] + v2[0] + v3[0]) / 3, -0.001),
Math.lerp(l1[1], (v1[1] + v2[1] + v3[1]) / 3, -0.001)
]
} else if (l2_in_tri) {
// Nudge away from triangle center
l2 = [
Math.lerp(l2[0], (v1[0] + v2[0] + v3[0]) / 3, -0.001),
Math.lerp(l2[1], (v1[1] + v2[1] + v3[1]) / 3, -0.001)
]
}*/
return intersectLinesIgnoreTouching(l1, l2, v1, v2)
|| intersectLinesIgnoreTouching(l1, l2, v2, v3)
|| intersectLinesIgnoreTouching(l1, l2, v3, v1)
|| pointInTriangle(l1.map((v, i) => Math.lerp(v, l2[i], 0.5)), v1, v2, v3)
}
Undo.initEdit({elements: [this.mesh]});
let {mesh} = this;
let all_new_fkeys = [];
let all_new_vkeys = [];
let all_new_edges = [];
let old_face_normal = new THREE.Vector3();
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let all_points = this.points.map(point => {
if (point.fkey == fkey) return point;
if (face.vertices.includes(point.attached_vertex)) return point;
if (point.attached_line && point.attached_line.allAre(vkey => face.vertices.includes(vkey))) return point;
})
let included_points = all_points.filter(point => point);
let new_vertex_points = included_points.filter(point => point.attached_vertex);
if (included_points.length == 0 || (new_vertex_points.length == 1 && included_points.length == 1)) {
continue;
}
let uv_data = {};
let face_sorted_vertices = face.getSortedVertices();
old_face_normal.fromArray(face.getNormal(true));
delete mesh.faces[fkey];
for (let vkey of face_sorted_vertices) {
uv_data[vkey] = face.uv[vkey];
}
// Add new points as vertices
included_points.forEach(point => {
if (!point.vkey) {
if (point.attached_vertex) {
point.vkey = point.attached_vertex;
} else if (point.reuse_of) {
point.vkey = point.reuse_of.vkey;
} else {
point.vkey = mesh.addVertices(point.position.toArray())[0];
all_new_vkeys.push(point.vkey);
}
}
if (!uv_data[point.vkey]) {
uv_data[point.vkey] = face.localToUV(point.position);
}
})
let all_planned_edges = [];
for (let i = 1; i < all_points.length; i++) {
let point_a = all_points[i-1];
let point_b = all_points[i];
if (point_a && point_b) {
all_planned_edges.push([point_a.vkey, point_b.vkey]);
}
}
all_new_edges.push(...all_planned_edges);
let mid_points = included_points.filter(point => point.type == 'face');
let perimeter_points = included_points.filter(point => point.type != 'face');
let mid_edges = all_planned_edges.filter(([vkey1, vkey2]) => {
return !perimeter_points.includes(vkey1) || !perimeter_points.includes(vkey2)
});
let generated_edges = [];
// Track how often each edge is connected, each edge should only be connected to 2 faces
let edge_face_connections = {};
let perimeter_vertices = [];
let perimeter_edges = [];
let covered_perimeter_edges = {};
let created_face_edgings = [];
// Get perimeter edges
for (let i = 0; i < face_sorted_vertices.length; i++) {
let vkey1 = face_sorted_vertices[i];
perimeter_vertices.push(vkey1);
let regular_next = face_sorted_vertices[i+1] || face_sorted_vertices[0];
let regular_edge = [vkey1, regular_next];
let on_edge_points = perimeter_points.filter(point => point.type == 'line' && sameMeshEdge(point.attached_line, regular_edge));
if (on_edge_points.length) {
let vkey1_vector = new THREE.Vector3().fromArray(mesh.vertices[vkey1]);
on_edge_points.sort((a, b) => b.position.distanceToSquared(vkey1_vector) - a.position.distanceToSquared(vkey1_vector));
perimeter_vertices.push(...on_edge_points.map(point => point.vkey));
}
}
for (let i = 0; i < perimeter_vertices.length; i++) {
perimeter_edges.push([perimeter_vertices[i], perimeter_vertices[i+1] || perimeter_vertices[0]]);
}
function getEdgeKey(edge) {
return edge.slice().sort().join('.');
}
// Utility to check for points in faces
let plane = new THREE.Plane().setFromNormalAndCoplanarPoint(
old_face_normal,
Reusable.vec3.fromArray(mesh.vertices[face.vertices[0]])
)
let projection_rot = cameraTargetToRotation([0, 0, 0], old_face_normal.toArray());
let projection_euler = new THREE.Euler(Math.degToRad(projection_rot[1] - 90), Math.degToRad(projection_rot[0] + 180), 0);
function getFlatPos(vkey) {
let coplanar_pos = plane.projectPoint(Reusable.vec4.fromArray(mesh.vertices[vkey]), Reusable.vec5);
coplanar_pos.applyEuler(projection_euler);
return [coplanar_pos.x, coplanar_pos.z];
}
function verticesToEdges(vertices) {
return vertices.map((a, i) => ([a, vertices[i+1] || vertices[0]]));
}
function thingsInTri(...vertices) {
let flat_positions = vertices.map(getFlatPos);
for (let point of mid_points) {
if (vertices.includes(point.vkey)) continue;
let flat_point = getFlatPos(point.vkey);
if (pointInTriangle(flat_point, ...flat_positions)) {
return true;
}
}
for (let edge of mid_edges.concat(generated_edges)) {
if (sameMeshEdge(edge, vertices.slice(0, 2)) || sameMeshEdge(edge, vertices.slice(1, 3)) || sameMeshEdge(edge, [vertices[2], vertices[0]])) continue;
let edge_a = getFlatPos(edge[0]);
let edge_b = getFlatPos(edge[1]);
if (lineIntersectsTriangle(edge_a, edge_b, ...flat_positions)) {
return true;
}
}
return false;
}
function getCornerAngle(vertices, index) {
let vkey_a = vertices[index - 1] || vertices.last();
let vkey_b = vertices[index];
let vkey_c = vertices[index+1] || vertices[0];
let vec_a = Reusable.vec1.fromArray(mesh.vertices[vkey_a]);
let vec_b = Reusable.vec2.fromArray(mesh.vertices[vkey_b]);
let vec_c = Reusable.vec3.fromArray(mesh.vertices[vkey_c]);
let angle = vec_a.sub(vec_b).angleTo(vec_c.sub(vec_b));
return Math.radToDeg(angle);
}
function tryMakeQuad(vkey1, vkey2, vkey3, vkey4) {
if (!vkey1 || !vkey2 || !vkey3 || !vkey4) return;
let vertices = [vkey1, vkey2, vkey3, vkey4];
let face = new MeshFace(mesh, {vertices});
if (face.isConcave()) return;
let sorted_vertices = face.getSortedVertices();
// Diagonals
let diagonal_1 = [sorted_vertices[0], sorted_vertices[2]];
let diagonal_2 = [sorted_vertices[1], sorted_vertices[3]];
if (mid_edges.find(edge => sameMeshEdge(edge, diagonal_1) || sameMeshEdge(edge, diagonal_2))) {
return;
}
// Occupied edges
let edges = verticesToEdges(sorted_vertices);
let occupied_edge = edges.find(edge => {
let edge_key = getEdgeKey(edge);
if (covered_perimeter_edges[edge_key]) return true;
if (edge_face_connections[edge_key] >= 2) return true;
})
if (occupied_edge) return;
// Face exists
if (created_face_edgings.find(edging => {
return edging.allAre(vkey => sorted_vertices.includes(vkey))
})) {return;}
// Conflicts
if (thingsInTri(sorted_vertices[0], sorted_vertices[1], sorted_vertices[2])) return;
if (thingsInTri(sorted_vertices[0], sorted_vertices[2], sorted_vertices[3])) return;
if (thingsInTri(sorted_vertices[0], sorted_vertices[1], sorted_vertices[3])) return;
if (thingsInTri(sorted_vertices[1], sorted_vertices[2], sorted_vertices[3])) return;
// Corner angles
for (let i = 0; i < sorted_vertices.length; i++) {
let angle = getCornerAngle(sorted_vertices, i);
if (angle < 1 || angle > 178) return;
}
return face;
}
function tryMakeTri(vkey1, vkey2, vkey3) {
if (!vkey1 || !vkey2 || !vkey3) return;
let vertices = [vkey1, vkey2, vkey3];
// Face exists
if (created_face_edgings.find(edging => {
return vertices.allAre(vkey => edging.includes(vkey))
})) {return;}
// Conflicts
if (thingsInTri(vkey1, vkey2, vkey3)) return;
// Occupied edges
let edges = verticesToEdges(vertices);
let occupied_edge = edges.find(edge => {
let edge_key = getEdgeKey(edge);
if (covered_perimeter_edges[edge_key]) return true;
if (edge_face_connections[edge_key] >= 2) return true;
})
if (occupied_edge) return;
// Corner angles
for (let i = 0; i < vertices.length; i++) {
let angle = getCornerAngle(vertices, i);
if (angle < 2 || angle > 178) return;
}
let face = new MeshFace(mesh, {vertices});
return face;
}
function initFace(new_face) {
if (face.getAngleTo(new_face) > 90) {
new_face.invert();
}
for (let vkey of new_face.vertices) {
new_face.uv[vkey] = uv_data[vkey] ? uv_data[vkey].slice() : [0, 0];
}
new_face.texture = face.texture;
created_face_edgings.push(new_face.vertices);
let edges = new_face.getEdges();
for (let edge of edges) {
if (
!mid_edges.find(e2 => sameMeshEdge(edge, e2)) &&
!perimeter_edges.find(e2 => sameMeshEdge(edge, e2)) &&
!generated_edges.find(e2 => sameMeshEdge(edge, e2))
) {
generated_edges.push(edge);
}
let edge_key = getEdgeKey(edge);
if (!edge_face_connections[edge_key]) edge_face_connections[edge_key] = 0;
edge_face_connections[edge_key] += 1;
}
let fkey = mesh.addFaces(new_face)[0];
all_new_fkeys.push(fkey);
return fkey;
}
// Add faces from perimeter inwards
for (let edge of perimeter_edges) {
let edge_center = Reusable.vec2.fromArray(mesh.vertices[edge[0]].slice().V3_add(mesh.vertices[edge[1]])).divideScalar(2);
let sortByDistance = (a, b) => {
let a_vector = Reusable.vec5.fromArray(mesh.vertices[typeof a == 'string' ? a : a.vkey]);
let b_vector = Reusable.vec6.fromArray(mesh.vertices[typeof b == 'string' ? b : a.vkey]);
return a_vector.distanceToSquared(edge_center) - b_vector.distanceToSquared(edge_center);
}
let nearest_points = [
...mid_points.map(point => point.vkey).sort(sortByDistance),
...perimeter_vertices.filter(v => !edge.includes(v)).sort(sortByDistance)
];
let new_face = tryMakeQuad(edge[0], edge[1], nearest_points[0], nearest_points[1])
|| tryMakeQuad(edge[0], edge[1], nearest_points[0], nearest_points[2])
|| tryMakeQuad(edge[0], edge[1], nearest_points[1], nearest_points[2])
|| tryMakeQuad(edge[0], edge[1], nearest_points[0], nearest_points[3])
|| tryMakeQuad(edge[0], edge[1], nearest_points[1], nearest_points[3])
|| tryMakeQuad(edge[0], edge[1], nearest_points[2], nearest_points[3]);
let i = 0;
while (!new_face && nearest_points[i]) {
new_face = tryMakeTri(edge[0], edge[1], nearest_points[i])
i++;
}
if (new_face) {
initFace(new_face);
// Mark edges as occupied
covered_perimeter_edges[getEdgeKey(edge)] = true;
// Count faces per mid edge
let sorted_vertices = new_face.getSortedVertices();
for (let i = 0; i < sorted_vertices.length; i++) {
let edge1 = [sorted_vertices[i], sorted_vertices[i+1] || sorted_vertices[0]];
if (sameMeshEdge(edge1, edge)) continue
for (let edge2 of perimeter_edges) {
if (sameMeshEdge(edge1, edge2)) {
covered_perimeter_edges[getEdgeKey(edge1)] = true;
}
}
}
}
}
// Add missing faces between inner edges
for (let edge of mid_edges) {
let edge_key = getEdgeKey(edge);
let limiter = 0;
while (edge_face_connections[edge_key] != 2 && limiter < 5) {
let edge_center = Reusable.vec2.fromArray(mesh.vertices[edge[0]].slice().V3_add(mesh.vertices[edge[1]])).divideScalar(2);
let sortByDistance = (a, b) => {
let a_vector = Reusable.vec5.fromArray(mesh.vertices[typeof a == 'string' ? a : a.vkey]);
let b_vector = Reusable.vec6.fromArray(mesh.vertices[typeof b == 'string' ? b : a.vkey]);
return a_vector.distanceToSquared(edge_center) - b_vector.distanceToSquared(edge_center);
}
let nearest_vertices = mid_points.map(point => point.vkey).filter(v => !edge.includes(v)).concat(perimeter_vertices);
nearest_vertices.sort(sortByDistance);
let new_face = tryMakeQuad(edge[0], edge[1], nearest_vertices[0], nearest_vertices[1])
|| tryMakeQuad(edge[0], edge[1], nearest_vertices[0], nearest_vertices[2])
|| tryMakeQuad(edge[0], edge[1], nearest_vertices[1], nearest_vertices[2])
|| tryMakeQuad(edge[0], edge[1], nearest_vertices[0], nearest_vertices[3])
|| tryMakeQuad(edge[0], edge[1], nearest_vertices[1], nearest_vertices[3])
|| tryMakeQuad(edge[0], edge[1], nearest_vertices[2], nearest_vertices[3]);
let i = 0;
while (!new_face && nearest_vertices[i]) {
new_face = tryMakeTri(edge[0], edge[1], nearest_vertices[i])
i++;
}
if (new_face) {
initFace(new_face);
let edges = new_face.getEdges();
for (let edge1 of edges) {
let edge1_key = getEdgeKey(edge1);
let is_mid_edge = mid_edges.find(e => sameMeshEdge(e, edge1));
if (edge1_key != edge_key && !is_mid_edge && !perimeter_edges.find(e => sameMeshEdge(e, edge1))) {
mid_edges.push(edge1);
}
}
} else {
//console.error('Knife tool: Failed to find face for edge', edge, nearest_vertices);
break;
}
limiter++;
}
}
}
let selected_faces = all_new_fkeys.filter(fkey => mesh.faces[fkey].vertices.allAre(vkey => all_new_vkeys.includes(vkey)));
mesh.getSelectedFaces(true).replace(selected_faces);
mesh.getSelectedVertices(true).replace(all_new_vkeys);
mesh.getSelectedEdges(true).replace(all_new_edges);
Canvas.updateView({elements: [mesh], element_aspects: {geometry: true, uv: true, faces: true}, selection: true});
Undo.finishEdit('Use knife tool');
this.remove();
}
cancel() {
this.remove();
}
remove() {
if (this.mesh_3d) {
this.mesh_3d.remove(this.points_mesh);
this.mesh_3d.remove(this.lines_mesh);
}
delete this.mesh;
delete this.mesh_3d;
if (this.toast) this.toast.delete();
this.unselect_listener.delete();
KnifeToolContext.current = null;
}
static current = null;
}
async function autoFixMeshEdit() {
let meshes = Mesh.selected;
if (!meshes.length || !Modes.edit || BarItems.selection_mode.value == 'object') return;
// Merge Vertices
let overlaps = {};
let e = 0.004;
meshes.forEach(mesh => {
let mesh_overlaps = {};
let vertices = mesh.getSelectedVertices();
for (let vkey of vertices) {
let vertex = mesh.vertices[vkey];
let matches = [];
for (let vkey2 in mesh.vertices) {
if (vkey2 == vkey || mesh_overlaps[vkey2]) continue;
let vertex2 = mesh.vertices[vkey2];
let same_spot = Math.epsilon(vertex[0], vertex2[0], e) && Math.epsilon(vertex[1], vertex2[1], e) && Math.epsilon(vertex[2], vertex2[2], e);
if (same_spot) {
matches.push(vkey2);
}
}
if (matches.length) {
mesh_overlaps[vkey] = matches;
}
}
if (Object.keys(mesh_overlaps).length) overlaps[mesh.uuid] = mesh_overlaps;
})
if (Object.keys(overlaps).length) {
await new Promise(resolve => {Blockbench.showMessageBox({
title: 'message.auto_fix_mesh_edit.title',
message: 'message.auto_fix_mesh_edit.overlapping_vertices',
commands: {
merge: {text: 'message.auto_fix_mesh_edit.merge_vertices', description: '('+tl('dialog.recommended_option')+')'},
revert: 'message.auto_fix_mesh_edit.revert'
},
buttons: ['dialog.ignore']
}, result => {
if (result == 'revert') {
Undo.undo();
} else if (result == 'merge') {
let meshes = Mesh.selected.filter(m => overlaps[m.uuid]);
Undo.initEdit({ elements: meshes });
let merge_counter = 0;
let cluster_counter = 0;
for (let mesh_id in overlaps) {
let mesh = Mesh.selected.find(m => m.uuid == mesh_id);
let selected_vertices = mesh.getSelectedVertices(true);
for (let first_vertex in overlaps[mesh_id]) {
let other_vertices = overlaps[mesh_id][first_vertex];
cluster_counter++;
for (let vkey of other_vertices) {
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let index = face.vertices.indexOf(vkey);
if (index === -1) continue;
if (face.vertices.includes(first_vertex)) {
face.vertices.remove(vkey);
delete face.uv[vkey];
if (face.vertices.length < 2) {
delete mesh.faces[fkey];
} else if (face.vertices.length == 2) {
// Find face that overlaps the remaining edge
for (let fkey2 in mesh.faces) {
let face2 = mesh.faces[fkey2];
if (face2.vertices.length >= 3 && face2.vertices.includes(face.vertices[0]) && face2.vertices.includes(face.vertices[1])) {
delete mesh.faces[fkey];
}
}
}
} else {
let uv = face.uv[vkey];
face.vertices.splice(index, 1, first_vertex);
face.uv[first_vertex] = uv;
delete face.uv[vkey];
}
}
delete mesh.vertices[vkey];
selected_vertices.remove(vkey);
merge_counter++;
}
}
}
Undo.finishEdit('Auto-merge vertices')
Canvas.updateView({elements: meshes, element_aspects: {geometry: true, uv: true, faces: true}, selection: true});
Blockbench.showQuickMessage(tl('message.merged_vertices', [merge_counter, cluster_counter]), 2000);
}
resolve();
})})
}
// Concave quads
let concave_faces = {};
meshes.forEach(mesh => {
let selected_faces = mesh.getSelectedFaces();
let selected_vertices = mesh.getSelectedVertices();
let concave_faces_mesh = [];
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.vertices.length != 4) continue;
// Check if face is selected or touches selection
if (!selected_faces.includes(fkey) && !face.vertices.find(vkey => selected_vertices.includes(vkey))) continue;
//let vertices = face.getSortedVertices().map(vkey => mesh.vertices[vkey]);
let concave = face.isConcave();
if (concave != false) {
concave_faces_mesh.push([fkey, concave]);
}
}
if (concave_faces_mesh.length) concave_faces[mesh.uuid] = concave_faces_mesh;
})
if (Object.keys(concave_faces).length) {
await new Promise(resolve => {Blockbench.showMessageBox({
title: 'message.auto_fix_mesh_edit.title',
message: 'message.auto_fix_mesh_edit.concave_quads',
commands: {
split: {text: 'message.auto_fix_mesh_edit.split_quads', description: '('+tl('dialog.recommended_option')+')'},
revert: 'message.auto_fix_mesh_edit.revert'
},
buttons: ['dialog.ignore']
}, result => {
if (result == 'revert') {
Undo.undo();
} else if (result == 'split') {
let meshes = Mesh.selected.filter(m => concave_faces[m.uuid]);
Undo.initEdit({ elements: meshes });
for (let mesh of meshes) {
let selected_faces = mesh.getSelectedFaces(true);
for (let [fkey, concave_vkey] of concave_faces[mesh.uuid]) {
let face = mesh.faces[fkey];
// Find the edge that needs to be connected
let sorted_vertices = face.getSortedVertices();
let edges = [
[sorted_vertices[0], sorted_vertices[1]],
[sorted_vertices[0], sorted_vertices[2]],
[sorted_vertices[0], sorted_vertices[3]],
[sorted_vertices[1], sorted_vertices[2]],
[sorted_vertices[1], sorted_vertices[3]],
[sorted_vertices[2], sorted_vertices[3]],
]
edges = edges.filter(edge => {
for (let fkey2 in mesh.faces) {
if (fkey2 == fkey) continue;
let face2 = mesh.faces[fkey2];
if (face2.vertices.includes(edge[0]) && face2.vertices.includes(edge[1])) {
return false;
}
}
return true;
})
let off_corners = edges.find(edge => !edge.includes(concave_vkey))
if (!off_corners) return;
let new_face = new MeshFace(mesh, face);
new_face.vertices.remove(off_corners[0]);
delete new_face.uv[off_corners[0]];
face.vertices.remove(off_corners[1]);
delete face.uv[off_corners[1]];
let [face_key] = mesh.addFaces(new_face);
selected_faces.safePush(face_key);
if (face.getAngleTo(new_face) > 90) {
new_face.invert();
}
}
}
Undo.finishEdit('Auto-fix concave quads');
Canvas.updateView({elements: meshes, element_aspects: {geometry: true, uv: true, faces: true}, selection: true});
}
resolve();
})})
}
}
function cleanupOverlappingMeshFaces(mesh) {
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.vertices.length < 2) {
delete mesh.faces[fkey];
} else {
for (let fkey2 in mesh.faces) {
let face2 = mesh.faces[fkey2];
if (fkey == fkey2 || !face2) continue;
let overlaps = face.vertices.allAre(vkey => face2.vertices.includes(vkey));
if (overlaps) {
delete mesh.faces[fkey];
}
}
}
}
}
SharedActions.add('delete', {
condition: () => Modes.edit && Prop.active_panel == 'preview' && Mesh.selected[0] && Project.mesh_selection[Mesh.selected[0].uuid],
run() {
let meshes = Mesh.selected.slice();
Undo.initEdit({elements: meshes, outliner: true})
Mesh.selected.forEach(mesh => {
let selected_vertices = mesh.getSelectedVertices();
let selected_edges = mesh.getSelectedEdges();
let selected_faces = mesh.getSelectedFaces();
if (BarItems.selection_mode.value == 'face' && selected_faces.length < Object.keys(mesh.faces).length) {
let affected_vertices = [];
selected_faces.forEach(fkey => {
affected_vertices.safePush(...mesh.faces[fkey].vertices);
delete mesh.faces[fkey];
})
affected_vertices.forEach(vertex_key => {
let used = false;
for (let key in mesh.faces) {
let face = mesh.faces[key];
if (face.vertices.includes(vertex_key)) used = true;
}
if (!used) {
delete mesh.vertices[vertex_key];
}
})
} else if (BarItems.selection_mode.value == 'edge') {
for (let key in mesh.faces) {
let face = mesh.faces[key];
let sorted_vertices = face.getSortedVertices();
let has_edge = sorted_vertices.find((vkey_a, i) => {
let vkey_b = sorted_vertices[i+1] || sorted_vertices[0];
let edge = [vkey_a, vkey_b];
return selected_edges.find(edge2 => sameMeshEdge(edge, edge2))
})
if (has_edge) {
delete mesh.faces[key];
}
}
selected_edges.forEachReverse(edge => {
edge.forEach(vkey => {
let used = false;
for (let key in mesh.faces) {
let face = mesh.faces[key];
if (face.vertices.includes(vkey)) used = true;
}
if (!used) {
delete mesh.vertices[vkey];
selected_vertices.remove(vkey);
selected_edges.remove(edge);
}
})
})
} else if (BarItems.selection_mode.value == 'vertex' && selected_vertices.length < Object.keys(mesh.vertices).length) {
selected_vertices.forEach(vkey => {
for (let key in mesh.faces) {
let face = mesh.faces[key];
if (!face.vertices.includes(vkey)) continue;
if (face.vertices.length > 2) {
let initial_normal;
if (face.vertices.length == 4) {
initial_normal = face.getNormal();
}
face.vertices.remove(vkey);
delete face.uv[vkey];
if (face.vertices.length == 3 && face.getAngleTo(initial_normal) > 90) {
face.invert();
}
if (face.vertices.length == 2) {
for (let fkey2 in mesh.faces) {
if (fkey2 != key && !face.vertices.find(vkey => !mesh.faces[fkey2].vertices.includes(vkey))) {
delete mesh.faces[key];
break;
}
}
}
} else {
delete mesh.faces[key];
}
}
delete mesh.vertices[vkey];
})
} else {
meshes.remove(mesh);
mesh.remove(false);
}
})
Undo.finishEdit('Delete mesh part')
Canvas.updateView({elements: meshes, selection: true, element_aspects: {geometry: true, faces: true, uv: meshes.length > 0}})
}
})
SharedActions.add('select_all', {
condition: () => Modes.edit && Mesh.selected.length && Mesh.selected.length === Outliner.selected.length && BarItems.selection_mode.value !== 'object',
priority: 1,
run() {
let selection_mode = BarItems.selection_mode.value;
if (selection_mode == 'vertex') {
let unselect = Mesh.selected[0].getSelectedVertices().length == Object.keys(Mesh.selected[0].vertices).length;
Mesh.selected.forEach(mesh => {
if (unselect) {
mesh.getSelectedVertices(true).empty();
} else {
mesh.getSelectedVertices(true).replace(Object.keys(mesh.vertices));
}
})
} else if (selection_mode == 'edge') {
let unselect = Mesh.selected[0].getSelectedVertices().length == Object.keys(Mesh.selected[0].vertices).length;
Mesh.selected.forEach(mesh => {
if (unselect) {
mesh.getSelectedVertices(true).empty();
mesh.getSelectedEdges(true).empty();
} else {
mesh.getSelectedVertices(true).replace(Object.keys(mesh.vertices));
let edges = mesh.getSelectedEdges(true);
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let f_vertices = face.getSortedVertices();
f_vertices.forEach((vkey_a, i) => {
let edge = [vkey_a, (f_vertices[i+1] || f_vertices[0])];
if (edges.find(edge2 => sameMeshEdge(edge2, edge))) return;
edges.push(edge);
})
}
}
})
} else {
let unselect = Mesh.selected[0].getSelectedFaces().length == Object.keys(Mesh.selected[0].faces).length;
Mesh.selected.forEach(mesh => {
if (unselect) {
delete Project.mesh_selection[mesh.uuid];
} else {
mesh.getSelectedVertices(true).replace(Object.keys(mesh.vertices));
mesh.getSelectedFaces(true).replace(Object.keys(mesh.faces));
}
})
}
updateSelection();
}
})
SharedActions.add('unselect_all', {
condition: () => Modes.edit && Mesh.selected.length && Mesh.selected.length === Outliner.selected.length && BarItems.selection_mode.value !== 'object',
priority: 1,
run() {
Mesh.selected.forEach(mesh => {
delete Project.mesh_selection[mesh.uuid];
})
updateSelection();
}
})
SharedActions.add('invert_selection', {
condition: () => Modes.edit && Mesh.selected.length && Mesh.selected.length === Outliner.selected.length && BarItems.selection_mode.value !== 'object',
priority: 1,
run() {
let selection_mode = BarItems.selection_mode.value;
if (selection_mode == 'vertex') {
Mesh.selected.forEach(mesh => {
let selected = mesh.getSelectedVertices();
let now_selected = Object.keys(mesh.vertices).filter(vkey => !selected.includes(vkey));
mesh.getSelectedVertices(true).replace(now_selected);
})
} else if (selection_mode == 'edge') {
Mesh.selected.forEach(mesh => {
let old_edges = mesh.getSelectedEdges().slice();
let vertices = mesh.getSelectedVertices(true).empty();
let edges = mesh.getSelectedEdges(true).empty();
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let f_vertices = face.getSortedVertices();
f_vertices.forEach((vkey_a, i) => {
let edge = [vkey_a, (f_vertices[i+1] || f_vertices[0])];
if (!old_edges.find(edge2 => sameMeshEdge(edge2, edge))) {
edges.push(edge);
vertices.safePush(edge[0], edge[1]);
}
})
}
})
} else {
Mesh.selected.forEach(mesh => {
let old_faces = mesh.getSelectedFaces().slice();
let vertices = mesh.getSelectedVertices(true).empty();
let faces = mesh.getSelectedFaces(true).empty();
for (let fkey in mesh.faces) {
if (!old_faces.includes(fkey)) {
let face = mesh.faces[fkey];
faces.push(fkey);
vertices.safePush(...face.vertices);
}
}
})
}
updateSelection();
}
})
BARS.defineActions(function() {
let add_mesh_dialog = new Dialog({
id: 'add_primitive',
title: 'action.add_mesh',
form: {
shape: {label: 'dialog.add_primitive.shape', type: 'select', options: {
cuboid: 'dialog.add_primitive.shape.cube',
beveled_cuboid: 'dialog.add_primitive.shape.beveled_cuboid',
pyramid: 'dialog.add_primitive.shape.pyramid',
plane: 'dialog.add_primitive.shape.plane',
circle: 'dialog.add_primitive.shape.circle',
cylinder: 'dialog.add_primitive.shape.cylinder',
tube: 'dialog.add_primitive.shape.tube',
cone: 'dialog.add_primitive.shape.cone',
sphere: 'dialog.add_primitive.shape.sphere',
torus: 'dialog.add_primitive.shape.torus',
}},
diameter: {label: 'dialog.add_primitive.diameter', type: 'number', value: 16},
align_edges: {label: 'dialog.add_primitive.align_edges', type: 'checkbox', value: true, condition: ({shape}) => !['cuboid', 'beveled_cuboid', 'pyramid', 'plane'].includes(shape)},
height: {label: 'dialog.add_primitive.height', type: 'number', value: 8, condition: ({shape}) => ['cylinder', 'cone', 'cuboid', 'beveled_cuboid', 'pyramid', 'tube'].includes(shape)},
sides: {label: 'dialog.add_primitive.sides', type: 'number', value: 12, min: 3, max: 48, condition: ({shape}) => ['cylinder', 'cone', 'circle', 'torus', 'sphere', 'tube'].includes(shape)},
minor_diameter: {label: 'dialog.add_primitive.minor_diameter', type: 'number', value: 4, condition: ({shape}) => ['torus', 'tube'].includes(shape)},
minor_sides: {label: 'dialog.add_primitive.minor_sides', type: 'number', value: 8, min: 2, max: 32, condition: ({shape}) => ['torus'].includes(shape)},
edge_size: {label: 'dialog.add_primitive.edge_size', type: 'number', value: 2, condition: ({shape}) => ['beveled_cuboid'].includes(shape)},
},
onConfirm(result) {
let original_selection_group = Group.selected && Group.selected.uuid;
function runEdit(amended, result) {
let elements = [];
if (original_selection_group && !Group.selected) {
let group_to_select = Group.all.find(g => g.uuid == original_selection_group);
if (group_to_select) {
Group.selected = group_to_select;
}
}
Undo.initEdit({elements, selection: true}, amended);
let mesh = new Mesh({
name: result.shape,
vertices: {}
});
let group = getCurrentGroup();
if (group) {
mesh.addTo(group)
mesh.color = group.color;
}
let diameter_factor = result.align_edges ? 1 / Math.cos(Math.PI/result.sides) : 1;
let off_ang = result.align_edges ? 0.5 : 0;
if (result.shape == 'circle') {
let vertex_keys = mesh.addVertices([0, 0, 0]);
let [m] = vertex_keys;
for (let i = 0; i < result.sides; i++) {
let x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
let z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
vertex_keys.push(...mesh.addVertices([x, 0, z]));
}
for (let i = 0; i < result.sides; i++) {
let [a, b] = vertex_keys.slice(i+2, i+2 + 2);
if (!a) {
b = vertex_keys[2];
a = vertex_keys[1];
} else if (!b) {
b = vertex_keys[1];
}
mesh.addFaces(new MeshFace( mesh, {vertices: [a, b, m]} ));
}
}
if (result.shape == 'cone') {
let vertex_keys = mesh.addVertices([0, 0, 0], [0, result.height, 0]);
let [m0, m1] = vertex_keys;
for (let i = 0; i < result.sides; i++) {
let x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
let z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
vertex_keys.push(...mesh.addVertices([x, 0, z]));
}
for (let i = 0; i < result.sides; i++) {
let [a, b] = vertex_keys.slice(i+2, i+2 + 2);
if (!b) {
b = vertex_keys[2];
}
mesh.addFaces(
new MeshFace( mesh, {vertices: [b, a, m0]} ),
new MeshFace( mesh, {vertices: [a, b, m1]} )
);
}
}
if (result.shape == 'cylinder') {
let vertex_keys = mesh.addVertices([0, 0, 0], [0, result.height, 0]);
let [m0, m1] = vertex_keys;
for (let i = 0; i < result.sides; i++) {
let x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
let z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
vertex_keys.push(...mesh.addVertices([x, 0, z], [x, result.height, z]));
}
for (let i = 0; i < result.sides; i++) {
let [a, b, c, d] = vertex_keys.slice(2*i+2, 2*i+2 + 4);
if (!c) {
c = vertex_keys[2];
d = vertex_keys[3];
}
mesh.addFaces(
new MeshFace( mesh, {vertices: [c, a, m0]}),
new MeshFace( mesh, {vertices: [a, c, d, b]} ),
new MeshFace( mesh, {vertices: [b, d, m1]} )
);
}
}
if (result.shape == 'tube') {
let vertex_keys = [];
let outer_r = result.diameter/2 * diameter_factor;
let inner_r = (outer_r - result.minor_diameter/2) * diameter_factor;
for (let i = 0; i < result.sides; i++) {
let x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2);
let z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2);
vertex_keys.push(...mesh.addVertices(
[x * outer_r, 0, z * outer_r],
[x * outer_r, result.height, z * outer_r],
[x * inner_r, 0, z * inner_r],
[x * inner_r, result.height, z * inner_r],
));
}
for (let i = 0; i < result.sides; i++) {
let [a1, b1, c1, d1, a2, b2, c2, d2] = vertex_keys.slice(4*i, 4*i + 8);
if (!a2) {
a2 = vertex_keys[0];
b2 = vertex_keys[1];
c2 = vertex_keys[2];
d2 = vertex_keys[3];
}
if (a1 && b1 && c1 && d1 && a2 && b2 && c2 && d2) {
mesh.addFaces(
new MeshFace( mesh, {vertices: [a1, a2, b2, b1]} ),
new MeshFace( mesh, {vertices: [d1, d2, c2, c1]} ),
new MeshFace( mesh, {vertices: [c1, c2, a2, a1]} ),
new MeshFace( mesh, {vertices: [b1, b2, d2, d1]} ),
);
}
}
}
if (result.shape == 'torus') {
let rings = [];
for (let i = 0; i < result.sides; i++) {
let circle_x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2);
let circle_z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2);
let vertices = [];
for (let j = 0; j < result.minor_sides; j++) {
let slice_x = Math.sin((j / result.minor_sides) * Math.PI * 2) * result.minor_diameter/2*diameter_factor;
let x = circle_x * (result.diameter/2*diameter_factor + slice_x)
let y = Math.cos((j / result.minor_sides) * Math.PI * 2) * result.minor_diameter/2*diameter_factor;
let z = circle_z * (result.diameter/2*diameter_factor + slice_x)
vertices.push(...mesh.addVertices([x, y, z]));
}
rings.push(vertices);
}
for (let i = 0; i < result.sides; i++) {
let this_ring = rings[i];
let next_ring = rings[i+1] || rings[0];
for (let j = 0; j < result.minor_sides; j++) {
mesh.addFaces(new MeshFace( mesh, {vertices: [
this_ring[j+1] || this_ring[0],
next_ring[j+1] || next_ring[0],
this_ring[j],
next_ring[j],
]} ));
}
}
}
if (result.shape == 'sphere') {
let rings = [];
let sides = Math.round(result.sides/2)*2;
let [bottom] = mesh.addVertices([0, -result.diameter/2, 0]);
let [top] = mesh.addVertices([0, result.diameter/2, 0]);
for (let i = 0; i < result.sides; i++) {
let circle_x = Math.sin(((i+off_ang) / result.sides) * Math.PI * 2);
let circle_z = Math.cos(((i+off_ang) / result.sides) * Math.PI * 2);
let vertices = [];
for (let j = 1; j < (sides/2); j++) {
let slice_x = Math.sin((j / sides) * Math.PI * 2) * result.diameter/2 * diameter_factor;
let x = circle_x * slice_x
let y = Math.cos((j / sides) * Math.PI * 2) * result.diameter/2;
let z = circle_z * slice_x
vertices.push(...mesh.addVertices([x, y, z]));
}
rings.push(vertices);
}
for (let i = 0; i < result.sides; i++) {
let this_ring = rings[i];
let next_ring = rings[i+1] || rings[0];
for (let j = 0; j < (sides/2); j++) {
if (j == 0) {
mesh.addFaces(new MeshFace( mesh, {vertices: [
this_ring[j],
next_ring[j],
top
]} ));
} else if (!this_ring[j]) {
mesh.addFaces(new MeshFace( mesh, {vertices: [
next_ring[j-1],
this_ring[j-1],
bottom
]} ));
} else {
mesh.addFaces(new MeshFace( mesh, {vertices: [
this_ring[j],
next_ring[j],
this_ring[j-1],
next_ring[j-1],
]} ));
}
}
}
}
if (result.shape == 'cuboid') {
let r = result.diameter/2;
let h = result.height;
mesh.addVertices([r, h, r], [r, h, -r], [r, 0, r], [r, 0, -r], [-r, h, r], [-r, h, -r], [-r, 0, r], [-r, 0, -r]);
let vertex_keys = Object.keys(mesh.vertices);
mesh.addFaces(
new MeshFace( mesh, {vertices: [vertex_keys[0], vertex_keys[2], vertex_keys[1], vertex_keys[3]]} ), // East
new MeshFace( mesh, {vertices: [vertex_keys[4], vertex_keys[5], vertex_keys[6], vertex_keys[7]]} ), // West
new MeshFace( mesh, {vertices: [vertex_keys[0], vertex_keys[1], vertex_keys[4], vertex_keys[5]]} ), // Up
new MeshFace( mesh, {vertices: [vertex_keys[2], vertex_keys[6], vertex_keys[3], vertex_keys[7]]} ), // Down
new MeshFace( mesh, {vertices: [vertex_keys[0], vertex_keys[4], vertex_keys[2], vertex_keys[6]]} ), // South
new MeshFace( mesh, {vertices: [vertex_keys[1], vertex_keys[3], vertex_keys[5], vertex_keys[7]]} ), // North
);
}
if (result.shape == 'beveled_cuboid') {
let s = result.edge_size;
let rs = result.diameter/2 - s;
let r = result.diameter/2;
let h = result.height;
let hs = result.height - s;
let up = mesh.addVertices(
[rs, h, rs], // 0
[rs, h, -rs], // 1
[-rs, h, rs], // 2
[-rs, h, -rs], // 3
)
let down = mesh.addVertices(
[rs, 0, rs], // 4
[rs, 0, -rs], // 5
[-rs, 0, rs], // 6
[-rs, 0, -rs], // 7
)
let west = mesh.addVertices(
[-r, s, rs], // 8
[-r, hs, rs], // 9
[-r, s, -rs], // 10
[-r, hs, -rs], // 11
)
let east = mesh.addVertices(
[r, s, rs], // 12
[r, hs, rs], // 13
[r, s, -rs], // 14
[r, hs, -rs], // 15
)
let north = mesh.addVertices(
[rs, s, -r], // 16
[rs, hs, -r], // 17
[-rs, s, -r], // 18
[-rs, hs, -r], // 19
)
let south = mesh.addVertices(
[rs, s, r], // 20
[rs, hs, r], // 21
[-rs, s, r], // 22
[-rs, hs, r] // 23
)
mesh.addFaces(
new MeshFace( mesh, {vertices: [ east[1], east[0], east[3], east[2] ]} ), // East
new MeshFace( mesh, {vertices: [ west[0], west[1], west[3], west[2] ]} ), // West
new MeshFace( mesh, {vertices: [ up[0], up[1], up[3], up[2] ]} ), // Up
new MeshFace( mesh, {vertices: [ down[1], down[0], down[3], down[2] ]} ), // Down
new MeshFace( mesh, {vertices: [ south[0], south[1], south[3], south[2] ]} ), // South
new MeshFace( mesh, {vertices: [ north[1], north[0], north[3], north[2] ]} ), // North
);
mesh.addFaces(
new MeshFace( mesh, {vertices: [up[1], up[0], east[1], east[3]]} ), // E Up
new MeshFace( mesh, {vertices: [up[2], up[3], west[1], west[3]]} ), // W Up
new MeshFace( mesh, {vertices: [up[0], up[2], south[1], south[3]]} ), // S Up
new MeshFace( mesh, {vertices: [up[3], up[1], north[1], north[3]]} ), // N Up
new MeshFace( mesh, {vertices: [down[0], down[1], east[0], east[2]]} ), // E Down
new MeshFace( mesh, {vertices: [down[3], down[2], west[0], west[2]]} ), // W Down
new MeshFace( mesh, {vertices: [down[2], down[0], south[0], south[2]]} ), // S Down
new MeshFace( mesh, {vertices: [down[1], down[3], north[0], north[2]]} ), // N Down
new MeshFace( mesh, {vertices: [north[0], north[1], east[2], east[3]]} ), // NE
new MeshFace( mesh, {vertices: [south[1], south[0], east[0], east[1]]} ), // SE
new MeshFace( mesh, {vertices: [north[3], north[2], west[2], west[3]]} ), // NW
new MeshFace( mesh, {vertices: [south[2], south[3], west[0], west[1]]} ) // SW
);
mesh.addFaces(
new MeshFace( mesh, {vertices: [down[0], east[0], south[0]]} ), // Down1
new MeshFace( mesh, {vertices: [down[2], south[2], west[0]]} ), // Down2
new MeshFace( mesh, {vertices: [down[1], north[0], east[2]]} ), // Down3
new MeshFace( mesh, {vertices: [down[3], west[2], north[2]]} ), // Down4
new MeshFace( mesh, {vertices: [up[0], south[1], east[1]]} ), // Up1
new MeshFace( mesh, {vertices: [up[2], west[1], south[3]]} ), // Up2
new MeshFace( mesh, {vertices: [up[1], east[3], north[1]]} ), // Up3
new MeshFace( mesh, {vertices: [up[3], north[3], west[3]]} ) // Up4
);
}
if (result.shape == 'pyramid') {
let r = result.diameter/2;
let h = result.height;
mesh.addVertices([0, h, 0], [r, 0, r], [r, 0, -r], [-r, 0, r], [-r, 0, -r]);
let vertex_keys = Object.keys(mesh.vertices);
mesh.addFaces(
new MeshFace( mesh, {vertices: [vertex_keys[1], vertex_keys[3], vertex_keys[2], vertex_keys[4]]} ), // Down
new MeshFace( mesh, {vertices: [vertex_keys[1], vertex_keys[2], vertex_keys[0]]} ), // east
new MeshFace( mesh, {vertices: [vertex_keys[3], vertex_keys[1], vertex_keys[0]]} ), // south
new MeshFace( mesh, {vertices: [vertex_keys[2], vertex_keys[4], vertex_keys[0]]} ), // north
new MeshFace( mesh, {vertices: [vertex_keys[4], vertex_keys[3], vertex_keys[0]]} ), // west
);
}
if (result.shape == 'plane') {
let r = result.diameter/2;
mesh.addVertices([r, 0, r], [r, 0, -r], [-r, 0, r], [-r, 0, -r]);
let vertex_keys = Object.keys(mesh.vertices);
mesh.addFaces(
new MeshFace( mesh, {vertices: [vertex_keys[0], vertex_keys[1], vertex_keys[3], vertex_keys[2]]} )
);
}
if (Texture.all.length && Format.single_texture) {
for (var face in mesh.faces) {
mesh.faces[face].texture = Texture.getDefault().uuid
}
UVEditor.loadData()
}
if (Format.bone_rig) {
if (group) {
var pos1 = group.origin.slice()
mesh.extend({
origin: pos1.slice()
})
}
}
elements.push(mesh);
mesh.init()
if (Group.selected) Group.selected.unselect()
mesh.select()
UVEditor.setAutoSize(null, true, Object.keys(mesh.faces));
Undo.finishEdit('Add primitive');
Blockbench.dispatchEvent( 'add_mesh', {object: mesh} )
Vue.nextTick(function() {
if (settings.create_rename.value) {
mesh.rename()
}
})
}
runEdit(false, result);
Undo.amendEdit({
diameter: {label: 'dialog.add_primitive.diameter', type: 'number', value: result.diameter, interval_type: 'position'},
height: {label: 'dialog.add_primitive.height', type: 'number', value: result.height, condition: ['cylinder', 'cone', 'cuboid', 'beveled_cuboid', 'pyramid', 'tube'].includes(result.shape), interval_type: 'position'},
sides: {label: 'dialog.add_primitive.sides', type: 'number', value: result.sides, min: 3, max: 48, condition: ['cylinder', 'cone', 'circle', 'torus', 'sphere', 'tube'].includes(result.shape)},
minor_diameter: {label: 'dialog.add_primitive.minor_diameter', type: 'number', value: result.minor_diameter, condition: ['torus', 'tube'].includes(result.shape), interval_type: 'position'},
minor_sides: {label: 'dialog.add_primitive.minor_sides', type: 'number', value: result.minor_sides, min: 2, max: 32, condition: ['torus'].includes(result.shape)},
edge_size: {label: 'dialog.add_primitive.edge_size', type: 'number', value: result.edge_size, condition: ['beveled_cuboid'].includes(result.shape)},
}, form => {
Object.assign(result, form);
runEdit(true, result);
})
}
})
new Action('add_mesh', {
icon: 'fa-gem',
category: 'edit',
condition: {modes: ['edit'], method: () => (Format.meshes)},
click: function () {
add_mesh_dialog.show();
}
})
let previous_selection_mode = 'object';
new BarSelect('selection_mode', {
options: {
object: {name: true, icon: 'far.fa-gem'},
cluster: {name: true, icon: 'link'},
face: {name: true, icon: 'far.fa-square'},
edge: {name: true, icon: 'pen_size_3'},
vertex: {name: true, icon: 'fiber_manual_record'},
},
icon_mode: true,
condition: () => Modes.edit && Mesh.hasAny() && Toolbox.selected.id != 'knife_tool',
onChange({value}) {
if (value === previous_selection_mode) return;
if (value === 'object') {
Mesh.selected.forEach(mesh => {
delete Project.mesh_selection[mesh.uuid];
})
} else if (value === 'face') {
Mesh.selected.forEach(mesh => {
let selected_faces = mesh.getSelectedFaces(true);
selected_faces.empty();
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.isSelected(fkey)) {
selected_faces.safePush(fkey);
}
}
})
}
if ((value == 'face' || value == 'cluster') && ['edge', 'vertex'].includes(previous_selection_mode)) {
Mesh.selected.forEach(mesh => {
let vertices = mesh.getSelectedVertices();
let faces = mesh.getSelectedFaces(true);
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.vertices.allAre(vkey => vertices.includes(vkey))) {
faces.safePush(fkey);
}
}
})
}
if (value == 'edge') {
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
edges.empty();
})
}
if (value == 'edge' && ['face', 'cluster'].includes(previous_selection_mode)) {
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
let faces = mesh.getSelectedFaces(true);
faces.forEach(fkey => {
let face = mesh.faces[fkey];
let vertices = face.getSortedVertices();
vertices.forEach((vkey_a, i) => {
let edge = [vkey_a, (vertices[i+1] || vertices[0])];
if (!edges.find(edge2 => sameMeshEdge(edge2, edge))) {
edges.push(edge);
}
})
})
faces.empty();
})
}
if (value == 'edge' && ['vertex', 'cluster'].includes(previous_selection_mode)) {
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
let vertices = mesh.getSelectedVertices();
if (!vertices.length) return;
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let f_vertices = face.getSortedVertices();
f_vertices.forEach((vkey_a, i) => {
let edge = [vkey_a, (f_vertices[i+1] || f_vertices[0])];
if (!vertices.includes(edge[0]) || !vertices.includes(edge[1])) return;
if (edges.find(edge2 => sameMeshEdge(edge2, edge))) return;
edges.push(edge);
})
}
})
}
if (value == 'vertex' && ['face', 'cluster'].includes(previous_selection_mode)) {
Mesh.selected.forEach(mesh => {
let faces = mesh.getSelectedFaces(true);
faces.empty();
})
}
if (value == 'vertex' && ['edge', 'cluster'].includes(previous_selection_mode)) {
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
edges.empty();
})
}
updateSelection();
previous_selection_mode = value;
}
})
let seam_timeout;
new Tool('seam_tool', {
icon: 'content_cut',
transformerMode: 'hidden',
toolbar: 'seam_tool',
category: 'tools',
selectElements: true,
modes: ['edit'],
condition: () => Modes.edit && Mesh.hasAny(),
onCanvasClick(data) {
if (!seam_timeout) {
seam_timeout = setTimeout(() => {
seam_timeout = null;
}, 200)
} else {
clearTimeout(seam_timeout);
seam_timeout = null;
BarItems.select_seam.trigger();
}
},
onSelect: function() {
BarItems.selection_mode.set('edge');
BarItems.view_mode.set('solid');
BarItems.view_mode.onChange();
},
onUnselect: function() {
BarItems.selection_mode.set('object');
BarItems.view_mode.set('textured');
BarItems.view_mode.onChange();
}
})
new Tool('knife_tool', {
icon: 'surgical',
transformerMode: 'hidden',
category: 'tools',
selectElements: true,
cursor: 'crosshair',
raycast_options: {
edges: true,
vertices: true,
},
modes: ['edit'],
condition: () => Modes.edit && Mesh.hasAny(),
onCanvasMouseMove(data) {
if (!KnifeToolContext.current && Mesh.selected[0] && Mesh.selected.length == 1) {
KnifeToolContext.current = new KnifeToolContext(Mesh.selected[0]);
}
if (KnifeToolContext.current) {
KnifeToolContext.current.hover(data);
}
},
onCanvasClick(data) {
if (!data) return;
if (!KnifeToolContext.current && data.element instanceof Mesh) {
KnifeToolContext.current = new KnifeToolContext(data.element);
}
let context = KnifeToolContext.current;
context.addPoint(data);
},
onSelect() {
Interface.addSuggestedModifierKey('shift', 'modifier_actions.snap_to_center');
Interface.addSuggestedModifierKey('ctrl', 'modifier_actions.snap_to_pixels');
},
onUnselect() {
Interface.removeSuggestedModifierKey('shift', 'modifier_actions.snap_to_center');
Interface.removeSuggestedModifierKey('ctrl', 'modifier_actions.snap_to_pixels');
if (KnifeToolContext.current) {
KnifeToolContext.current.apply();
}
}
})
new BarSelect('select_seam', {
options: {
auto: true,
divide: true,
join: true,
},
condition: () => Modes.edit && Mesh.hasAny(),
onChange({value}) {
if (value == 'auto') value = null;
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
let selected_edges = mesh.getSelectedEdges();
selected_edges.forEach(edge => {
mesh.setSeam(edge, value);
})
Mesh.preview_controller.updateSelection(mesh);
})
Undo.finishEdit('Set mesh seam');
}
})
new Action('create_face', {
icon: 'fas.fa-draw-polygon',
category: 'edit',
keybind: new Keybind({key: 'f', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length > 1)},
click() {
let vec1 = new THREE.Vector3(),
vec2 = new THREE.Vector3(),
vec3 = new THREE.Vector3(),
vec4 = new THREE.Vector3();
Undo.initEdit({elements: Mesh.selected});
let faces_to_autouv = [];
Mesh.selected.forEach(mesh => {
let selected_vertices = mesh.getSelectedVertices();
let selected_faces = mesh.getSelectedFaces(true);
selected_faces.empty();
if (selected_vertices.length >= 2 && selected_vertices.length <= 4) {
let reference_face;
let reference_face_strength = 0;
for (let key in mesh.faces) {
let face = mesh.faces[key];
let match_strength = face.vertices.filter(vkey => selected_vertices.includes(vkey)).length;
if (match_strength > reference_face_strength) {
reference_face = face;
reference_face_strength = match_strength;
}
if (match_strength == face.vertices.length) {
delete mesh.faces[key];
}
}
// Split face
if (
reference_face &&
(selected_vertices.length == 2 || selected_vertices.length == 3) &&
reference_face.vertices.length == 4 &&
reference_face.vertices.filter(vkey => selected_vertices.includes(vkey)).length == selected_vertices.length
) {
let sorted_vertices = reference_face.getSortedVertices();
let unselected_vertices = sorted_vertices.filter(vkey => !selected_vertices.includes(vkey));
let side_index_diff = Math.abs(sorted_vertices.indexOf(selected_vertices[0]) - sorted_vertices.indexOf(selected_vertices[1]));
if (side_index_diff != 1 || selected_vertices.length == 3) {
let new_face = new MeshFace(mesh, reference_face);
new_face.vertices.remove(unselected_vertices[0]);
delete new_face.uv[unselected_vertices[0]];
let reference_corner_vertex = unselected_vertices[1]
|| sorted_vertices[sorted_vertices.indexOf(unselected_vertices[0]) + 2]
|| sorted_vertices[sorted_vertices.indexOf(unselected_vertices[0]) - 2];
reference_face.vertices.remove(reference_corner_vertex);
delete reference_face.uv[reference_corner_vertex];
let [face_key] = mesh.addFaces(new_face);
selected_faces.push(face_key);
if (reference_face.getAngleTo(new_face) > 90) {
new_face.invert();
}
}
} else {
let new_face = new MeshFace(mesh, {
vertices: selected_vertices,
texture: reference_face?.texture,
} );
let [face_key] = mesh.addFaces(new_face);
selected_faces.push(face_key);
faces_to_autouv.push(face_key);
// Correct direction
if (selected_vertices.length > 2) {
// find face with shared line to compare
let fixed_via_face;
for (let key in mesh.faces) {
let face = mesh.faces[key];
let common = face.vertices.filter(vertex_key => selected_vertices.includes(vertex_key))
if (common.length == 2) {
let old_vertices = face.getSortedVertices();
let new_vertices = new_face.getSortedVertices();
let index_diff = old_vertices.indexOf(common[0]) - old_vertices.indexOf(common[1]);
let new_index_diff = new_vertices.indexOf(common[0]) - new_vertices.indexOf(common[1]);
if (index_diff == 1 - face.vertices.length) index_diff = 1;
if (new_index_diff == 1 - new_face.vertices.length) new_index_diff = 1;
if (Math.abs(index_diff) == 1 && Math.abs(new_index_diff) == 1) {
if (index_diff == new_index_diff) {
new_face.invert();
}
fixed_via_face = true;
break;
}
}
}
// If no face available, orient based on camera orientation
if (!fixed_via_face) {
let normal = new THREE.Vector3().fromArray(new_face.getNormal());
normal.applyQuaternion(mesh.mesh.getWorldQuaternion(new THREE.Quaternion()))
let cam_direction = Preview.selected.camera.getWorldDirection(new THREE.Vector3());
let angle = normal.angleTo(cam_direction);
if (angle < Math.PI/2) {
new_face.invert();
}
}
}
}
} else if (selected_vertices.length > 4) {
let reference_face;
for (let key in mesh.faces) {
let face = mesh.faces[key];
if (!reference_face && face.vertices.find(vkey => selected_vertices.includes(vkey))) {
reference_face = face;
}
}
let vertices = selected_vertices.slice();
let v1 = vec1.fromArray(mesh.vertices[vertices[1]].slice().V3_subtract(mesh.vertices[vertices[0]]));
let v2 = vec2.fromArray(mesh.vertices[vertices[2]].slice().V3_subtract(mesh.vertices[vertices[0]]));
let normal = v2.cross(v1);
let plane = new THREE.Plane().setFromNormalAndCoplanarPoint(
normal,
new THREE.Vector3().fromArray(mesh.vertices[vertices[0]])
)
let center = [0, 0];
let vertex_uvs = {};
vertices.forEach((vkey) => {
let coplanar_pos = plane.projectPoint(vec3.fromArray(mesh.vertices[vkey]), vec4);
let q = Reusable.quat1.setFromUnitVectors(normal, THREE.NormalY)
coplanar_pos.applyQuaternion(q);
vertex_uvs[vkey] = [
Math.roundTo(coplanar_pos.x, 4),
Math.roundTo(coplanar_pos.z, 4),
]
center[0] += vertex_uvs[vkey][0];
center[1] += vertex_uvs[vkey][1];
})
center[0] /= vertices.length;
center[1] /= vertices.length;
vertices.forEach(vkey => {
vertex_uvs[vkey][0] -= center[0];
vertex_uvs[vkey][1] -= center[1];
vertex_uvs[vkey][2] = Math.atan2(vertex_uvs[vkey][0], vertex_uvs[vkey][1]);
})
vertices.sort((a, b) => vertex_uvs[a][2] - vertex_uvs[b][2]);
let start_index = 0;
while (start_index < vertices.length) {
let face_vertices = vertices.slice(start_index, start_index+4);
vertices.push(face_vertices[0]);
let new_face = new MeshFace(mesh, {vertices: face_vertices, texture: reference_face.texture});
let [face_key] = mesh.addFaces(new_face);
selected_faces.push(face_key);
if (face_vertices.length < 4) break;
start_index += 3;
}
}
})
UVEditor.setAutoSize(null, true, faces_to_autouv);
Undo.finishEdit('Create mesh face')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
})
new Action('convert_to_mesh', {
icon: 'fa-gem',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Cube.selected.length)},
click() {
Undo.initEdit({elements: Cube.selected, outliner: true});
let new_meshes = [];
Cube.selected.forEach(cube => {
let mesh = new Mesh({
name: cube.name,
color: cube.color,
origin: cube.origin,
rotation: cube.rotation,
vertices: []
})
let rotation_euler = new THREE.Euler(0, 0, 0, 'ZYX').fromArray(cube.rotation.map(Math.degToRad));
rotation_euler.reorder('XYZ');
mesh.rotation.V3_set(rotation_euler.toArray().map(r => Math.roundTo(Math.radToDeg(r), 4)));
var adjustedFrom = cube.from.slice();
var adjustedTo = cube.to.slice();
adjustFromAndToForInflateAndStretch(adjustedFrom, adjustedTo, cube);
for (let i = 0; i < adjustedFrom.length; i++) {
adjustedFrom[i] -= cube.origin[i];
adjustedTo[i] -= cube.origin[i]
}
let vertex_keys = [
mesh.addVertices([adjustedTo[0], adjustedTo[1], adjustedTo[2] ])[0],
mesh.addVertices([adjustedTo[0], adjustedTo[1], adjustedFrom[2] ])[0],
mesh.addVertices([adjustedTo[0], adjustedFrom[1], adjustedTo[2] ])[0],
mesh.addVertices([adjustedTo[0], adjustedFrom[1], adjustedFrom[2] ])[0],
mesh.addVertices([adjustedFrom[0], adjustedTo[1], adjustedTo[2] ])[0],
mesh.addVertices([adjustedFrom[0], adjustedTo[1], adjustedFrom[2] ])[0],
mesh.addVertices([adjustedFrom[0], adjustedFrom[1], adjustedTo[2] ])[0],
mesh.addVertices([adjustedFrom[0], adjustedFrom[1], adjustedFrom[2] ])[0],
];
let unused_vkeys = vertex_keys.slice();
function addFace(direction, vertices) {
let cube_face = cube.faces[direction];
if (cube_face.texture === null) return;
let uv_points = [
[cube_face.uv[0], cube_face.uv[1]],
[cube_face.uv[2], cube_face.uv[1]],
[cube_face.uv[2], cube_face.uv[3]],
[cube_face.uv[0], cube_face.uv[3]]
];
let rotation = cube_face.rotation || 0;
while (rotation > 0) {
rotation -= 90;
uv_points.splice(0, 0, uv_points.pop());
}
let uv = {
[vertices[0]]: uv_points[1],
[vertices[1]]: uv_points[0],
[vertices[2]]: uv_points[2],
[vertices[3]]: uv_points[3],
};
mesh.addFaces(
new MeshFace( mesh, {
vertices,
uv,
texture: cube_face.texture,
}
));
vertices.forEach(vkey => unused_vkeys.remove(vkey));
}
addFace('east', [vertex_keys[1], vertex_keys[0], vertex_keys[3], vertex_keys[2]]);
addFace('west', [vertex_keys[4], vertex_keys[5], vertex_keys[6], vertex_keys[7]]);
addFace('up', [vertex_keys[1], vertex_keys[5], vertex_keys[0], vertex_keys[4]]); // 4 0 5 1
addFace('down', [vertex_keys[2], vertex_keys[6], vertex_keys[3], vertex_keys[7]]);
addFace('south', [vertex_keys[0], vertex_keys[4], vertex_keys[2], vertex_keys[6]]);
addFace('north', [vertex_keys[5], vertex_keys[1], vertex_keys[7], vertex_keys[3]]);
unused_vkeys.forEach(vkey => {
delete mesh.vertices[vkey];
})
mesh.sortInBefore(cube).init();
new_meshes.push(mesh);
selected.push(mesh);
cube.remove();
})
updateSelection();
Undo.finishEdit('Convert cubes to meshes', {elements: new_meshes, outliner: true});
}
})
new Action('apply_mesh_rotation', {
icon: 'published_with_changes',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected.length)},
click() {
let vec = new THREE.Vector3();
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
let rotation = mesh.mesh.rotation;
for (let vkey in mesh.vertices) {
vec.fromArray(mesh.vertices[vkey]);
vec.applyEuler(rotation);
mesh.vertices[vkey].V3_set(vec.x, vec.y, vec.z);
}
mesh.rotation.V3_set(0, 0, 0);
})
Undo.finishEdit('Apply mesh rotation')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, transform: true}, selection: true})
}
})
new Action('invert_face', {
icon: 'flip_to_back',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedFaces().length)},
click() {
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.isSelected(fkey)) {
face.invert();
}
}
})
Undo.finishEdit('Invert mesh faces');
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}});
}
})
new Action('switch_face_crease', {
icon: 'signal_cellular_off',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedFaces().find(fkey => Mesh.selected[0].faces[fkey].vertices.length == 4))},
click() {
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.vertices.length == 4 && face.isSelected(fkey)) {
let new_vertices = face.getSortedVertices().slice();
new_vertices.push(new_vertices.shift());
face.vertices.replace(new_vertices);
}
}
})
Undo.finishEdit('Switch mesh face crease');
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}});
}
})
new Action('extrude_mesh_selection', {
icon: 'upload',
category: 'edit',
keybind: new Keybind({key: 'e', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length)},
click() {
function runEdit(amended, extend = 1) {
Undo.initEdit({elements: Mesh.selected, selection: true}, amended);
Mesh.selected.forEach(mesh => {
let original_vertices = mesh.getSelectedVertices().slice();
let selected_edges = mesh.getSelectedEdges(true);
let new_vertices;
let new_face_keys = [];
let selected_face_keys = mesh.getSelectedFaces();
let selected_faces = selected_face_keys.map(fkey => mesh.faces[fkey]);
let combined_direction;
selected_faces.forEach(face => {
original_vertices.safePush(...face.vertices);
})
selected_edges.forEach(edge => {
original_vertices.safePush(...edge);
})
if (original_vertices.length >= 3 && !selected_faces.length) {
let [a, b, c] = original_vertices.slice(0, 3).map(vkey => mesh.vertices[vkey].slice());
let normal = new THREE.Vector3().fromArray(a.V3_subtract(c));
normal.cross(new THREE.Vector3().fromArray(b.V3_subtract(c))).normalize();
let face;
for (let fkey in mesh.faces) {
let face2 = mesh.faces[fkey];
let face_selected_vertices = face2.vertices.filter(vkey => original_vertices.includes(vkey));
if (face_selected_vertices.length >= 2 && face_selected_vertices.length < face2.vertices.length && face2.vertices.length > 2) {
face = face2;
break;
}
}
if (face) {
let selected_corner = mesh.vertices[face.vertices.find(vkey => original_vertices.includes(vkey))];
let opposite_corner = mesh.vertices[face.vertices.find(vkey => !original_vertices.includes(vkey))];
let face_geo_dir = opposite_corner.slice().V3_subtract(selected_corner);
if (Reusable.vec1.fromArray(face_geo_dir).angleTo(normal) < 1) {
normal.negate();
}
}
combined_direction = normal.toArray();
}
new_vertices = mesh.addVertices(...original_vertices.map(key => {
let vector = mesh.vertices[key].slice();
let direction;
let count = 0;
selected_faces.forEach(face => {
if (face.vertices.includes(key)) {
count++;
if (!direction) {
direction = face.getNormal(true);
} else {
direction.V3_add(face.getNormal(true));
}
}
})
if (count > 1) {
direction.V3_divide(count);
}
if (!direction) {
let match;
let match_level = 0;
let match_count = 0;
for (let key in mesh.faces) {
let face = mesh.faces[key];
let matches = face.vertices.filter(vkey => original_vertices.includes(vkey));
if (match_level < matches.length) {
match_level = matches.length;
match_count = 1;
match = face;
} else if (match_level === matches.length) {
match_count++;
}
if (match_level == 3) break;
}
if (match_level < 3 && match_count > 2 && original_vertices.length > 2) {
// If multiple faces connect to the line, there is no point in choosing one for the normal
// Instead, construct the normal between the first 2 selected vertices
direction = combined_direction;
} else if (match) {
let difference = new THREE.Vector3();
let signs_done = [];
match.vertices.forEach(vkey => {
let sign = original_vertices.includes(vkey) ? 1 : -1;
difference.x += mesh.vertices[vkey][0] * sign;
difference.y += mesh.vertices[vkey][1] * sign;
difference.z += mesh.vertices[vkey][2] * sign;
signs_done.push(sign);
})
direction = difference.normalize().toArray();
} else if (match) {
// perpendicular edge, currently unused
direction = match.getNormal(true);
} else {
direction = [0, 1, 0];
}
}
vector.V3_add(direction.map(v => v * extend));
return vector;
}))
Project.mesh_selection[mesh.uuid].vertices.replace(new_vertices);
// Move Faces
selected_faces.forEach(face => {
face.vertices.forEach((key, index) => {
face.vertices[index] = new_vertices[original_vertices.indexOf(key)];
let uv = face.uv[key];
delete face.uv[key];
face.uv[face.vertices[index]] = uv;
})
})
// Create extra quads on sides
let remaining_vertices = new_vertices.slice();
selected_faces.forEach((face, face_index) => {
let vertices = face.getSortedVertices();
vertices.forEach((a, i) => {
let b = vertices[i+1] || vertices[0];
if (vertices.length == 2 && i) return; // Only create one quad when extruding line
if (selected_faces.find(f => f != face && f.vertices.includes(a) && f.vertices.includes(b))) return;
let new_face = new MeshFace(mesh, mesh.faces[selected_face_keys[face_index]]).extend({
vertices: [
b,
a,
original_vertices[new_vertices.indexOf(a)],
original_vertices[new_vertices.indexOf(b)],
]
});
let [face_key] = mesh.addFaces(new_face);
new_face_keys.push(face_key);
remaining_vertices.remove(a);
remaining_vertices.remove(b);
})
if (vertices.length == 2) delete mesh.faces[selected_face_keys[face_index]];
})
// Create Face between extruded edges
let new_faces = [];
selected_edges.forEach(edge => {
let face, sorted_vertices;
for (let fkey in mesh.faces) {
let face2 = mesh.faces[fkey];
let vertices = face2.getSortedVertices();
if (vertices.includes(edge[0]) && vertices.includes(edge[1])) {
face = face2;
sorted_vertices = vertices;
break;
}
}
if (sorted_vertices[0] == edge[0] && sorted_vertices[1] != edge[1]) {
edge.reverse();
}
let [a, b] = edge.map(vkey => new_vertices[original_vertices.indexOf(vkey)]);
let [c, d] = edge;
let new_face = new MeshFace(mesh, face).extend({
vertices: [a, b, c, d]
});
let [face_key] = mesh.addFaces(new_face);
new_face_keys.push(face_key);
new_faces.push(new_face);
remaining_vertices.remove(a);
remaining_vertices.remove(b);
})
// Create line between points
remaining_vertices.forEach(a => {
let b = original_vertices[new_vertices.indexOf(a)]
let b_in_face = false;
mesh.forAllFaces(face => {
if (face.vertices.includes(b)) b_in_face = true;
})
if (selected_faces.find(f => f.vertices.includes(a)) && !b_in_face) {
// Remove line if in the middle of other faces
delete mesh.vertices[b];
} else {
let new_face = new MeshFace(mesh, {
vertices: [b, a]
});
mesh.addFaces(new_face);
}
})
// Update edge selection
selected_edges.forEach(edge => {
edge.forEach((vkey, i) => {
edge[i] = new_vertices[original_vertices.indexOf(vkey)];
});
})
UVEditor.setAutoSize(null, true, new_face_keys);
})
Undo.finishEdit('Extrude mesh selection');
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true});
}
runEdit();
Undo.amendEdit({
extend: {type: 'number', value: 1, label: 'edit.extrude_mesh_selection.extend', interval_type: 'position'},
}, form => {
runEdit(true, form.extend);
})
}
})
new Action('solidify_mesh_selection', {
icon: 'bottom_panel_open',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedFaces().length)},
click() {
function runEdit(amended, extend = 1) {
Undo.initEdit({elements: Mesh.selected, selection: true}, amended);
Mesh.selected.forEach(mesh => {
let original_vertices = [];
let new_vertices;
let new_face_keys = [];
let selected_face_keys = mesh.getSelectedFaces(true);
let selected_faces = selected_face_keys.map(fkey => mesh.faces[fkey]);
let combined_direction;
selected_faces.forEach(face => {
original_vertices.safePush(...face.vertices);
})
// Calculate direction
if (original_vertices.length >= 3 && !selected_faces.length) {
let [a, b, c] = original_vertices.slice(0, 3).map(vkey => mesh.vertices[vkey].slice());
let normal = new THREE.Vector3().fromArray(a.V3_subtract(c));
normal.cross(new THREE.Vector3().fromArray(b.V3_subtract(c))).normalize();
let face;
for (let fkey in mesh.faces) {
let face2 = mesh.faces[fkey];
let face_selected_vertices = face2.vertices.filter(vkey => original_vertices.includes(vkey));
if (face_selected_vertices.length >= 2 && face_selected_vertices.length < face2.vertices.length && face2.vertices.length > 2) {
face = face2;
break;
}
}
if (face) {
let selected_corner = mesh.vertices[face.vertices.find(vkey => original_vertices.includes(vkey))];
let opposite_corner = mesh.vertices[face.vertices.find(vkey => !original_vertices.includes(vkey))];
let face_geo_dir = opposite_corner.slice().V3_subtract(selected_corner);
if (Reusable.vec1.fromArray(face_geo_dir).angleTo(normal) < 1) {
normal.negate();
}
}
combined_direction = normal.toArray();
}
new_vertices = mesh.addVertices(...original_vertices.map(key => {
let vector = mesh.vertices[key].slice();
let direction;
let count = 0;
selected_faces.forEach(face => {
if (face.vertices.includes(key)) {
count++;
if (!direction) {
direction = face.getNormal(true);
} else {
direction.V3_add(face.getNormal(true));
}
}
})
if (count > 1) {
direction.V3_divide(count);
}
if (!direction) {
let match;
let match_level = 0;
let match_count = 0;
for (let key in mesh.faces) {
let face = mesh.faces[key];
let matches = face.vertices.filter(vkey => original_vertices.includes(vkey));
if (match_level < matches.length) {
match_level = matches.length;
match_count = 1;
match = face;
} else if (match_level === matches.length) {
match_count++;
}
if (match_level == 3) break;
}
if (match_level < 3 && match_count > 2 && original_vertices.length > 2) {
// If multiple faces connect to the line, there is no point in choosing one for the normal
// Instead, construct the normal between the first 2 selected vertices
direction = combined_direction;
} else if (match) {
let difference = new THREE.Vector3();
let signs_done = [];
match.vertices.forEach(vkey => {
let sign = original_vertices.includes(vkey) ? 1 : -1;
difference.x += mesh.vertices[vkey][0] * sign;
difference.y += mesh.vertices[vkey][1] * sign;
difference.z += mesh.vertices[vkey][2] * sign;
signs_done.push(sign);
})
direction = difference.normalize().toArray();
} else if (match) {
// perpendicular edge, currently unused
direction = match.getNormal(true);
} else {
direction = [0, 1, 0];
}
}
vector.V3_add(direction.map(v => v * extend));
return vector;
}))
Project.mesh_selection[mesh.uuid].vertices.replace(new_vertices);
// Duplicate faces
selected_faces.forEach(face => {
// Copy face and invert
let face_copy = new MeshFace(mesh, face);
let [new_face_key] = mesh.addFaces(face_copy);
selected_face_keys.push(new_face_key);
face_copy.invert();
// Move original face to new spot
face.vertices.forEach((key, index) => {
face.vertices[index] = new_vertices[original_vertices.indexOf(key)];
let uv = face.uv[key];
delete face.uv[key];
face.uv[face.vertices[index]] = uv;
})
})
// Create extra quads on sides
let remaining_vertices = new_vertices.slice();
selected_faces.forEach((face, face_index) => {
let vertices = face.getSortedVertices();
vertices.forEach((a, i) => {
let b = vertices[i+1] || vertices[0];
if (vertices.length == 2 && i) return; // Only create one quad when extruding line
if (selected_faces.find(f => f != face && f.vertices.includes(a) && f.vertices.includes(b))) return;
let new_face = new MeshFace(mesh, mesh.faces[selected_face_keys[face_index]]).extend({
vertices: [
b,
a,
original_vertices[new_vertices.indexOf(a)],
original_vertices[new_vertices.indexOf(b)],
]
});
let [face_key] = mesh.addFaces(new_face);
selected_face_keys.push(face_key);
new_face_keys.push(face_key);
remaining_vertices.remove(a);
remaining_vertices.remove(b);
})
if (vertices.length == 2) delete mesh.faces[selected_face_keys[face_index]];
})
UVEditor.setAutoSize(null, true, new_face_keys);
})
Undo.finishEdit('Solidify mesh selection');
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true});
}
runEdit();
Undo.amendEdit({
thickness: {type: 'number', value: 1, label: 'edit.solidify_mesh_selection.thickness', interval_type: 'position'},
}, form => {
runEdit(true, form.thickness);
})
}
})
new Action('inset_mesh_selection', {
icon: 'fa-compress-arrows-alt',
category: 'edit',
keybind: new Keybind({key: 'i', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length >= 3)},
click() {
function runEdit(amended, offset = 50) {
Undo.initEdit({elements: Mesh.selected, selection: true}, amended);
Mesh.selected.forEach(mesh => {
let original_vertices = mesh.getSelectedVertices();
if (original_vertices.length < 3) return;
original_vertices = original_vertices.slice();
let new_vertices;
let selected_face_keys = mesh.getSelectedFaces();
let selected_faces = selected_face_keys.map(fkey => mesh.faces[fkey]);
let modified_face_keys = selected_face_keys.slice();
new_vertices = mesh.addVertices(...original_vertices.map(vkey => {
let vector = mesh.vertices[vkey].slice();
affected_faces = selected_faces.filter(face => {
return face.vertices.includes(vkey)
})
if (affected_faces.length == 0) return;
let inset = [0, 0, 0];
if (affected_faces.length == 3 || affected_faces.length == 1) {
affected_faces.sort((a, b) => {
let ax = 0;
a.vertices.forEach(vkey => {
ax += affected_faces.filter(face => face.vertices.includes(vkey)).length;
})
let bx = 0;
b.vertices.forEach(vkey => {
bx += affected_faces.filter(face => face.vertices.includes(vkey)).length;
})
return bx - ax;
})
affected_faces[0].vertices.forEach(vkey2 => {
inset.V3_add(mesh.vertices[vkey2]);
})
inset.V3_divide(affected_faces[0].vertices.length);
vector = vector.map((v, i) => Math.lerp(v, inset[i], offset/100));
}
if (affected_faces.length == 2) {
let vkey2 = affected_faces[0].vertices.find(_vkey => _vkey != vkey && affected_faces[1].vertices.includes(_vkey));
vector = vector.map((v, i) => Math.lerp(v, mesh.vertices[vkey2][i], offset/200));
}
return vector;
}).filter(vec => vec instanceof Array))
if (!new_vertices.length) return;
Project.mesh_selection[mesh.uuid].vertices.replace(new_vertices);
// Move Faces
selected_faces.forEach(face => {
face.vertices.forEach((key, index) => {
face.vertices[index] = new_vertices[original_vertices.indexOf(key)];
let uv = face.uv[key];
delete face.uv[key];
face.uv[face.vertices[index]] = uv;
})
})
// Create extra quads on sides
let remaining_vertices = new_vertices.slice();
selected_faces.forEach((face, face_index) => {
let vertices = face.getSortedVertices();
vertices.forEach((a, i) => {
let b = vertices[i+1] || vertices[0];
if (vertices.length == 2 && i) return; // Only create one quad when extruding line
if (selected_faces.find(f => f != face && f.vertices.includes(a) && f.vertices.includes(b))) return;
let new_face_vertices = [
b,
a,
original_vertices[new_vertices.indexOf(a)],
original_vertices[new_vertices.indexOf(b)],
];
let new_face_uv = {
[a]: face.uv[a],
[b]: face.uv[b],
[new_face_vertices[2]]: face.uv[a],
[new_face_vertices[3]]: face.uv[b],
};
let new_face = new MeshFace(mesh, mesh.faces[selected_face_keys[face_index]]).extend({
vertices: new_face_vertices,
uv: new_face_uv
});
let [fkey] = mesh.addFaces(new_face);
modified_face_keys.push(fkey);
remaining_vertices.remove(a);
remaining_vertices.remove(b);
})
if (vertices.length == 2) delete mesh.faces[selected_face_keys[face_index]];
})
remaining_vertices.forEach(a => {
let b = original_vertices[new_vertices.indexOf(a)];
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.vertices.includes(b)) {
face.vertices.splice(face.vertices.indexOf(b), 1, a);
face.uv[a] = face.uv[b];
delete face.uv[b];
}
}
delete mesh.vertices[b];
})
UVEditor.setAutoSize(null, true, modified_face_keys);
})
Undo.finishEdit('Extrude mesh selection')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
runEdit();
Undo.amendEdit({
offset: {type: 'number', value: 50, label: 'edit.loop_cut.offset', min: 0, max: 100, interval_type: 'position'},
}, form => {
runEdit(true, form.offset);
})
}
})
new Action('loop_cut', {
icon: 'carpenter',
category: 'edit',
keybind: new Keybind({key: 'r', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length > 1)},
click() {
let selected_face, selected_face_key;
let saved_direction = 0;
Mesh.selected.forEach(mesh => {
if (!selected_face) {
selected_face_key = mesh.getSelectedFaces()[0];
selected_face = mesh.faces[selected_face_key];
}
})
function getLength(direction = 0) {
selected_face = Mesh.selected.last().faces[selected_face_key];
if (selected_face) {
let vertices = selected_face.getSortedVertices();
let pos1 = Mesh.selected[0].vertices[vertices[(0 + direction) % selected_face.vertices.length]];
let pos2 = Mesh.selected[0].vertices[vertices[(1 + direction) % selected_face.vertices.length]];
return Math.sqrt(Math.pow(pos2[0] - pos1[0], 2) + Math.pow(pos2[1] - pos1[1], 2) + Math.pow(pos2[2] - pos1[2], 2));
} else {
let vertices = Mesh.selected[0].getSelectedVertices();
let pos1 = Mesh.selected[0].vertices[vertices[0]];
let pos2 = Mesh.selected[0].vertices[vertices[1]];
return Math.sqrt(Math.pow(pos2[0] - pos1[0], 2) + Math.pow(pos2[1] - pos1[1], 2) + Math.pow(pos2[2] - pos1[2], 2));
}
}
let length = getLength();
function runEdit(amended, offset, direction = 0, cuts = 1) {
Undo.initEdit({elements: Mesh.selected, selection: true}, amended);
if (offset == undefined) offset = length / (cuts+1);
Mesh.selected.forEach(mesh => {
let selected_vertices = mesh.getSelectedVertices();
let start_face;
let start_face_quality = 1;
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.vertices.length < 2) continue;
let vertices = face.vertices.filter(vkey => selected_vertices.includes(vkey))
if (vertices.length > start_face_quality) {
start_face = face;
start_face_quality = vertices.length;
}
}
if (!start_face) return;
let processed_faces = [start_face];
let center_vertices_map = {};
function getCenterVertex(vertices, ratio) {
let edge_key = vertices.slice().sort().join('.');
let existing_key = center_vertices_map[edge_key];
if (existing_key) return existing_key;
let vector = mesh.vertices[vertices[0]].map((v, i) => Math.lerp(v, mesh.vertices[vertices[1]][i], ratio))
let [vkey] = mesh.addVertices(vector);
center_vertices_map[edge_key] = vkey;
return vkey;
}
function splitFace(face, side_vertices, double_side, cut_no) {
processed_faces.push(face);
let sorted_vertices = face.getSortedVertices();
let side_index_diff = sorted_vertices.indexOf(side_vertices[0]) - sorted_vertices.indexOf(side_vertices[1]);
if (side_index_diff == -1 || side_index_diff > 2) side_vertices.reverse();
if (face.vertices.length == 4) {
let opposite_vertices = sorted_vertices.filter(vkey => !side_vertices.includes(vkey));
let opposite_index_diff = sorted_vertices.indexOf(opposite_vertices[0]) - sorted_vertices.indexOf(opposite_vertices[1]);
if (opposite_index_diff == 1 || opposite_index_diff < -2) opposite_vertices.reverse();
let ratio = offset/length;
if (cuts > 1) {
ratio = 1 - (1 / (cuts + 1 - cut_no) * ratio * 2);
}
let center_vertices = [
getCenterVertex(side_vertices, ratio),
getCenterVertex(opposite_vertices, ratio)
]
let c1_uv_coords = [
Math.lerp(face.uv[side_vertices[0]][0], face.uv[side_vertices[1]][0], ratio),
Math.lerp(face.uv[side_vertices[0]][1], face.uv[side_vertices[1]][1], ratio),
];
let c2_uv_coords = [
Math.lerp(face.uv[opposite_vertices[0]][0], face.uv[opposite_vertices[1]][0], ratio),
Math.lerp(face.uv[opposite_vertices[0]][1], face.uv[opposite_vertices[1]][1], ratio),
];
let new_face = new MeshFace(mesh, face).extend({
vertices: [side_vertices[1], center_vertices[0], center_vertices[1], opposite_vertices[1]],
uv: {
[side_vertices[1]]: face.uv[side_vertices[1]],
[center_vertices[0]]: c1_uv_coords,
[center_vertices[1]]: c2_uv_coords,
[opposite_vertices[1]]: face.uv[opposite_vertices[1]],
}
})
face.extend({
vertices: [opposite_vertices[0], center_vertices[0], center_vertices[1], side_vertices[0]],
uv: {
[opposite_vertices[0]]: face.uv[opposite_vertices[0]],
[center_vertices[0]]: c1_uv_coords,
[center_vertices[1]]: c2_uv_coords,
[side_vertices[0]]: face.uv[side_vertices[0]],
}
})
mesh.addFaces(new_face);
// Multiple loop cuts
if (cut_no+1 < cuts) {
splitFace(face, [center_vertices[0], side_vertices[0]], double_side, cut_no+1);
}
if (cut_no != 0) return;
// Find next (and previous) face
for (let fkey in mesh.faces) {
let ref_face = mesh.faces[fkey];
if (ref_face.vertices.length < 3 || processed_faces.includes(ref_face)) continue;
let vertices = ref_face.vertices.filter(vkey => opposite_vertices.includes(vkey))
if (vertices.length >= 2) {
splitFace(ref_face, opposite_vertices, ref_face.vertices.length == 4, 0);
break;
}
}
if (double_side) {
for (let fkey in mesh.faces) {
let ref_face = mesh.faces[fkey];
if (ref_face.vertices.length < 3 || processed_faces.includes(ref_face)) continue;
let vertices = ref_face.vertices.filter(vkey => side_vertices.includes(vkey))
if (vertices.length >= 2) {
let ref_sorted_vertices = ref_face.getSortedVertices();
let ref_opposite_vertices = ref_sorted_vertices.filter(vkey => !side_vertices.includes(vkey));
if (ref_opposite_vertices.length == 2) {
splitFace(ref_face, ref_opposite_vertices, ref_face.vertices.length == 4, 0);
break;
} else if (ref_opposite_vertices.length == 1) {
splitFace(ref_face, side_vertices, false, 0);
break;
}
}
}
}
} else if (face.vertices.length == 3) {
if (direction > 2) {
// Split tri from edge to edge
let opposed_vertex = sorted_vertices.find(vkey => !side_vertices.includes(vkey));
let opposite_vertices = [opposed_vertex, side_vertices[direction % side_vertices.length]];
let opposite_index_diff = sorted_vertices.indexOf(opposite_vertices[0]) - sorted_vertices.indexOf(opposite_vertices[1]);
if (opposite_index_diff == 1 || opposite_index_diff < -2) opposite_vertices.reverse();
let ratio = offset/length;
if (cuts > 1) {
ratio = 1 - (1 / (cuts + 1 - cut_no) * ratio * 2);
}
let center_vertices = [
getCenterVertex(side_vertices, ratio),
getCenterVertex(opposite_vertices, ratio)
]
let c1_uv_coords = [
Math.lerp(face.uv[side_vertices[0]][0], face.uv[side_vertices[1]][0], ratio),
Math.lerp(face.uv[side_vertices[0]][1], face.uv[side_vertices[1]][1], ratio),
];
let c2_uv_coords = [
Math.lerp(face.uv[opposite_vertices[0]][0], face.uv[opposite_vertices[1]][0], ratio),
Math.lerp(face.uv[opposite_vertices[0]][1], face.uv[opposite_vertices[1]][1], ratio),
];
let other_quad_vertex = side_vertices.find(vkey => !opposite_vertices.includes(vkey));
let other_tri_vertex = side_vertices.find(vkey => opposite_vertices.includes(vkey));
let new_face = new MeshFace(mesh, face).extend({
vertices: [other_tri_vertex, center_vertices[0], center_vertices[1]],
uv: {
[other_tri_vertex]: face.uv[other_tri_vertex],
[center_vertices[0]]: c1_uv_coords,
[center_vertices[1]]: c2_uv_coords,
}
})
if (new_face.getAngleTo(face) > 90) {
new_face.invert();
}
face.extend({
vertices: [opposed_vertex, center_vertices[0], center_vertices[1], other_quad_vertex],
uv: {
[opposed_vertex]: face.uv[opposed_vertex],
[center_vertices[0]]: c1_uv_coords,
[center_vertices[1]]: c2_uv_coords,
[other_quad_vertex]: face.uv[other_quad_vertex],
}
})
if (face.getAngleTo(new_face) > 90) {
face.invert();
}
mesh.addFaces(new_face);
// Multiple loop cuts
if (cut_no+1 < cuts) {
splitFace(face, [center_vertices[0], other_quad_vertex], double_side, cut_no+1);
}
if (cut_no != 0) return;
// Find next (and previous) face
for (let fkey in mesh.faces) {
let ref_face = mesh.faces[fkey];
if (ref_face.vertices.length < 3 || processed_faces.includes(ref_face)) continue;
let vertices = ref_face.vertices.filter(vkey => opposite_vertices.includes(vkey))
if (vertices.length >= 2) {
splitFace(ref_face, opposite_vertices, ref_face.vertices.length == 4, 0);
break;
}
}
if (double_side) {
for (let fkey in mesh.faces) {
let ref_face = mesh.faces[fkey];
if (ref_face.vertices.length < 3 || processed_faces.includes(ref_face)) continue;
let vertices = ref_face.vertices.filter(vkey => side_vertices.includes(vkey))
if (vertices.length >= 2) {
let ref_sorted_vertices = ref_face.getSortedVertices();
let ref_opposite_vertices = ref_sorted_vertices.filter(vkey => !side_vertices.includes(vkey));
if (ref_opposite_vertices.length == 2) {
splitFace(ref_face, ref_opposite_vertices, ref_face.vertices.length == 4, 0);
break;
}
}
}
}
} else {
let opposite_vertex = sorted_vertices.find(vkey => !side_vertices.includes(vkey));
let ratio = offset/length;
if (cuts > 1) {
ratio = 1 - (1 / (cuts + 1 - cut_no) * ratio * 2);
}
let center_vertex = getCenterVertex(side_vertices, ratio);
let c1_uv_coords = [
Math.lerp(face.uv[side_vertices[0]][0], face.uv[side_vertices[1]][0], ratio),
Math.lerp(face.uv[side_vertices[0]][1], face.uv[side_vertices[1]][1], ratio),
];
let new_face = new MeshFace(mesh, face).extend({
vertices: [side_vertices[1], center_vertex, opposite_vertex],
uv: {
[side_vertices[1]]: face.uv[side_vertices[1]],
[center_vertex]: c1_uv_coords,
[opposite_vertex]: face.uv[opposite_vertex],
}
})
face.extend({
vertices: [opposite_vertex, center_vertex, side_vertices[0]],
uv: {
[opposite_vertex]: face.uv[opposite_vertex],
[center_vertex]: c1_uv_coords,
[side_vertices[0]]: face.uv[side_vertices[0]],
}
})
if (direction % 3 == 2) {
new_face.invert();
face.invert();
}
mesh.addFaces(new_face);
}
} else if (face.vertices.length == 2) {
let ratio = offset/length;
if (cuts > 1) {
ratio = 1 - (1 / (cuts + 1 - cut_no) * ratio * 2);
}
let center_vertex = getCenterVertex(side_vertices, ratio);
let c1_uv_coords = [
Math.lerp(face.uv[side_vertices[0]][0], face.uv[side_vertices[1]][0], ratio),
Math.lerp(face.uv[side_vertices[0]][1], face.uv[side_vertices[1]][1], ratio),
];
let new_face = new MeshFace(mesh, face).extend({
vertices: [side_vertices[1], center_vertex],
uv: {
[side_vertices[1]]: face.uv[side_vertices[1]],
[center_vertex]: c1_uv_coords,
}
})
face.extend({
vertices: [center_vertex, side_vertices[0]],
uv: {
[center_vertex]: c1_uv_coords,
[side_vertices[0]]: face.uv[side_vertices[0]],
}
})
mesh.addFaces(new_face);
}
}
let start_vertices = start_face.getSortedVertices().filter((vkey, i) => selected_vertices.includes(vkey));
let start_edge = [start_vertices[direction % start_vertices.length], start_vertices[(direction+1) % start_vertices.length]];
if (start_edge.length == 1) start_edge.splice(0, 0, start_vertices[0]);
splitFace(start_face, start_edge, start_face.vertices.length == 4 || direction > 2, 0);
selected_vertices.empty();
for (let key in center_vertices_map) {
selected_vertices.safePush(center_vertices_map[key]);
}
})
Undo.finishEdit('Create loop cut')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
runEdit();
Undo.amendEdit({
direction: {type: 'number', value: 0, label: 'edit.loop_cut.direction', condition: !!selected_face, min: 0},
cuts: {type: 'number', value: 1, label: 'edit.loop_cut.cuts', min: 0, max: 16},
offset: {type: 'number', value: length/2, label: 'edit.loop_cut.offset', min: 0, max: length, interval_type: 'position'},
}, (form, form_options) => {
let direction = form.direction || 0;
length = getLength(direction);
form_options.offset.slider.settings.max = length;
if(saved_direction !== direction)
{
form_options.offset.slider.value = length/2;
form_options.offset.slider.update();
saved_direction = direction;
}
runEdit(true, form_options.offset.slider.value, form_options.direction ? direction : 0, form.cuts);
})
}
})
new Action('dissolve_edges', {
icon: 'border_vertical',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length > 1)},
click() {
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
let edges = mesh.getSelectedEdges(true);
let selected_vertices = mesh.getSelectedVertices(true);
for (let edge of edges) {
let adjacent_faces = [];
let adjacent_fkeys = [];
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (!face.vertices.includes(edge[0]) || !face.vertices.includes(edge[1])) continue;
let vertices = face.getSortedVertices();
let index_a = vertices.indexOf(edge[0]), index_b = vertices.indexOf(edge[1]);
if (vertices.length < 4 || (Math.abs(index_a - index_b) != 2)) {
adjacent_faces.push(face);
adjacent_fkeys.push(fkey);
}
}
// Connect adjacent faces
let keep_faces = adjacent_fkeys.length >= 2;
if (keep_faces) {
let face_a = mesh.faces[adjacent_fkeys[0]],
face_b = mesh.faces[adjacent_fkeys[1]];
let vertices_from_a = face_a.vertices.filter(vkey => edge.indexOf(vkey) == -1);
delete mesh.faces[adjacent_fkeys[0]];
adjacent_fkeys.remove(adjacent_fkeys[0]);
face_b.vertices.safePush(...vertices_from_a);
vertices_from_a.forEach((vkey, i) => {
face_b.uv[vkey] = face_a.uv[vkey] ? face_a.uv[vkey].slice() : [0, 0];
})
// Ensure face has no more than 4 vertices
edge.forEach(edge_vkey => {
if (face_b.vertices.length > 4) {
face_b.vertices.remove(edge_vkey);
delete face_b.uv[edge_vkey];
}
})
// Make sure orientation stays the same
if (face_b.getAngleTo(face_a) > 90) {
face_b.invert();
}
}
// Remove all other faces and lines
adjacent_fkeys.forEach((fkey, i) => {
let face = mesh.faces[fkey];
if (face && (i > 1 || !keep_faces)) {
delete mesh.faces[fkey];
}
})
}
// Remove leftover vertices
let vertices_used = [];
for (let edge of edges) {
vertices_used.safePush(...edge);
}
for (let vkey of vertices_used) {
let used = false;
for (let fkey in mesh.faces) {
if (mesh.faces[fkey].vertices.includes(vkey)) {
used = true;
break;
}
}
if (!used) {
delete mesh.vertices[vkey];
}
}
selected_vertices.empty();
})
Undo.finishEdit('Dissolve edges')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
})
function mergeVertices(by_distance, in_center) {
let found = 0, result = 0;
Undo.initEdit({elements: Mesh.selected});
Mesh.selected.forEach(mesh => {
let selected_vertices = mesh.getSelectedVertices();
if (selected_vertices.length < 2) return;
if (!by_distance) {
let first_vertex = selected_vertices[0];
if (in_center) {
let center = [0, 0, 0];
selected_vertices.forEach(vkey => {
center.V3_add(mesh.vertices[vkey]);
})
center.V3_divide(selected_vertices.length);
mesh.vertices[first_vertex].V3_set(center);
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let matches = selected_vertices.filter(vkey => face.vertices.includes(vkey));
if (matches.length < 2) continue;
let center = [0, 0];
matches.forEach(vkey => {
center[0] += face.uv[vkey][0];
center[1] += face.uv[vkey][1];
})
center[0] /= matches.length;
center[1] /= matches.length;
matches.forEach(vkey => {
face.uv[vkey][0] = center[0];
face.uv[vkey][1] = center[1];
})
}
}
selected_vertices.forEach(vkey => {
if (vkey == first_vertex) return;
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let index = face.vertices.indexOf(vkey);
if (index === -1) continue;
if (face.vertices.includes(first_vertex)) {
face.vertices.remove(vkey);
delete face.uv[vkey];
if (face.vertices.length < 2) {
delete mesh.faces[fkey];
}
} else {
let uv = face.uv[vkey];
face.vertices.splice(index, 1, first_vertex);
face.uv[first_vertex] = uv;
delete face.uv[vkey];
}
}
delete mesh.vertices[vkey];
})
selected_vertices.splice(1, selected_vertices.length);
} else {
let selected_vertices = mesh.getSelectedVertices().slice();
if (selected_vertices.length < 2) return;
let groups = {};
let i = 0;
while (selected_vertices[i]) {
let vkey1 = selected_vertices[i];
let j = i+1;
while (selected_vertices[j]) {
let vkey2 = selected_vertices[j];
let vector1 = mesh.vertices[vkey1];
let vector2 = mesh.vertices[vkey2];
if (Math.sqrt(Math.pow(vector2[0] - vector1[0], 2) + Math.pow(vector2[1] - vector1[1], 2) + Math.pow(vector2[2] - vector1[2], 2)) < settings.vertex_merge_distance.value) {
if (!groups[vkey1]) groups[vkey1] = [];
groups[vkey1].push(vkey2);
}
j++;
}
if (groups[vkey1]) {
groups[vkey1].forEach(vkey2 => {
selected_vertices.remove(vkey2);
})
}
i++;
}
let current_selected_vertices = mesh.getSelectedVertices();
for (let first_vertex in groups) {
let group = groups[first_vertex];
if (in_center) {
let group_all = [first_vertex, ...group];
let center = [0, 0, 0];
group_all.forEach(vkey => {
center.V3_add(mesh.vertices[vkey]);
})
center.V3_divide(group_all.length);
mesh.vertices[first_vertex].V3_set(center);
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let matches = group_all.filter(vkey => face.vertices.includes(vkey));
if (matches.length < 2) continue;
let center = [0, 0];
matches.forEach(vkey => {
center[0] += face.uv[vkey][0];
center[1] += face.uv[vkey][1];
})
center[0] /= matches.length;
center[1] /= matches.length;
matches.forEach(vkey => {
face.uv[vkey][0] = center[0];
face.uv[vkey][1] = center[1];
})
}
}
group.forEach(vkey => {
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
let index = face.vertices.indexOf(vkey);
if (index === -1) continue;
if (face.vertices.includes(first_vertex)) {
face.vertices.remove(vkey);
delete face.uv[vkey];
if (face.vertices.length < 2) {
delete mesh.faces[fkey];
}
} else {
let uv = face.uv[vkey];
face.vertices.splice(index, 1, first_vertex);
face.uv[first_vertex] = uv;
delete face.uv[vkey];
}
}
found++;
delete mesh.vertices[vkey];
current_selected_vertices.remove(vkey);
})
found++;
result++;
}
}
cleanupOverlappingMeshFaces(mesh);
})
Undo.finishEdit('Merge vertices')
Canvas.updateView({elements: Mesh.selected, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
if (by_distance) {
Blockbench.showQuickMessage(tl('message.merged_vertices', [found, result]), 2000);
}
}
new Action('merge_vertices', {
icon: 'close_fullscreen',
category: 'edit',
keybind: new Keybind({key: 'm', shift: true}),
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length > 1)},
click() {
new Menu(this.children).open('mouse');
},
children: [
{
id: 'merge_all',
name: 'action.merge_vertices.merge_all',
icon: 'north_east',
click() {mergeVertices(false, false);}
},
{
id: 'merge_all_in_center',
name: 'action.merge_vertices.merge_all_in_center',
icon: 'close_fullscreen',
click() {mergeVertices(false, true);}
},
{
id: 'merge_by_distance',
name: 'action.merge_vertices.merge_by_distance',
icon: 'expand_less',
click() {mergeVertices(true, false);}
},
{
id: 'merge_by_distance_in_center',
name: 'action.merge_vertices.merge_by_distance_in_center',
icon: 'unfold_less',
click() {mergeVertices(true, true);}
}
]
})
new Action('merge_meshes', {
icon: 'upload',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected.length >= 2)},
click() {
let elements = Mesh.selected.slice();
Undo.initEdit({elements, outliner: true});
let original = Mesh.selected[0];
let vector = new THREE.Vector3();
Mesh.selected.forEach(mesh => {
if (mesh == original) return;
let old_vertex_keys = Object.keys(mesh.vertices);
let new_vertex_keys = original.addVertices(...mesh.vertice_list.map(arr => {
vector.fromArray(arr);
mesh.mesh.localToWorld(vector);
original.mesh.worldToLocal(vector);
return vector.toArray()
}));
for (let key in mesh.faces) {
let old_face = mesh.faces[key];
let new_face = new MeshFace(original, old_face);
let uv = {};
for (let vkey in old_face.uv) {
let new_vkey = new_vertex_keys[old_vertex_keys.indexOf(vkey)]
uv[new_vkey] = old_face.uv[vkey];
}
new_face.extend({
vertices: old_face.vertices.map(v => new_vertex_keys[old_vertex_keys.indexOf(v)]),
uv
})
original.addFaces(new_face)
}
mesh.remove();
elements.remove(mesh);
Mesh.selected.remove(mesh)
})
updateSelection();
Undo.finishEdit('Merge meshes')
Canvas.updateView({elements, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
})
new Action('split_mesh', {
icon: 'call_split',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length)},
click() {
let elements = Mesh.selected.slice();
Undo.initEdit({elements});
Mesh.selected.forEach(mesh => {
let selected_vertices = mesh.getSelectedVertices();
let mesh_selection = Project.mesh_selection[mesh.uuid];
let copy = new Mesh(mesh);
elements.push(copy);
for (let fkey in mesh.faces) {
let face = mesh.faces[fkey];
if (face.isSelected(fkey)) {
delete mesh.faces[fkey];
} else {
delete copy.faces[fkey];
}
}
selected_vertices.forEach(vkey => {
let used = false;
for (let key in mesh.faces) {
let face = mesh.faces[key];
if (face.vertices.includes(vkey)) used = true;
}
if (!used) {
delete mesh.vertices[vkey];
}
})
Object.keys(copy.vertices).filter(vkey => !selected_vertices.includes(vkey)).forEach(vkey => {
let used = false;
for (let key in copy.faces) {
let face = copy.faces[key];
if (face.vertices.includes(vkey)) used = true;
}
if (!used) {
delete copy.vertices[vkey];
}
})
copy.name += '_selection'
copy.sortInBefore(mesh, 1).init();
delete Project.mesh_selection[mesh.uuid];
Project.mesh_selection[copy.uuid] = mesh_selection;
mesh.preview_controller.updateGeometry(mesh);
selected[selected.indexOf(mesh)] = copy;
})
Undo.finishEdit('Merge meshes');
updateSelection();
Canvas.updateView({elements, element_aspects: {geometry: true, uv: true, faces: true}, selection: true})
}
})
let import_obj_dialog;
new Action('import_obj', {
icon: 'fa-gem',
category: 'file',
condition: {modes: ['edit'], method: () => (Format.meshes)},
click: function () {
function importOBJ(result) {
let mtl_materials = {};
if (result.mtl) {
let mtl_lines = result.mtl.content.split(/[\r\n]+/);
let current_material;
for (let line of mtl_lines) {
let args = line.split(/\s+/).filter(arg => typeof arg !== 'undefined' && arg !== '');
let cmd = args.shift();
switch (cmd) {
case 'newmtl': {
current_material = mtl_materials[args[0]] = {};
break;
}
case 'map_Kd': {
let texture_name = args[0];
let texture_path = isApp ? PathModule.join(result.mtl.path, '..', texture_name) : '';
let texture = new Texture().fromPath(texture_path).add();
current_material.texture = texture;
}
}
}
}
let {content} = result.obj;
let lines = content.split(/[\r\n]+/);
function toVector(args, length) {
return args.map(v => parseFloat(v));
}
let mesh;
let vertices = [];
let vertex_keys = {};
let vertex_textures = [];
let vertex_normals = [];
let meshes = [];
let vector1 = new THREE.Vector3();
let vector2 = new THREE.Vector3();
let current_texture;
Undo.initEdit({outliner: true, elements: meshes, selection: true});
lines.forEach(line => {
if (line.substr(0, 1) == '#' || !line) return;
let args = line.split(/\s+/).filter(arg => typeof arg !== 'undefined' && arg !== '');
let cmd = args.shift();
if (['o', 'g'].includes(cmd) || (cmd == 'v' && !mesh)) {
mesh = new Mesh({
name: ['o', 'g'].includes(cmd) ? args[0] : 'unknown',
vertices: {}
})
vertex_keys = {};
meshes.push(mesh);
}
if (cmd == 'v') {
vertices.push(toVector(args, 3).map(v => v * result.scale));
}
if (cmd == 'vt') {
vertex_textures.push(toVector(args, 2))
}
if (cmd == 'vn') {
vertex_normals.push(toVector(args, 3))
}
if (cmd == 'f') {
let f = {
vertices: [],
vertex_textures: [],
vertex_normals: [],
}
args.forEach((triplet, i) => {
if (i >= 4) return;
let [v, vt, vn] = triplet.split('/').map(v => parseInt(v));
if (!vertex_keys[ v-1 ]) {
vertex_keys[ v-1 ] = mesh.addVertices(vertices[v-1])[0];
}
f.vertices.push(vertex_keys[ v-1 ]);
f.vertex_textures.push(vertex_textures[ vt-1 ]);
f.vertex_normals.push(vertex_normals[ vn-1 ]);
})
let uv = {};
f.vertex_textures.forEach((vt, i) => {
let key = f.vertices[i];
if (vt instanceof Array) {
uv[key] = [
vt[0] * Project.texture_width,
(1-vt[1]) * Project.texture_width
];
} else {
uv[key] = [0, 0];
}
})
let face = new MeshFace(mesh, {
vertices: f.vertices,
uv,
texture: current_texture
})
mesh.addFaces(face);
if (f.vertex_normals.find(v => v)) {
vector1.fromArray(face.getNormal());
vector2.fromArray(f.vertex_normals[0]);
let angle = vector1.angleTo(vector2);
if (angle > Math.PI/2) {
face.invert();
}
}
}
if (cmd == 'usemtl') {
current_texture = mtl_materials[args[0]]?.texture;
}
})
meshes.forEach(mesh => {
mesh.init();
})
Undo.finishEdit('Import OBJ');
}
if (!import_obj_dialog) {
import_obj_dialog = new Dialog('import_obj', {
title: 'action.import_obj',
form: {
obj: {type: 'file', label: 'dialog.import_obj.obj', return_as: 'file', extensions: ['obj'], resource_id: 'obj', filetype: 'OBJ Wavefront Model'},
mtl: {type: 'file', label: 'dialog.import_obj.mtl', return_as: 'file', extensions: ['mtl'], resource_id: 'obj', filetype: 'OBJ Material File'},
scale: {type: 'number', label: 'dialog.import_obj.scale', value: 16},
},
onConfirm(result) {
importOBJ(result);
}
})
}
import_obj_dialog.show();
}
})
StateMemory.init('proportional_editing_options', 'object');
if (!StateMemory.proportional_editing_options.range) {
StateMemory.proportional_editing_options.range = 8;
}
if (!StateMemory.proportional_editing_options.falloff) {
StateMemory.proportional_editing_options.falloff = 'linear';
}
if (!StateMemory.proportional_editing_options.selection) {
StateMemory.proportional_editing_options.selection = 'linear';
}
new NumSlider('proportional_editing_range', {
category: 'edit',
condition: {modes: ['edit'], features: ['meshes']},
get() {
return StateMemory.proportional_editing_options.range
},
change(modify) {
StateMemory.proportional_editing_options.range = modify(StateMemory.proportional_editing_options.range);
},
onAfter() {
StateMemory.save('proportional_editing_options');
}
})
new Toggle('proportional_editing', {
icon: 'wifi_tethering',
category: 'edit',
condition: {modes: ['edit'], features: ['meshes'], method: () => (Mesh.selected[0] && Mesh.selected[0].getSelectedVertices().length > 0)},
side_menu: new Dialog('proportional_editing_options', {
title: 'action.proportional_editing',
width: 400,
singleButton: true,
form: {
enabled: {type: 'checkbox', label: 'menu.mirror_painting.enabled', value: false},
range: {type: 'number', label: 'dialog.proportional_editing.range', value: StateMemory.proportional_editing_options.range},
falloff: {type: 'select', label: 'dialog.proportional_editing.falloff', value: StateMemory.proportional_editing_options.falloff, options: {
linear: 'dialog.proportional_editing.falloff.linear',
hermite_spline: 'dialog.proportional_editing.falloff.hermite_spline',
constant: 'dialog.proportional_editing.falloff.constant',
}},
selection: {type: 'select', label: 'dialog.proportional_editing.selection', value: StateMemory.proportional_editing_options.selection, options: {
linear: 'dialog.proportional_editing.selection.linear',
connections: 'dialog.proportional_editing.selection.connections',
//path: 'Connection Path',
}},
},
onOpen() {
this.setFormValues({enabled: BarItems.proportional_editing.value});
},
onFormChange(formResult) {
if (BarItems.proportional_editing.value != formResult.enabled) {
BarItems.proportional_editing.trigger();
}
StateMemory.proportional_editing_options.range = formResult.range;
StateMemory.proportional_editing_options.falloff = formResult.falloff;
StateMemory.proportional_editing_options.selection = formResult.selection;
StateMemory.save('proportional_editing_options');
BarItems.proportional_editing_range.update();
}
})
})
})