binutils-gdb/gdb/netbsd-tdep.c
Tom Tromey cc495054ad Remove arch_type
This removes arch_type, replacing all uses with the new type
allocator.

Reviewed-By: Simon Marchi <simon.marchi@efficios.com>
2023-03-18 11:12:37 -06:00

626 lines
17 KiB
C

/* Common target-dependent code for NetBSD systems.
Copyright (C) 2002-2023 Free Software Foundation, Inc.
Contributed by Wasabi Systems, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "auxv.h"
#include "solib-svr4.h"
#include "netbsd-tdep.h"
#include "gdbarch.h"
#include "objfiles.h"
#include "xml-syscall.h"
/* Flags in the 'kve_protection' field in struct kinfo_vmentry. These
match the KVME_PROT_* constants in <sys/sysctl.h>. */
#define KINFO_VME_PROT_READ 0x00000001
#define KINFO_VME_PROT_WRITE 0x00000002
#define KINFO_VME_PROT_EXEC 0x00000004
/* Flags in the 'kve_flags' field in struct kinfo_vmentry. These
match the KVME_FLAG_* constants in <sys/sysctl.h>. */
#define KINFO_VME_FLAG_COW 0x00000001
#define KINFO_VME_FLAG_NEEDS_COPY 0x00000002
#define KINFO_VME_FLAG_NOCOREDUMP 0x00000004
#define KINFO_VME_FLAG_PAGEABLE 0x00000008
#define KINFO_VME_FLAG_GROWS_UP 0x00000010
#define KINFO_VME_FLAG_GROWS_DOWN 0x00000020
/* FIXME: kettenis/20060115: We should really eliminate the next two
functions completely. */
struct link_map_offsets *
nbsd_ilp32_solib_svr4_fetch_link_map_offsets (void)
{
return svr4_ilp32_fetch_link_map_offsets ();
}
struct link_map_offsets *
nbsd_lp64_solib_svr4_fetch_link_map_offsets (void)
{
return svr4_lp64_fetch_link_map_offsets ();
}
int
nbsd_pc_in_sigtramp (CORE_ADDR pc, const char *func_name)
{
/* Check for libc-provided signal trampoline. All such trampolines
have function names which begin with "__sigtramp". */
return (func_name != NULL
&& startswith (func_name, "__sigtramp"));
}
/* This enum is derived from NETBSD's <sys/signal.h>. */
enum
{
NBSD_SIGHUP = 1,
NBSD_SIGINT = 2,
NBSD_SIGQUIT = 3,
NBSD_SIGILL = 4,
NBSD_SIGTRAP = 5,
NBSD_SIGABRT = 6,
NBSD_SIGEMT = 7,
NBSD_SIGFPE = 8,
NBSD_SIGKILL = 9,
NBSD_SIGBUS = 10,
NBSD_SIGSEGV = 11,
NBSD_SIGSYS = 12,
NBSD_SIGPIPE = 13,
NBSD_SIGALRM = 14,
NBSD_SIGTERM = 15,
NBSD_SIGURG = 16,
NBSD_SIGSTOP = 17,
NBSD_SIGTSTP = 18,
NBSD_SIGCONT = 19,
NBSD_SIGCHLD = 20,
NBSD_SIGTTIN = 21,
NBSD_SIGTTOU = 22,
NBSD_SIGIO = 23,
NBSD_SIGXCPU = 24,
NBSD_SIGXFSZ = 25,
NBSD_SIGVTALRM = 26,
NBSD_SIGPROF = 27,
NBSD_SIGWINCH = 28,
NBSD_SIGINFO = 29,
NBSD_SIGUSR1 = 30,
NBSD_SIGUSR2 = 31,
NBSD_SIGPWR = 32,
NBSD_SIGRTMIN = 33,
NBSD_SIGRTMAX = 63,
};
/* Implement the "gdb_signal_from_target" gdbarch method. */
static enum gdb_signal
nbsd_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
{
switch (signal)
{
case 0:
return GDB_SIGNAL_0;
case NBSD_SIGHUP:
return GDB_SIGNAL_HUP;
case NBSD_SIGINT:
return GDB_SIGNAL_INT;
case NBSD_SIGQUIT:
return GDB_SIGNAL_QUIT;
case NBSD_SIGILL:
return GDB_SIGNAL_ILL;
case NBSD_SIGTRAP:
return GDB_SIGNAL_TRAP;
case NBSD_SIGABRT:
return GDB_SIGNAL_ABRT;
case NBSD_SIGEMT:
return GDB_SIGNAL_EMT;
case NBSD_SIGFPE:
return GDB_SIGNAL_FPE;
case NBSD_SIGKILL:
return GDB_SIGNAL_KILL;
case NBSD_SIGBUS:
return GDB_SIGNAL_BUS;
case NBSD_SIGSEGV:
return GDB_SIGNAL_SEGV;
case NBSD_SIGSYS:
return GDB_SIGNAL_SYS;
case NBSD_SIGPIPE:
return GDB_SIGNAL_PIPE;
case NBSD_SIGALRM:
return GDB_SIGNAL_ALRM;
case NBSD_SIGTERM:
return GDB_SIGNAL_TERM;
case NBSD_SIGURG:
return GDB_SIGNAL_URG;
case NBSD_SIGSTOP:
return GDB_SIGNAL_STOP;
case NBSD_SIGTSTP:
return GDB_SIGNAL_TSTP;
case NBSD_SIGCONT:
return GDB_SIGNAL_CONT;
case NBSD_SIGCHLD:
return GDB_SIGNAL_CHLD;
case NBSD_SIGTTIN:
return GDB_SIGNAL_TTIN;
case NBSD_SIGTTOU:
return GDB_SIGNAL_TTOU;
case NBSD_SIGIO:
return GDB_SIGNAL_IO;
case NBSD_SIGXCPU:
return GDB_SIGNAL_XCPU;
case NBSD_SIGXFSZ:
return GDB_SIGNAL_XFSZ;
case NBSD_SIGVTALRM:
return GDB_SIGNAL_VTALRM;
case NBSD_SIGPROF:
return GDB_SIGNAL_PROF;
case NBSD_SIGWINCH:
return GDB_SIGNAL_WINCH;
case NBSD_SIGINFO:
return GDB_SIGNAL_INFO;
case NBSD_SIGUSR1:
return GDB_SIGNAL_USR1;
case NBSD_SIGUSR2:
return GDB_SIGNAL_USR2;
case NBSD_SIGPWR:
return GDB_SIGNAL_PWR;
/* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
therefore we have to handle them here. */
case NBSD_SIGRTMIN:
return GDB_SIGNAL_REALTIME_33;
case NBSD_SIGRTMAX:
return GDB_SIGNAL_REALTIME_63;
}
if (signal >= NBSD_SIGRTMIN + 1 && signal <= NBSD_SIGRTMAX - 1)
{
int offset = signal - NBSD_SIGRTMIN + 1;
return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_34 + offset);
}
return GDB_SIGNAL_UNKNOWN;
}
/* Implement the "gdb_signal_to_target" gdbarch method. */
static int
nbsd_gdb_signal_to_target (struct gdbarch *gdbarch,
enum gdb_signal signal)
{
switch (signal)
{
case GDB_SIGNAL_0:
return 0;
case GDB_SIGNAL_HUP:
return NBSD_SIGHUP;
case GDB_SIGNAL_INT:
return NBSD_SIGINT;
case GDB_SIGNAL_QUIT:
return NBSD_SIGQUIT;
case GDB_SIGNAL_ILL:
return NBSD_SIGILL;
case GDB_SIGNAL_TRAP:
return NBSD_SIGTRAP;
case GDB_SIGNAL_ABRT:
return NBSD_SIGABRT;
case GDB_SIGNAL_EMT:
return NBSD_SIGEMT;
case GDB_SIGNAL_FPE:
return NBSD_SIGFPE;
case GDB_SIGNAL_KILL:
return NBSD_SIGKILL;
case GDB_SIGNAL_BUS:
return NBSD_SIGBUS;
case GDB_SIGNAL_SEGV:
return NBSD_SIGSEGV;
case GDB_SIGNAL_SYS:
return NBSD_SIGSYS;
case GDB_SIGNAL_PIPE:
return NBSD_SIGPIPE;
case GDB_SIGNAL_ALRM:
return NBSD_SIGALRM;
case GDB_SIGNAL_TERM:
return NBSD_SIGTERM;
case GDB_SIGNAL_URG:
return NBSD_SIGSTOP;
case GDB_SIGNAL_TSTP:
return NBSD_SIGTSTP;
case GDB_SIGNAL_CONT:
return NBSD_SIGCONT;
case GDB_SIGNAL_CHLD:
return NBSD_SIGCHLD;
case GDB_SIGNAL_TTIN:
return NBSD_SIGTTIN;
case GDB_SIGNAL_TTOU:
return NBSD_SIGTTOU;
case GDB_SIGNAL_IO:
return NBSD_SIGIO;
case GDB_SIGNAL_XCPU:
return NBSD_SIGXCPU;
case GDB_SIGNAL_XFSZ:
return NBSD_SIGXFSZ;
case GDB_SIGNAL_VTALRM:
return NBSD_SIGVTALRM;
case GDB_SIGNAL_PROF:
return NBSD_SIGPROF;
case GDB_SIGNAL_WINCH:
return NBSD_SIGWINCH;
case GDB_SIGNAL_INFO:
return NBSD_SIGINFO;
case GDB_SIGNAL_USR1:
return NBSD_SIGUSR1;
case GDB_SIGNAL_USR2:
return NBSD_SIGUSR2;
case GDB_SIGNAL_PWR:
return NBSD_SIGPWR;
/* GDB_SIGNAL_REALTIME_33 is not continuous in <gdb/signals.def>,
therefore we have to handle it here. */
case GDB_SIGNAL_REALTIME_33:
return NBSD_SIGRTMIN;
/* Same comment applies to _64. */
case GDB_SIGNAL_REALTIME_63:
return NBSD_SIGRTMAX;
}
if (signal >= GDB_SIGNAL_REALTIME_34
&& signal <= GDB_SIGNAL_REALTIME_62)
{
int offset = signal - GDB_SIGNAL_REALTIME_32;
return NBSD_SIGRTMIN + 1 + offset;
}
return -1;
}
/* Shared library resolver handling. */
static CORE_ADDR
nbsd_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct bound_minimal_symbol msym;
msym = lookup_minimal_symbol ("_rtld_bind_start", NULL, NULL);
if (msym.minsym && msym.value_address () == pc)
return frame_unwind_caller_pc (get_current_frame ());
else
return find_solib_trampoline_target (get_current_frame (), pc);
}
struct nbsd_gdbarch_data
{
struct type *siginfo_type = nullptr;
};
static const registry<gdbarch>::key<nbsd_gdbarch_data>
nbsd_gdbarch_data_handle;
static struct nbsd_gdbarch_data *
get_nbsd_gdbarch_data (struct gdbarch *gdbarch)
{
struct nbsd_gdbarch_data *result = nbsd_gdbarch_data_handle.get (gdbarch);
if (result == nullptr)
result = nbsd_gdbarch_data_handle.emplace (gdbarch);
return result;
}
/* Implement the "get_siginfo_type" gdbarch method. */
static struct type *
nbsd_get_siginfo_type (struct gdbarch *gdbarch)
{
nbsd_gdbarch_data *nbsd_gdbarch_data = get_nbsd_gdbarch_data (gdbarch);
if (nbsd_gdbarch_data->siginfo_type != NULL)
return nbsd_gdbarch_data->siginfo_type;
type *char_type = builtin_type (gdbarch)->builtin_char;
type *int_type = builtin_type (gdbarch)->builtin_int;
type *long_type = builtin_type (gdbarch)->builtin_long;
type *void_ptr_type
= lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
type *int32_type = builtin_type (gdbarch)->builtin_int32;
type *uint32_type = builtin_type (gdbarch)->builtin_uint32;
type *uint64_type = builtin_type (gdbarch)->builtin_uint64;
bool lp64 = void_ptr_type->length () == 8;
size_t char_bits = gdbarch_addressable_memory_unit_size (gdbarch) * 8;
/* pid_t */
type_allocator alloc (gdbarch);
type *pid_type = alloc.new_type (TYPE_CODE_TYPEDEF,
int32_type->length () * char_bits,
"pid_t");
pid_type->set_target_type (int32_type);
/* uid_t */
type *uid_type = alloc.new_type (TYPE_CODE_TYPEDEF,
uint32_type->length () * char_bits,
"uid_t");
uid_type->set_target_type (uint32_type);
/* clock_t */
type *clock_type = alloc.new_type (TYPE_CODE_TYPEDEF,
int_type->length () * char_bits,
"clock_t");
clock_type->set_target_type (int_type);
/* lwpid_t */
type *lwpid_type = alloc.new_type (TYPE_CODE_TYPEDEF,
int32_type->length () * char_bits,
"lwpid_t");
lwpid_type->set_target_type (int32_type);
/* union sigval */
type *sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
sigval_type->set_name (gdbarch_obstack_strdup (gdbarch, "sigval"));
append_composite_type_field (sigval_type, "sival_int", int_type);
append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
/* union _option */
type *option_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
option_type->set_name (gdbarch_obstack_strdup (gdbarch, "_option"));
append_composite_type_field (option_type, "_pe_other_pid", pid_type);
append_composite_type_field (option_type, "_pe_lwp", lwpid_type);
/* union _reason */
type *reason_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
/* _rt */
type *t = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
append_composite_type_field (t, "_pid", pid_type);
append_composite_type_field (t, "_uid", uid_type);
append_composite_type_field (t, "_value", sigval_type);
append_composite_type_field (reason_type, "_rt", t);
/* _child */
t = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
append_composite_type_field (t, "_pid", pid_type);
append_composite_type_field (t, "_uid", uid_type);
append_composite_type_field (t, "_status", int_type);
append_composite_type_field (t, "_utime", clock_type);
append_composite_type_field (t, "_stime", clock_type);
append_composite_type_field (reason_type, "_child", t);
/* _fault */
t = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
append_composite_type_field (t, "_addr", void_ptr_type);
append_composite_type_field (t, "_trap", int_type);
append_composite_type_field (t, "_trap2", int_type);
append_composite_type_field (t, "_trap3", int_type);
append_composite_type_field (reason_type, "_fault", t);
/* _poll */
t = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
append_composite_type_field (t, "_band", long_type);
append_composite_type_field (t, "_fd", int_type);
append_composite_type_field (reason_type, "_poll", t);
/* _syscall */
t = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
append_composite_type_field (t, "_sysnum", int_type);
append_composite_type_field (t, "_retval",
init_vector_type (int_type, 2));
append_composite_type_field (t, "_error", int_type);
append_composite_type_field (t, "_args",
init_vector_type (uint64_type, 8));
append_composite_type_field (reason_type, "_syscall", t);
/* _ptrace_state */
t = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
append_composite_type_field (t, "_pe_report_event", int_type);
append_composite_type_field (t, "_option", option_type);
append_composite_type_field (reason_type, "_ptrace_state", t);
/* struct _ksiginfo */
type *ksiginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
ksiginfo_type->set_name (gdbarch_obstack_strdup (gdbarch, "_ksiginfo"));
append_composite_type_field (ksiginfo_type, "_signo", int_type);
append_composite_type_field (ksiginfo_type, "_code", int_type);
append_composite_type_field (ksiginfo_type, "_errno", int_type);
if (lp64)
append_composite_type_field (ksiginfo_type, "_pad", int_type);
append_composite_type_field (ksiginfo_type, "_reason", reason_type);
/* union siginfo */
type *siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
siginfo_type->set_name (gdbarch_obstack_strdup (gdbarch, "siginfo"));
append_composite_type_field (siginfo_type, "si_pad",
init_vector_type (char_type, 128));
append_composite_type_field (siginfo_type, "_info", ksiginfo_type);
nbsd_gdbarch_data->siginfo_type = siginfo_type;
return siginfo_type;
}
/* See netbsd-tdep.h. */
void
nbsd_info_proc_mappings_header (int addr_bit)
{
gdb_printf (_("Mapped address spaces:\n\n"));
if (addr_bit == 64)
{
gdb_printf (" %18s %18s %10s %10s %9s %s\n",
"Start Addr",
" End Addr",
" Size", " Offset", "Flags ", "File");
}
else
{
gdb_printf ("\t%10s %10s %10s %10s %9s %s\n",
"Start Addr",
" End Addr",
" Size", " Offset", "Flags ", "File");
}
}
/* Helper function to generate mappings flags for a single VM map
entry in 'info proc mappings'. */
static const char *
nbsd_vm_map_entry_flags (int kve_flags, int kve_protection)
{
static char vm_flags[9];
vm_flags[0] = (kve_protection & KINFO_VME_PROT_READ) ? 'r' : '-';
vm_flags[1] = (kve_protection & KINFO_VME_PROT_WRITE) ? 'w' : '-';
vm_flags[2] = (kve_protection & KINFO_VME_PROT_EXEC) ? 'x' : '-';
vm_flags[3] = ' ';
vm_flags[4] = (kve_flags & KINFO_VME_FLAG_COW) ? 'C' : '-';
vm_flags[5] = (kve_flags & KINFO_VME_FLAG_NEEDS_COPY) ? 'N' : '-';
vm_flags[6] = (kve_flags & KINFO_VME_FLAG_PAGEABLE) ? 'P' : '-';
vm_flags[7] = (kve_flags & KINFO_VME_FLAG_GROWS_UP) ? 'U'
: (kve_flags & KINFO_VME_FLAG_GROWS_DOWN) ? 'D' : '-';
vm_flags[8] = '\0';
return vm_flags;
}
void
nbsd_info_proc_mappings_entry (int addr_bit, ULONGEST kve_start,
ULONGEST kve_end, ULONGEST kve_offset,
int kve_flags, int kve_protection,
const char *kve_path)
{
if (addr_bit == 64)
{
gdb_printf (" %18s %18s %10s %10s %9s %s\n",
hex_string (kve_start),
hex_string (kve_end),
hex_string (kve_end - kve_start),
hex_string (kve_offset),
nbsd_vm_map_entry_flags (kve_flags, kve_protection),
kve_path);
}
else
{
gdb_printf ("\t%10s %10s %10s %10s %9s %s\n",
hex_string (kve_start),
hex_string (kve_end),
hex_string (kve_end - kve_start),
hex_string (kve_offset),
nbsd_vm_map_entry_flags (kve_flags, kve_protection),
kve_path);
}
}
/* Implement the "get_syscall_number" gdbarch method. */
static LONGEST
nbsd_get_syscall_number (struct gdbarch *gdbarch, thread_info *thread)
{
/* NetBSD doesn't use gdbarch_get_syscall_number since NetBSD
native targets fetch the system call number from the
'si_sysnum' member of siginfo_t in nbsd_nat_target::wait.
However, system call catching requires this function to be
set. */
internal_error (_("nbsd_get_sycall_number called"));
}
/* See netbsd-tdep.h. */
void
nbsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
set_gdbarch_gdb_signal_from_target (gdbarch, nbsd_gdb_signal_from_target);
set_gdbarch_gdb_signal_to_target (gdbarch, nbsd_gdb_signal_to_target);
set_gdbarch_skip_solib_resolver (gdbarch, nbsd_skip_solib_resolver);
set_gdbarch_auxv_parse (gdbarch, svr4_auxv_parse);
set_gdbarch_get_siginfo_type (gdbarch, nbsd_get_siginfo_type);
/* `catch syscall' */
set_xml_syscall_file_name (gdbarch, "syscalls/netbsd.xml");
set_gdbarch_get_syscall_number (gdbarch, nbsd_get_syscall_number);
}