mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
0879691698
The previous commit added the test gdb.arch/core-file-pid0.exp which tests GDB's ability to load a core file containing threads with an lwpid of 0, which is something we GDB can encounter when loading a vmcore file -- a core file generated by the Linux kernel. The threads with an lwpid of 0 represents idle cores. While the previous commit added the test, which confirms GDB doesn't crash when confronted with such a core file, there are still some problems with GDB's handling of these core files. These problems all originate from the fact that the core file (once opened by bfd) contains multiple sections called .reg/0, these sections all represents different threads (cpu cores in the original vmcore dump), but GDB gets confused and thinks all of these .reg/0 sections are all referencing the same thread. Here is a GDB session on an x86-64 machine which loads the core file from the gdb.arch/core-file-pid0.exp, this core file contains two threads, both of which have a pid of 0: $ ./gdb/gdb --data-directory ./gdb/data-directory/ -q (gdb) core-file /tmp/x86_64-pid0-core.core [New process 1] [New process 1] Failed to read a valid object file image from memory. Core was generated by `./segv-mt'. Program terminated with signal SIGSEGV, Segmentation fault. The current thread has terminated (gdb) info threads Id Target Id Frame 2 process 1 0x00000000004017c2 in ?? () The current thread <Thread ID 1> has terminated. See `help thread'. (gdb) maintenance info sections Core file: `/tmp/x86_64-pid0-core.core', file type elf64-x86-64. [0] 0x00000000->0x000012d4 at 0x00000318: note0 READONLY HAS_CONTENTS [1] 0x00000000->0x000000d8 at 0x0000039c: .reg/0 HAS_CONTENTS [2] 0x00000000->0x000000d8 at 0x0000039c: .reg HAS_CONTENTS [3] 0x00000000->0x00000080 at 0x0000052c: .note.linuxcore.siginfo/0 HAS_CONTENTS [4] 0x00000000->0x00000080 at 0x0000052c: .note.linuxcore.siginfo HAS_CONTENTS [5] 0x00000000->0x00000140 at 0x000005c0: .auxv HAS_CONTENTS [6] 0x00000000->0x000000a4 at 0x00000714: .note.linuxcore.file/0 HAS_CONTENTS [7] 0x00000000->0x000000a4 at 0x00000714: .note.linuxcore.file HAS_CONTENTS [8] 0x00000000->0x00000200 at 0x000007cc: .reg2/0 HAS_CONTENTS [9] 0x00000000->0x00000200 at 0x000007cc: .reg2 HAS_CONTENTS [10] 0x00000000->0x00000440 at 0x000009e0: .reg-xstate/0 HAS_CONTENTS [11] 0x00000000->0x00000440 at 0x000009e0: .reg-xstate HAS_CONTENTS [12] 0x00000000->0x000000d8 at 0x00000ea4: .reg/0 HAS_CONTENTS [13] 0x00000000->0x00000200 at 0x00000f98: .reg2/0 HAS_CONTENTS [14] 0x00000000->0x00000440 at 0x000011ac: .reg-xstate/0 HAS_CONTENTS [15] 0x00400000->0x00401000 at 0x00002000: load1 ALLOC LOAD READONLY HAS_CONTENTS [16] 0x00401000->0x004b9000 at 0x00003000: load2 ALLOC READONLY CODE [17] 0x004b9000->0x004e5000 at 0x00003000: load3 ALLOC READONLY [18] 0x004e6000->0x004ec000 at 0x00003000: load4 ALLOC LOAD HAS_CONTENTS [19] 0x004ec000->0x004f2000 at 0x00009000: load5 ALLOC LOAD HAS_CONTENTS [20] 0x012a8000->0x012cb000 at 0x0000f000: load6 ALLOC LOAD HAS_CONTENTS [21] 0x7fda77736000->0x7fda77737000 at 0x00032000: load7 ALLOC READONLY [22] 0x7fda77737000->0x7fda77f37000 at 0x00032000: load8 ALLOC LOAD HAS_CONTENTS [23] 0x7ffd55f65000->0x7ffd55f86000 at 0x00832000: load9 ALLOC LOAD HAS_CONTENTS [24] 0x7ffd55fc3000->0x7ffd55fc7000 at 0x00853000: load10 ALLOC LOAD READONLY HAS_CONTENTS [25] 0x7ffd55fc7000->0x7ffd55fc9000 at 0x00857000: load11 ALLOC LOAD READONLY CODE HAS_CONTENTS [26] 0xffffffffff600000->0xffffffffff601000 at 0x00859000: load12 ALLOC LOAD READONLY CODE HAS_CONTENTS (gdb) Notice when the core file is first loaded we see two lines like: [New process 1] And GDB reports: The current thread has terminated Which isn't what we'd expect from a core file -- the core file should only contain threads that are live at the point of the crash, one of which should be the current thread. The above message is reported because GDB has deleted what we think is the current thread! And in the 'info threads' output we are only seeing a single thread, again, this is because GDB has deleted one of the threads. Finally, the 'maintenance info sections' output shows the cause of all our problems, two sections named .reg/0. When GDB sees the first of these it creates a new thread. But, when we see the second .reg/0 GDB tries to create another new thread, but this thread has the same ptid_t as the first thread, so GDB deletes the first thread and creates the second thread in its place. Because both these threads are created with an lwpid of 0 GDB reports these are 'New process NN' rather than 'New LWP NN' which is what we would normally expect. The previous commit includes a little more of the history of GDB support in this area, but these problems were discussed on the mailing list a while ago in this thread: https://inbox.sourceware.org/gdb-patches/AANLkTi=zuEDw6qiZ1jRatkdwHO99xF2Qu+WZ7i0EQjef@mail.gmail.com/ In this commit I propose a solution to these problems. What I propose is that GDB should spot when we have .reg/0 sections and, when these are found, should rename these sections using some unique non-zero lwpid. Note in the above output we also have sections like .reg2/0 and .reg-xstate/0, these are additional register sets, this commit also renumbers these sections inline with their .reg section. The user is warned that some section renumbering has been performed. GDB takes care to ensure that the new numbers assigned are unique and don't clash with any of the pid's that might already be in use -- remember, in a real vmcore file, 0 is used to indicate an idle core, non-idle cores will have the pid of whichever process was running on that core, so we don't want GDB to assign an lwpid that clashes with an actual pid that is in use in the core file. After this commit here's the updated GDB session output: $ ./gdb/gdb --data-directory ./gdb/data-directory/ -q (gdb) core-file /tmp/x86_64-pid0-core.core warning: found threads with pid 0, assigned replacement Target Ids: LWP 1, LWP 2 [New LWP 1] [New LWP 2] Failed to read a valid object file image from memory. Core was generated by `./segv-mt'. Program terminated with signal SIGSEGV, Segmentation fault. #0 0x00000000004017c2 in ?? () [Current thread is 1 (LWP 1)] (gdb) info threads Id Target Id Frame * 1 LWP 1 0x00000000004017c2 in ?? () 2 LWP 2 0x000000000040dda5 in ?? () (gdb) maintenance info sections Core file: `/tmp/x86_64-pid0-core.core', file type elf64-x86-64. [0] 0x00000000->0x000012d4 at 0x00000318: note0 READONLY HAS_CONTENTS [1] 0x00000000->0x000000d8 at 0x0000039c: .reg/1 HAS_CONTENTS [2] 0x00000000->0x000000d8 at 0x0000039c: .reg HAS_CONTENTS [3] 0x00000000->0x00000080 at 0x0000052c: .note.linuxcore.siginfo/1 HAS_CONTENTS [4] 0x00000000->0x00000080 at 0x0000052c: .note.linuxcore.siginfo HAS_CONTENTS [5] 0x00000000->0x00000140 at 0x000005c0: .auxv HAS_CONTENTS [6] 0x00000000->0x000000a4 at 0x00000714: .note.linuxcore.file/1 HAS_CONTENTS [7] 0x00000000->0x000000a4 at 0x00000714: .note.linuxcore.file HAS_CONTENTS [8] 0x00000000->0x00000200 at 0x000007cc: .reg2/1 HAS_CONTENTS [9] 0x00000000->0x00000200 at 0x000007cc: .reg2 HAS_CONTENTS [10] 0x00000000->0x00000440 at 0x000009e0: .reg-xstate/1 HAS_CONTENTS [11] 0x00000000->0x00000440 at 0x000009e0: .reg-xstate HAS_CONTENTS [12] 0x00000000->0x000000d8 at 0x00000ea4: .reg/2 HAS_CONTENTS [13] 0x00000000->0x00000200 at 0x00000f98: .reg2/2 HAS_CONTENTS [14] 0x00000000->0x00000440 at 0x000011ac: .reg-xstate/2 HAS_CONTENTS [15] 0x00400000->0x00401000 at 0x00002000: load1 ALLOC LOAD READONLY HAS_CONTENTS [16] 0x00401000->0x004b9000 at 0x00003000: load2 ALLOC READONLY CODE [17] 0x004b9000->0x004e5000 at 0x00003000: load3 ALLOC READONLY [18] 0x004e6000->0x004ec000 at 0x00003000: load4 ALLOC LOAD HAS_CONTENTS [19] 0x004ec000->0x004f2000 at 0x00009000: load5 ALLOC LOAD HAS_CONTENTS [20] 0x012a8000->0x012cb000 at 0x0000f000: load6 ALLOC LOAD HAS_CONTENTS [21] 0x7fda77736000->0x7fda77737000 at 0x00032000: load7 ALLOC READONLY [22] 0x7fda77737000->0x7fda77f37000 at 0x00032000: load8 ALLOC LOAD HAS_CONTENTS [23] 0x7ffd55f65000->0x7ffd55f86000 at 0x00832000: load9 ALLOC LOAD HAS_CONTENTS [24] 0x7ffd55fc3000->0x7ffd55fc7000 at 0x00853000: load10 ALLOC LOAD READONLY HAS_CONTENTS [25] 0x7ffd55fc7000->0x7ffd55fc9000 at 0x00857000: load11 ALLOC LOAD READONLY CODE HAS_CONTENTS [26] 0xffffffffff600000->0xffffffffff601000 at 0x00859000: load12 ALLOC LOAD READONLY CODE HAS_CONTENTS (gdb) Notice the new warning which is issued when the core file is being loaded. The threads are announced as '[New LWP NN]', and we see two threads in the 'info threads' output. The 'maintenance info sections' output shows the result of the section renaming. The gdb.arch/core-file-pid0.exp test has been update to check for the improved GDB output. Reviewed-By: Kevin Buettner <kevinb@redhat.com>
1477 lines
44 KiB
C
1477 lines
44 KiB
C
/* Core dump and executable file functions below target vector, for GDB.
|
||
|
||
Copyright (C) 1986-2023 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include <signal.h>
|
||
#include <fcntl.h>
|
||
#include "frame.h" /* required by inferior.h */
|
||
#include "inferior.h"
|
||
#include "infrun.h"
|
||
#include "symtab.h"
|
||
#include "command.h"
|
||
#include "bfd.h"
|
||
#include "target.h"
|
||
#include "process-stratum-target.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbthread.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "symfile.h"
|
||
#include "exec.h"
|
||
#include "readline/tilde.h"
|
||
#include "solib.h"
|
||
#include "solist.h"
|
||
#include "filenames.h"
|
||
#include "progspace.h"
|
||
#include "objfiles.h"
|
||
#include "gdb_bfd.h"
|
||
#include "completer.h"
|
||
#include "gdbsupport/filestuff.h"
|
||
#include "build-id.h"
|
||
#include "gdbsupport/pathstuff.h"
|
||
#include "gdbsupport/scoped_fd.h"
|
||
#include "debuginfod-support.h"
|
||
#include <unordered_map>
|
||
#include <unordered_set>
|
||
#include "gdbcmd.h"
|
||
#include "xml-tdesc.h"
|
||
#include "memtag.h"
|
||
|
||
#ifndef O_LARGEFILE
|
||
#define O_LARGEFILE 0
|
||
#endif
|
||
|
||
/* The core file target. */
|
||
|
||
static const target_info core_target_info = {
|
||
"core",
|
||
N_("Local core dump file"),
|
||
N_("Use a core file as a target.\n\
|
||
Specify the filename of the core file.")
|
||
};
|
||
|
||
class core_target final : public process_stratum_target
|
||
{
|
||
public:
|
||
core_target ();
|
||
|
||
const target_info &info () const override
|
||
{ return core_target_info; }
|
||
|
||
void close () override;
|
||
void detach (inferior *, int) override;
|
||
void fetch_registers (struct regcache *, int) override;
|
||
|
||
enum target_xfer_status xfer_partial (enum target_object object,
|
||
const char *annex,
|
||
gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len) override;
|
||
void files_info () override;
|
||
|
||
bool thread_alive (ptid_t ptid) override;
|
||
const struct target_desc *read_description () override;
|
||
|
||
std::string pid_to_str (ptid_t) override;
|
||
|
||
const char *thread_name (struct thread_info *) override;
|
||
|
||
bool has_all_memory () override { return true; }
|
||
bool has_memory () override;
|
||
bool has_stack () override;
|
||
bool has_registers () override;
|
||
bool has_execution (inferior *inf) override { return false; }
|
||
|
||
bool info_proc (const char *, enum info_proc_what) override;
|
||
|
||
bool supports_memory_tagging () override;
|
||
|
||
/* Core file implementation of fetch_memtags. Fetch the memory tags from
|
||
core file notes. */
|
||
bool fetch_memtags (CORE_ADDR address, size_t len,
|
||
gdb::byte_vector &tags, int type) override;
|
||
|
||
/* A few helpers. */
|
||
|
||
/* Getter, see variable definition. */
|
||
struct gdbarch *core_gdbarch ()
|
||
{
|
||
return m_core_gdbarch;
|
||
}
|
||
|
||
/* See definition. */
|
||
void get_core_register_section (struct regcache *regcache,
|
||
const struct regset *regset,
|
||
const char *name,
|
||
int section_min_size,
|
||
const char *human_name,
|
||
bool required);
|
||
|
||
/* See definition. */
|
||
void info_proc_mappings (struct gdbarch *gdbarch);
|
||
|
||
private: /* per-core data */
|
||
|
||
/* Get rid of the core inferior. */
|
||
void clear_core ();
|
||
|
||
/* The core's section table. Note that these target sections are
|
||
*not* mapped in the current address spaces' set of target
|
||
sections --- those should come only from pure executable or
|
||
shared library bfds. The core bfd sections are an implementation
|
||
detail of the core target, just like ptrace is for unix child
|
||
targets. */
|
||
target_section_table m_core_section_table;
|
||
|
||
/* File-backed address space mappings: some core files include
|
||
information about memory mapped files. */
|
||
target_section_table m_core_file_mappings;
|
||
|
||
/* Unavailable mappings. These correspond to pathnames which either
|
||
weren't found or could not be opened. Knowing these addresses can
|
||
still be useful. */
|
||
std::vector<mem_range> m_core_unavailable_mappings;
|
||
|
||
/* Build m_core_file_mappings. Called from the constructor. */
|
||
void build_file_mappings ();
|
||
|
||
/* Helper method for xfer_partial. */
|
||
enum target_xfer_status xfer_memory_via_mappings (gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset,
|
||
ULONGEST len,
|
||
ULONGEST *xfered_len);
|
||
|
||
/* FIXME: kettenis/20031023: Eventually this field should
|
||
disappear. */
|
||
struct gdbarch *m_core_gdbarch = NULL;
|
||
};
|
||
|
||
core_target::core_target ()
|
||
{
|
||
/* Find a first arch based on the BFD. We need the initial gdbarch so
|
||
we can setup the hooks to find a target description. */
|
||
m_core_gdbarch = gdbarch_from_bfd (core_bfd);
|
||
|
||
/* If the arch is able to read a target description from the core, it
|
||
could yield a more specific gdbarch. */
|
||
const struct target_desc *tdesc = read_description ();
|
||
|
||
if (tdesc != nullptr)
|
||
{
|
||
struct gdbarch_info info;
|
||
info.abfd = core_bfd;
|
||
info.target_desc = tdesc;
|
||
m_core_gdbarch = gdbarch_find_by_info (info);
|
||
}
|
||
|
||
if (!m_core_gdbarch
|
||
|| !gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
|
||
error (_("\"%s\": Core file format not supported"),
|
||
bfd_get_filename (core_bfd));
|
||
|
||
/* Find the data section */
|
||
m_core_section_table = build_section_table (core_bfd);
|
||
|
||
build_file_mappings ();
|
||
}
|
||
|
||
/* Construct the target_section_table for file-backed mappings if
|
||
they exist.
|
||
|
||
For each unique path in the note, we'll open a BFD with a bfd
|
||
target of "binary". This is an unstructured bfd target upon which
|
||
we'll impose a structure from the mappings in the architecture-specific
|
||
mappings note. A BFD section is allocated and initialized for each
|
||
file-backed mapping.
|
||
|
||
We take care to not share already open bfds with other parts of
|
||
GDB; in particular, we don't want to add new sections to existing
|
||
BFDs. We do, however, ensure that the BFDs that we allocate here
|
||
will go away (be deallocated) when the core target is detached. */
|
||
|
||
void
|
||
core_target::build_file_mappings ()
|
||
{
|
||
std::unordered_map<std::string, struct bfd *> bfd_map;
|
||
std::unordered_set<std::string> unavailable_paths;
|
||
|
||
/* See linux_read_core_file_mappings() in linux-tdep.c for an example
|
||
read_core_file_mappings method. */
|
||
gdbarch_read_core_file_mappings (m_core_gdbarch, core_bfd,
|
||
|
||
/* After determining the number of mappings, read_core_file_mappings
|
||
will invoke this lambda. */
|
||
[&] (ULONGEST)
|
||
{
|
||
},
|
||
|
||
/* read_core_file_mappings will invoke this lambda for each mapping
|
||
that it finds. */
|
||
[&] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
|
||
const char *filename, const bfd_build_id *build_id)
|
||
{
|
||
/* Architecture-specific read_core_mapping methods are expected to
|
||
weed out non-file-backed mappings. */
|
||
gdb_assert (filename != nullptr);
|
||
|
||
if (unavailable_paths.find (filename) != unavailable_paths.end ())
|
||
{
|
||
/* We have already seen some mapping for FILENAME but failed to
|
||
find/open the file. There is no point in trying the same
|
||
thing again so just record that the range [start, end) is
|
||
unavailable. */
|
||
m_core_unavailable_mappings.emplace_back (start, end - start);
|
||
return;
|
||
}
|
||
|
||
struct bfd *bfd = bfd_map[filename];
|
||
if (bfd == nullptr)
|
||
{
|
||
/* Use exec_file_find() to do sysroot expansion. It'll
|
||
also strip the potential sysroot "target:" prefix. If
|
||
there is no sysroot, an equivalent (possibly more
|
||
canonical) pathname will be provided. */
|
||
gdb::unique_xmalloc_ptr<char> expanded_fname
|
||
= exec_file_find (filename, NULL);
|
||
|
||
if (expanded_fname == nullptr && build_id != nullptr)
|
||
debuginfod_exec_query (build_id->data, build_id->size,
|
||
filename, &expanded_fname);
|
||
|
||
if (expanded_fname == nullptr)
|
||
{
|
||
m_core_unavailable_mappings.emplace_back (start, end - start);
|
||
unavailable_paths.insert (filename);
|
||
warning (_("Can't open file %s during file-backed mapping "
|
||
"note processing"),
|
||
filename);
|
||
return;
|
||
}
|
||
|
||
bfd = bfd_openr (expanded_fname.get (), "binary");
|
||
|
||
if (bfd == nullptr || !bfd_check_format (bfd, bfd_object))
|
||
{
|
||
m_core_unavailable_mappings.emplace_back (start, end - start);
|
||
unavailable_paths.insert (filename);
|
||
warning (_("Can't open file %s which was expanded to %s "
|
||
"during file-backed mapping note processing"),
|
||
filename, expanded_fname.get ());
|
||
|
||
if (bfd != nullptr)
|
||
bfd_close (bfd);
|
||
return;
|
||
}
|
||
/* Ensure that the bfd will be closed when core_bfd is closed.
|
||
This can be checked before/after a core file detach via
|
||
"maint info bfds". */
|
||
gdb_bfd_record_inclusion (core_bfd, bfd);
|
||
bfd_map[filename] = bfd;
|
||
}
|
||
|
||
/* Make new BFD section. All sections have the same name,
|
||
which is permitted by bfd_make_section_anyway(). */
|
||
asection *sec = bfd_make_section_anyway (bfd, "load");
|
||
if (sec == nullptr)
|
||
error (_("Can't make section"));
|
||
sec->filepos = file_ofs;
|
||
bfd_set_section_flags (sec, SEC_READONLY | SEC_HAS_CONTENTS);
|
||
bfd_set_section_size (sec, end - start);
|
||
bfd_set_section_vma (sec, start);
|
||
bfd_set_section_lma (sec, start);
|
||
bfd_set_section_alignment (sec, 2);
|
||
|
||
/* Set target_section fields. */
|
||
m_core_file_mappings.emplace_back (start, end, sec);
|
||
|
||
/* If this is a bfd of a shared library, record its soname
|
||
and build id. */
|
||
if (build_id != nullptr)
|
||
{
|
||
gdb::unique_xmalloc_ptr<char> soname
|
||
= gdb_bfd_read_elf_soname (bfd->filename);
|
||
if (soname != nullptr)
|
||
set_cbfd_soname_build_id (current_program_space->cbfd,
|
||
soname.get (), build_id);
|
||
}
|
||
});
|
||
|
||
normalize_mem_ranges (&m_core_unavailable_mappings);
|
||
}
|
||
|
||
/* An arbitrary identifier for the core inferior. */
|
||
#define CORELOW_PID 1
|
||
|
||
void
|
||
core_target::clear_core ()
|
||
{
|
||
if (core_bfd)
|
||
{
|
||
switch_to_no_thread (); /* Avoid confusion from thread
|
||
stuff. */
|
||
exit_inferior_silent (current_inferior ());
|
||
|
||
/* Clear out solib state while the bfd is still open. See
|
||
comments in clear_solib in solib.c. */
|
||
clear_solib ();
|
||
|
||
current_program_space->cbfd.reset (nullptr);
|
||
}
|
||
}
|
||
|
||
/* Close the core target. */
|
||
|
||
void
|
||
core_target::close ()
|
||
{
|
||
clear_core ();
|
||
|
||
/* Core targets are heap-allocated (see core_target_open), so here
|
||
we delete ourselves. */
|
||
delete this;
|
||
}
|
||
|
||
/* Look for sections whose names start with `.reg/' so that we can
|
||
extract the list of threads in a core file. */
|
||
|
||
/* If ASECT is a section whose name begins with '.reg/' then extract the
|
||
lwpid after the '/' and create a new thread in INF.
|
||
|
||
If REG_SECT is not nullptr, and the both ASECT and REG_SECT point at the
|
||
same position in the parent bfd object then switch to the newly created
|
||
thread, otherwise, the selected thread is left unchanged. */
|
||
|
||
static void
|
||
add_to_thread_list (asection *asect, asection *reg_sect, inferior *inf)
|
||
{
|
||
if (!startswith (bfd_section_name (asect), ".reg/"))
|
||
return;
|
||
|
||
int lwpid = atoi (bfd_section_name (asect) + 5);
|
||
ptid_t ptid (inf->pid, lwpid);
|
||
thread_info *thr = add_thread (inf->process_target (), ptid);
|
||
|
||
/* Warning, Will Robinson, looking at BFD private data! */
|
||
|
||
if (reg_sect != NULL
|
||
&& asect->filepos == reg_sect->filepos) /* Did we find .reg? */
|
||
switch_to_thread (thr); /* Yes, make it current. */
|
||
}
|
||
|
||
/* Issue a message saying we have no core to debug, if FROM_TTY. */
|
||
|
||
static void
|
||
maybe_say_no_core_file_now (int from_tty)
|
||
{
|
||
if (from_tty)
|
||
gdb_printf (_("No core file now.\n"));
|
||
}
|
||
|
||
/* Backward compatibility with old way of specifying core files. */
|
||
|
||
void
|
||
core_file_command (const char *filename, int from_tty)
|
||
{
|
||
dont_repeat (); /* Either way, seems bogus. */
|
||
|
||
if (filename == NULL)
|
||
{
|
||
if (core_bfd != NULL)
|
||
{
|
||
target_detach (current_inferior (), from_tty);
|
||
gdb_assert (core_bfd == NULL);
|
||
}
|
||
else
|
||
maybe_say_no_core_file_now (from_tty);
|
||
}
|
||
else
|
||
core_target_open (filename, from_tty);
|
||
}
|
||
|
||
/* A vmcore file is a core file created by the Linux kernel at the point of
|
||
a crash. Each thread in the core file represents a real CPU core, and
|
||
the lwpid for each thread is the pid of the process that was running on
|
||
that core at the moment of the crash.
|
||
|
||
However, not every CPU core will have been running a process, some cores
|
||
will be idle. For these idle cores the CPU writes an lwpid of 0. And
|
||
of course, multiple cores might be idle, so there could be multiple
|
||
threads with an lwpid of 0.
|
||
|
||
The problem is GDB doesn't really like threads with an lwpid of 0; GDB
|
||
presents such a thread as a process rather than a thread. And GDB
|
||
certainly doesn't like multiple threads having the same lwpid, each time
|
||
a new thread is seen with the same lwpid the earlier thread (with the
|
||
same lwpid) will be deleted.
|
||
|
||
This function addresses both of these problems by assigning a fake lwpid
|
||
to any thread with an lwpid of 0.
|
||
|
||
GDB finds the lwpid information by looking at the bfd section names
|
||
which include the lwpid, e.g. .reg/NN where NN is the lwpid. This
|
||
function looks though all the section names looking for sections named
|
||
.reg/NN. If any sections are found where NN == 0, then we assign a new
|
||
unique value of NN. Then, in a second pass, any sections ending /0 are
|
||
assigned their new number.
|
||
|
||
Remember, a core file may contain multiple register sections for
|
||
different register sets, but the sets are always grouped by thread, so
|
||
we can figure out which registers should be assigned the same new
|
||
lwpid. For example, consider a core file containing:
|
||
|
||
.reg/0, .reg2/0, .reg/0, .reg2/0
|
||
|
||
This represents two threads, each thread contains a .reg and .reg2
|
||
register set. The .reg represents the start of each thread. After
|
||
renaming the sections will now look like this:
|
||
|
||
.reg/1, .reg2/1, .reg/2, .reg2/2
|
||
|
||
After calling this function the rest of the core file handling code can
|
||
treat this core file just like any other core file. */
|
||
|
||
static void
|
||
rename_vmcore_idle_reg_sections (bfd *abfd, inferior *inf)
|
||
{
|
||
/* Map from the bfd section to its lwpid (the /NN number). */
|
||
std::vector<std::pair<asection *, int>> sections_and_lwpids;
|
||
|
||
/* The set of all /NN numbers found. Needed so we can easily find unused
|
||
numbers in the case that we need to rename some sections. */
|
||
std::unordered_set<int> all_lwpids;
|
||
|
||
/* A count of how many sections called .reg/0 we have found. */
|
||
unsigned zero_lwpid_count = 0;
|
||
|
||
/* Look for all the .reg sections. Record the section object and the
|
||
lwpid which is extracted from the section name. Spot if any have an
|
||
lwpid of zero. */
|
||
for (asection *sect : gdb_bfd_sections (core_bfd))
|
||
{
|
||
if (startswith (bfd_section_name (sect), ".reg/"))
|
||
{
|
||
int lwpid = atoi (bfd_section_name (sect) + 5);
|
||
sections_and_lwpids.emplace_back (sect, lwpid);
|
||
all_lwpids.insert (lwpid);
|
||
if (lwpid == 0)
|
||
zero_lwpid_count++;
|
||
}
|
||
}
|
||
|
||
/* If every ".reg/NN" section has a non-zero lwpid then we don't need to
|
||
do any renaming. */
|
||
if (zero_lwpid_count == 0)
|
||
return;
|
||
|
||
/* Assign a new number to any .reg sections with an lwpid of 0. */
|
||
int new_lwpid = 1;
|
||
for (auto §_and_lwpid : sections_and_lwpids)
|
||
if (sect_and_lwpid.second == 0)
|
||
{
|
||
while (all_lwpids.find (new_lwpid) != all_lwpids.end ())
|
||
new_lwpid++;
|
||
sect_and_lwpid.second = new_lwpid;
|
||
new_lwpid++;
|
||
}
|
||
|
||
/* Now update the names of any sections with an lwpid of 0. This is
|
||
more than just the .reg sections we originally found. */
|
||
std::string replacement_lwpid_str;
|
||
auto iter = sections_and_lwpids.begin ();
|
||
int replacement_lwpid = 0;
|
||
for (asection *sect : gdb_bfd_sections (core_bfd))
|
||
{
|
||
if (iter != sections_and_lwpids.end () && sect == iter->first)
|
||
{
|
||
gdb_assert (startswith (bfd_section_name (sect), ".reg/"));
|
||
|
||
int lwpid = atoi (bfd_section_name (sect) + 5);
|
||
if (lwpid == iter->second)
|
||
{
|
||
/* This section was not given a new number. */
|
||
gdb_assert (lwpid != 0);
|
||
replacement_lwpid = 0;
|
||
}
|
||
else
|
||
{
|
||
replacement_lwpid = iter->second;
|
||
ptid_t ptid (inf->pid, replacement_lwpid);
|
||
if (!replacement_lwpid_str.empty ())
|
||
replacement_lwpid_str += ", ";
|
||
replacement_lwpid_str += target_pid_to_str (ptid);
|
||
}
|
||
|
||
iter++;
|
||
}
|
||
|
||
if (replacement_lwpid != 0)
|
||
{
|
||
const char *name = bfd_section_name (sect);
|
||
size_t len = strlen (name);
|
||
|
||
if (strncmp (name + len - 2, "/0", 2) == 0)
|
||
{
|
||
/* This section needs a new name. */
|
||
std::string name_str
|
||
= string_printf ("%.*s/%d",
|
||
static_cast<int> (len - 2),
|
||
name, replacement_lwpid);
|
||
char *name_buf
|
||
= static_cast<char *> (bfd_alloc (abfd, name_str.size () + 1));
|
||
if (name_buf == nullptr)
|
||
error (_("failed to allocate space for section name '%s'"),
|
||
name_str.c_str ());
|
||
memcpy (name_buf, name_str.c_str(), name_str.size () + 1);
|
||
bfd_rename_section (sect, name_buf);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (zero_lwpid_count == 1)
|
||
warning (_("found thread with pid 0, assigned replacement Target Id: %s"),
|
||
replacement_lwpid_str.c_str ());
|
||
else
|
||
warning (_("found threads with pid 0, assigned replacement Target Ids: %s"),
|
||
replacement_lwpid_str.c_str ());
|
||
}
|
||
|
||
/* Locate (and load) an executable file (and symbols) given the core file
|
||
BFD ABFD. */
|
||
|
||
static void
|
||
locate_exec_from_corefile_build_id (bfd *abfd, int from_tty)
|
||
{
|
||
const bfd_build_id *build_id = build_id_bfd_get (abfd);
|
||
if (build_id == nullptr)
|
||
return;
|
||
|
||
gdb_bfd_ref_ptr execbfd
|
||
= build_id_to_exec_bfd (build_id->size, build_id->data);
|
||
|
||
if (execbfd == nullptr)
|
||
{
|
||
/* Attempt to query debuginfod for the executable. */
|
||
gdb::unique_xmalloc_ptr<char> execpath;
|
||
scoped_fd fd = debuginfod_exec_query (build_id->data, build_id->size,
|
||
abfd->filename, &execpath);
|
||
|
||
if (fd.get () >= 0)
|
||
{
|
||
execbfd = gdb_bfd_open (execpath.get (), gnutarget);
|
||
|
||
if (execbfd == nullptr)
|
||
warning (_("\"%s\" from debuginfod cannot be opened as bfd: %s"),
|
||
execpath.get (),
|
||
gdb_bfd_errmsg (bfd_get_error (), nullptr).c_str ());
|
||
else if (!build_id_verify (execbfd.get (), build_id->size,
|
||
build_id->data))
|
||
execbfd.reset (nullptr);
|
||
}
|
||
}
|
||
|
||
if (execbfd != nullptr)
|
||
{
|
||
exec_file_attach (bfd_get_filename (execbfd.get ()), from_tty);
|
||
symbol_file_add_main (bfd_get_filename (execbfd.get ()),
|
||
symfile_add_flag (from_tty ? SYMFILE_VERBOSE : 0));
|
||
}
|
||
}
|
||
|
||
/* See gdbcore.h. */
|
||
|
||
void
|
||
core_target_open (const char *arg, int from_tty)
|
||
{
|
||
const char *p;
|
||
int siggy;
|
||
int scratch_chan;
|
||
int flags;
|
||
|
||
target_preopen (from_tty);
|
||
if (!arg)
|
||
{
|
||
if (core_bfd)
|
||
error (_("No core file specified. (Use `detach' "
|
||
"to stop debugging a core file.)"));
|
||
else
|
||
error (_("No core file specified."));
|
||
}
|
||
|
||
gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
|
||
if (strlen (filename.get ()) != 0
|
||
&& !IS_ABSOLUTE_PATH (filename.get ()))
|
||
filename = make_unique_xstrdup (gdb_abspath (filename.get ()).c_str ());
|
||
|
||
flags = O_BINARY | O_LARGEFILE;
|
||
if (write_files)
|
||
flags |= O_RDWR;
|
||
else
|
||
flags |= O_RDONLY;
|
||
scratch_chan = gdb_open_cloexec (filename.get (), flags, 0).release ();
|
||
if (scratch_chan < 0)
|
||
perror_with_name (filename.get ());
|
||
|
||
gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
|
||
write_files ? FOPEN_RUB : FOPEN_RB,
|
||
scratch_chan));
|
||
if (temp_bfd == NULL)
|
||
perror_with_name (filename.get ());
|
||
|
||
if (!bfd_check_format (temp_bfd.get (), bfd_core))
|
||
{
|
||
/* Do it after the err msg */
|
||
/* FIXME: should be checking for errors from bfd_close (for one
|
||
thing, on error it does not free all the storage associated
|
||
with the bfd). */
|
||
error (_("\"%s\" is not a core dump: %s"),
|
||
filename.get (), bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
current_program_space->cbfd = std::move (temp_bfd);
|
||
|
||
core_target *target = new core_target ();
|
||
|
||
/* Own the target until it is successfully pushed. */
|
||
target_ops_up target_holder (target);
|
||
|
||
validate_files ();
|
||
|
||
/* If we have no exec file, try to set the architecture from the
|
||
core file. We don't do this unconditionally since an exec file
|
||
typically contains more information that helps us determine the
|
||
architecture than a core file. */
|
||
if (!current_program_space->exec_bfd ())
|
||
set_gdbarch_from_file (core_bfd);
|
||
|
||
current_inferior ()->push_target (std::move (target_holder));
|
||
|
||
switch_to_no_thread ();
|
||
|
||
/* Need to flush the register cache (and the frame cache) from a
|
||
previous debug session. If inferior_ptid ends up the same as the
|
||
last debug session --- e.g., b foo; run; gcore core1; step; gcore
|
||
core2; core core1; core core2 --- then there's potential for
|
||
get_current_regcache to return the cached regcache of the
|
||
previous session, and the frame cache being stale. */
|
||
registers_changed ();
|
||
|
||
/* Find (or fake) the pid for the process in this core file, and
|
||
initialise the current inferior with that pid. */
|
||
bool fake_pid_p = false;
|
||
int pid = bfd_core_file_pid (core_bfd);
|
||
if (pid == 0)
|
||
{
|
||
fake_pid_p = true;
|
||
pid = CORELOW_PID;
|
||
}
|
||
|
||
inferior *inf = current_inferior ();
|
||
gdb_assert (inf->pid == 0);
|
||
inferior_appeared (inf, pid);
|
||
inf->fake_pid_p = fake_pid_p;
|
||
|
||
/* Rename any .reg/0 sections, giving them each a fake lwpid. */
|
||
rename_vmcore_idle_reg_sections (core_bfd, inf);
|
||
|
||
/* Build up thread list from BFD sections, and possibly set the
|
||
current thread to the .reg/NN section matching the .reg
|
||
section. */
|
||
asection *reg_sect = bfd_get_section_by_name (core_bfd, ".reg");
|
||
for (asection *sect : gdb_bfd_sections (core_bfd))
|
||
add_to_thread_list (sect, reg_sect, inf);
|
||
|
||
if (inferior_ptid == null_ptid)
|
||
{
|
||
/* Either we found no .reg/NN section, and hence we have a
|
||
non-threaded core (single-threaded, from gdb's perspective),
|
||
or for some reason add_to_thread_list couldn't determine
|
||
which was the "main" thread. The latter case shouldn't
|
||
usually happen, but we're dealing with input here, which can
|
||
always be broken in different ways. */
|
||
thread_info *thread = first_thread_of_inferior (inf);
|
||
|
||
if (thread == NULL)
|
||
thread = add_thread_silent (target, ptid_t (CORELOW_PID));
|
||
|
||
switch_to_thread (thread);
|
||
}
|
||
|
||
if (current_program_space->exec_bfd () == nullptr)
|
||
locate_exec_from_corefile_build_id (core_bfd, from_tty);
|
||
|
||
post_create_inferior (from_tty);
|
||
|
||
/* Now go through the target stack looking for threads since there
|
||
may be a thread_stratum target loaded on top of target core by
|
||
now. The layer above should claim threads found in the BFD
|
||
sections. */
|
||
try
|
||
{
|
||
target_update_thread_list ();
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
exception_print (gdb_stderr, except);
|
||
}
|
||
|
||
p = bfd_core_file_failing_command (core_bfd);
|
||
if (p)
|
||
gdb_printf (_("Core was generated by `%s'.\n"), p);
|
||
|
||
/* Clearing any previous state of convenience variables. */
|
||
clear_exit_convenience_vars ();
|
||
|
||
siggy = bfd_core_file_failing_signal (core_bfd);
|
||
if (siggy > 0)
|
||
{
|
||
gdbarch *core_gdbarch = target->core_gdbarch ();
|
||
|
||
/* If we don't have a CORE_GDBARCH to work with, assume a native
|
||
core (map gdb_signal from host signals). If we do have
|
||
CORE_GDBARCH to work with, but no gdb_signal_from_target
|
||
implementation for that gdbarch, as a fallback measure,
|
||
assume the host signal mapping. It'll be correct for native
|
||
cores, but most likely incorrect for cross-cores. */
|
||
enum gdb_signal sig = (core_gdbarch != NULL
|
||
&& gdbarch_gdb_signal_from_target_p (core_gdbarch)
|
||
? gdbarch_gdb_signal_from_target (core_gdbarch,
|
||
siggy)
|
||
: gdb_signal_from_host (siggy));
|
||
|
||
gdb_printf (_("Program terminated with signal %s, %s"),
|
||
gdb_signal_to_name (sig), gdb_signal_to_string (sig));
|
||
if (gdbarch_report_signal_info_p (core_gdbarch))
|
||
gdbarch_report_signal_info (core_gdbarch, current_uiout, sig);
|
||
gdb_printf (_(".\n"));
|
||
|
||
/* Set the value of the internal variable $_exitsignal,
|
||
which holds the signal uncaught by the inferior. */
|
||
set_internalvar_integer (lookup_internalvar ("_exitsignal"),
|
||
siggy);
|
||
}
|
||
|
||
/* Fetch all registers from core file. */
|
||
target_fetch_registers (get_current_regcache (), -1);
|
||
|
||
/* Now, set up the frame cache, and print the top of stack. */
|
||
reinit_frame_cache ();
|
||
print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
|
||
|
||
/* Current thread should be NUM 1 but the user does not know that.
|
||
If a program is single threaded gdb in general does not mention
|
||
anything about threads. That is why the test is >= 2. */
|
||
if (thread_count (target) >= 2)
|
||
{
|
||
try
|
||
{
|
||
thread_command (NULL, from_tty);
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
exception_print (gdb_stderr, except);
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
core_target::detach (inferior *inf, int from_tty)
|
||
{
|
||
/* Get rid of the core. Don't rely on core_target::close doing it,
|
||
because target_detach may be called with core_target's refcount > 1,
|
||
meaning core_target::close may not be called yet by the
|
||
unpush_target call below. */
|
||
clear_core ();
|
||
|
||
/* Note that 'this' may be dangling after this call. unpush_target
|
||
closes the target if the refcount reaches 0, and our close
|
||
implementation deletes 'this'. */
|
||
inf->unpush_target (this);
|
||
|
||
/* Clear the register cache and the frame cache. */
|
||
registers_changed ();
|
||
reinit_frame_cache ();
|
||
maybe_say_no_core_file_now (from_tty);
|
||
}
|
||
|
||
/* Try to retrieve registers from a section in core_bfd, and supply
|
||
them to REGSET.
|
||
|
||
If ptid's lwp member is zero, do the single-threaded
|
||
thing: look for a section named NAME. If ptid's lwp
|
||
member is non-zero, do the multi-threaded thing: look for a section
|
||
named "NAME/LWP", where LWP is the shortest ASCII decimal
|
||
representation of ptid's lwp member.
|
||
|
||
HUMAN_NAME is a human-readable name for the kind of registers the
|
||
NAME section contains, for use in error messages.
|
||
|
||
If REQUIRED is true, print an error if the core file doesn't have a
|
||
section by the appropriate name. Otherwise, just do nothing. */
|
||
|
||
void
|
||
core_target::get_core_register_section (struct regcache *regcache,
|
||
const struct regset *regset,
|
||
const char *name,
|
||
int section_min_size,
|
||
const char *human_name,
|
||
bool required)
|
||
{
|
||
gdb_assert (regset != nullptr);
|
||
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
|
||
|
||
thread_section_name section_name (name, regcache->ptid ());
|
||
|
||
section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
|
||
if (! section)
|
||
{
|
||
if (required)
|
||
warning (_("Couldn't find %s registers in core file."),
|
||
human_name);
|
||
return;
|
||
}
|
||
|
||
size = bfd_section_size (section);
|
||
if (size < section_min_size)
|
||
{
|
||
warning (_("Section `%s' in core file too small."),
|
||
section_name.c_str ());
|
||
return;
|
||
}
|
||
if (size != section_min_size && !variable_size_section)
|
||
{
|
||
warning (_("Unexpected size of section `%s' in core file."),
|
||
section_name.c_str ());
|
||
}
|
||
|
||
gdb::byte_vector contents (size);
|
||
if (!bfd_get_section_contents (core_bfd, section, contents.data (),
|
||
(file_ptr) 0, size))
|
||
{
|
||
warning (_("Couldn't read %s registers from `%s' section in core file."),
|
||
human_name, section_name.c_str ());
|
||
return;
|
||
}
|
||
|
||
regset->supply_regset (regset, regcache, -1, contents.data (), size);
|
||
}
|
||
|
||
/* Data passed to gdbarch_iterate_over_regset_sections's callback. */
|
||
struct get_core_registers_cb_data
|
||
{
|
||
core_target *target;
|
||
struct regcache *regcache;
|
||
};
|
||
|
||
/* Callback for get_core_registers that handles a single core file
|
||
register note section. */
|
||
|
||
static void
|
||
get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
|
||
const struct regset *regset,
|
||
const char *human_name, void *cb_data)
|
||
{
|
||
gdb_assert (regset != nullptr);
|
||
|
||
auto *data = (get_core_registers_cb_data *) cb_data;
|
||
bool required = false;
|
||
bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
|
||
|
||
if (!variable_size_section)
|
||
gdb_assert (supply_size == collect_size);
|
||
|
||
if (strcmp (sect_name, ".reg") == 0)
|
||
{
|
||
required = true;
|
||
if (human_name == NULL)
|
||
human_name = "general-purpose";
|
||
}
|
||
else if (strcmp (sect_name, ".reg2") == 0)
|
||
{
|
||
if (human_name == NULL)
|
||
human_name = "floating-point";
|
||
}
|
||
|
||
data->target->get_core_register_section (data->regcache, regset, sect_name,
|
||
supply_size, human_name, required);
|
||
}
|
||
|
||
/* Get the registers out of a core file. This is the machine-
|
||
independent part. Fetch_core_registers is the machine-dependent
|
||
part, typically implemented in the xm-file for each
|
||
architecture. */
|
||
|
||
/* We just get all the registers, so we don't use regno. */
|
||
|
||
void
|
||
core_target::fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
if (!(m_core_gdbarch != nullptr
|
||
&& gdbarch_iterate_over_regset_sections_p (m_core_gdbarch)))
|
||
{
|
||
gdb_printf (gdb_stderr,
|
||
"Can't fetch registers from this type of core file\n");
|
||
return;
|
||
}
|
||
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
get_core_registers_cb_data data = { this, regcache };
|
||
gdbarch_iterate_over_regset_sections (gdbarch,
|
||
get_core_registers_cb,
|
||
(void *) &data, NULL);
|
||
|
||
/* Mark all registers not found in the core as unavailable. */
|
||
for (int i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
|
||
if (regcache->get_register_status (i) == REG_UNKNOWN)
|
||
regcache->raw_supply (i, NULL);
|
||
}
|
||
|
||
void
|
||
core_target::files_info ()
|
||
{
|
||
print_section_info (&m_core_section_table, core_bfd);
|
||
}
|
||
|
||
/* Helper method for core_target::xfer_partial. */
|
||
|
||
enum target_xfer_status
|
||
core_target::xfer_memory_via_mappings (gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status xfer_status;
|
||
|
||
xfer_status = (section_table_xfer_memory_partial
|
||
(readbuf, writebuf,
|
||
offset, len, xfered_len,
|
||
m_core_file_mappings));
|
||
|
||
if (xfer_status == TARGET_XFER_OK || m_core_unavailable_mappings.empty ())
|
||
return xfer_status;
|
||
|
||
/* There are instances - e.g. when debugging within a docker
|
||
container using the AUFS storage driver - where the pathnames
|
||
obtained from the note section are incorrect. Despite the path
|
||
being wrong, just knowing the start and end addresses of the
|
||
mappings is still useful; we can attempt an access of the file
|
||
stratum constrained to the address ranges corresponding to the
|
||
unavailable mappings. */
|
||
|
||
ULONGEST memaddr = offset;
|
||
ULONGEST memend = offset + len;
|
||
|
||
for (const auto &mr : m_core_unavailable_mappings)
|
||
{
|
||
if (address_in_mem_range (memaddr, &mr))
|
||
{
|
||
if (!address_in_mem_range (memend, &mr))
|
||
len = mr.start + mr.length - memaddr;
|
||
|
||
xfer_status = this->beneath ()->xfer_partial (TARGET_OBJECT_MEMORY,
|
||
NULL,
|
||
readbuf,
|
||
writebuf,
|
||
offset,
|
||
len,
|
||
xfered_len);
|
||
break;
|
||
}
|
||
}
|
||
|
||
return xfer_status;
|
||
}
|
||
|
||
enum target_xfer_status
|
||
core_target::xfer_partial (enum target_object object, const char *annex,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
switch (object)
|
||
{
|
||
case TARGET_OBJECT_MEMORY:
|
||
{
|
||
enum target_xfer_status xfer_status;
|
||
|
||
/* Try accessing memory contents from core file data,
|
||
restricting consideration to those sections for which
|
||
the BFD section flag SEC_HAS_CONTENTS is set. */
|
||
auto has_contents_cb = [] (const struct target_section *s)
|
||
{
|
||
return ((s->the_bfd_section->flags & SEC_HAS_CONTENTS) != 0);
|
||
};
|
||
xfer_status = section_table_xfer_memory_partial
|
||
(readbuf, writebuf,
|
||
offset, len, xfered_len,
|
||
m_core_section_table,
|
||
has_contents_cb);
|
||
if (xfer_status == TARGET_XFER_OK)
|
||
return TARGET_XFER_OK;
|
||
|
||
/* Check file backed mappings. If they're available, use
|
||
core file provided mappings (e.g. from .note.linuxcore.file
|
||
or the like) as this should provide a more accurate
|
||
result. If not, check the stratum beneath us, which should
|
||
be the file stratum.
|
||
|
||
We also check unavailable mappings due to Docker/AUFS driver
|
||
issues. */
|
||
if (!m_core_file_mappings.empty ()
|
||
|| !m_core_unavailable_mappings.empty ())
|
||
{
|
||
xfer_status = xfer_memory_via_mappings (readbuf, writebuf, offset,
|
||
len, xfered_len);
|
||
}
|
||
else
|
||
xfer_status = this->beneath ()->xfer_partial (object, annex, readbuf,
|
||
writebuf, offset, len,
|
||
xfered_len);
|
||
if (xfer_status == TARGET_XFER_OK)
|
||
return TARGET_XFER_OK;
|
||
|
||
/* Finally, attempt to access data in core file sections with
|
||
no contents. These will typically read as all zero. */
|
||
auto no_contents_cb = [&] (const struct target_section *s)
|
||
{
|
||
return !has_contents_cb (s);
|
||
};
|
||
xfer_status = section_table_xfer_memory_partial
|
||
(readbuf, writebuf,
|
||
offset, len, xfered_len,
|
||
m_core_section_table,
|
||
no_contents_cb);
|
||
|
||
return xfer_status;
|
||
}
|
||
case TARGET_OBJECT_AUXV:
|
||
if (readbuf)
|
||
{
|
||
/* When the aux vector is stored in core file, BFD
|
||
represents this with a fake section called ".auxv". */
|
||
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
|
||
section = bfd_get_section_by_name (core_bfd, ".auxv");
|
||
if (section == NULL)
|
||
return TARGET_XFER_E_IO;
|
||
|
||
size = bfd_section_size (section);
|
||
if (offset >= size)
|
||
return TARGET_XFER_EOF;
|
||
size -= offset;
|
||
if (size > len)
|
||
size = len;
|
||
|
||
if (size == 0)
|
||
return TARGET_XFER_EOF;
|
||
if (!bfd_get_section_contents (core_bfd, section, readbuf,
|
||
(file_ptr) offset, size))
|
||
{
|
||
warning (_("Couldn't read NT_AUXV note in core file."));
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
*xfered_len = (ULONGEST) size;
|
||
return TARGET_XFER_OK;
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_WCOOKIE:
|
||
if (readbuf)
|
||
{
|
||
/* When the StackGhost cookie is stored in core file, BFD
|
||
represents this with a fake section called
|
||
".wcookie". */
|
||
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
|
||
section = bfd_get_section_by_name (core_bfd, ".wcookie");
|
||
if (section == NULL)
|
||
return TARGET_XFER_E_IO;
|
||
|
||
size = bfd_section_size (section);
|
||
if (offset >= size)
|
||
return TARGET_XFER_EOF;
|
||
size -= offset;
|
||
if (size > len)
|
||
size = len;
|
||
|
||
if (size == 0)
|
||
return TARGET_XFER_EOF;
|
||
if (!bfd_get_section_contents (core_bfd, section, readbuf,
|
||
(file_ptr) offset, size))
|
||
{
|
||
warning (_("Couldn't read StackGhost cookie in core file."));
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
*xfered_len = (ULONGEST) size;
|
||
return TARGET_XFER_OK;
|
||
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_LIBRARIES:
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
|
||
{
|
||
if (writebuf)
|
||
return TARGET_XFER_E_IO;
|
||
else
|
||
{
|
||
*xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
|
||
readbuf,
|
||
offset, len);
|
||
|
||
if (*xfered_len == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_LIBRARIES_AIX:
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
|
||
{
|
||
if (writebuf)
|
||
return TARGET_XFER_E_IO;
|
||
else
|
||
{
|
||
*xfered_len
|
||
= gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
|
||
readbuf, offset,
|
||
len);
|
||
|
||
if (*xfered_len == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_SIGNAL_INFO:
|
||
if (readbuf)
|
||
{
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
|
||
{
|
||
LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
|
||
offset, len);
|
||
|
||
if (l >= 0)
|
||
{
|
||
*xfered_len = l;
|
||
if (l == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
default:
|
||
return this->beneath ()->xfer_partial (object, annex, readbuf,
|
||
writebuf, offset, len,
|
||
xfered_len);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Okay, let's be honest: threads gleaned from a core file aren't
|
||
exactly lively, are they? On the other hand, if we don't claim
|
||
that each & every one is alive, then we don't get any of them
|
||
to appear in an "info thread" command, which is quite a useful
|
||
behaviour.
|
||
*/
|
||
bool
|
||
core_target::thread_alive (ptid_t ptid)
|
||
{
|
||
return true;
|
||
}
|
||
|
||
/* Ask the current architecture what it knows about this core file.
|
||
That will be used, in turn, to pick a better architecture. This
|
||
wrapper could be avoided if targets got a chance to specialize
|
||
core_target. */
|
||
|
||
const struct target_desc *
|
||
core_target::read_description ()
|
||
{
|
||
/* If the core file contains a target description note then we will use
|
||
that in preference to anything else. */
|
||
bfd_size_type tdesc_note_size = 0;
|
||
struct bfd_section *tdesc_note_section
|
||
= bfd_get_section_by_name (core_bfd, ".gdb-tdesc");
|
||
if (tdesc_note_section != nullptr)
|
||
tdesc_note_size = bfd_section_size (tdesc_note_section);
|
||
if (tdesc_note_size > 0)
|
||
{
|
||
gdb::char_vector contents (tdesc_note_size + 1);
|
||
if (bfd_get_section_contents (core_bfd, tdesc_note_section,
|
||
contents.data (), (file_ptr) 0,
|
||
tdesc_note_size))
|
||
{
|
||
/* Ensure we have a null terminator. */
|
||
contents[tdesc_note_size] = '\0';
|
||
const struct target_desc *result
|
||
= string_read_description_xml (contents.data ());
|
||
if (result != nullptr)
|
||
return result;
|
||
}
|
||
}
|
||
|
||
if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
|
||
{
|
||
const struct target_desc *result;
|
||
|
||
result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
|
||
if (result != NULL)
|
||
return result;
|
||
}
|
||
|
||
return this->beneath ()->read_description ();
|
||
}
|
||
|
||
std::string
|
||
core_target::pid_to_str (ptid_t ptid)
|
||
{
|
||
struct inferior *inf;
|
||
int pid;
|
||
|
||
/* The preferred way is to have a gdbarch/OS specific
|
||
implementation. */
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_pid_to_str_p (m_core_gdbarch))
|
||
return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
|
||
|
||
/* Otherwise, if we don't have one, we'll just fallback to
|
||
"process", with normal_pid_to_str. */
|
||
|
||
/* Try the LWPID field first. */
|
||
pid = ptid.lwp ();
|
||
if (pid != 0)
|
||
return normal_pid_to_str (ptid_t (pid));
|
||
|
||
/* Otherwise, this isn't a "threaded" core -- use the PID field, but
|
||
only if it isn't a fake PID. */
|
||
inf = find_inferior_ptid (this, ptid);
|
||
if (inf != NULL && !inf->fake_pid_p)
|
||
return normal_pid_to_str (ptid);
|
||
|
||
/* No luck. We simply don't have a valid PID to print. */
|
||
return "<main task>";
|
||
}
|
||
|
||
const char *
|
||
core_target::thread_name (struct thread_info *thr)
|
||
{
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_thread_name_p (m_core_gdbarch))
|
||
return gdbarch_core_thread_name (m_core_gdbarch, thr);
|
||
return NULL;
|
||
}
|
||
|
||
bool
|
||
core_target::has_memory ()
|
||
{
|
||
return (core_bfd != NULL);
|
||
}
|
||
|
||
bool
|
||
core_target::has_stack ()
|
||
{
|
||
return (core_bfd != NULL);
|
||
}
|
||
|
||
bool
|
||
core_target::has_registers ()
|
||
{
|
||
return (core_bfd != NULL);
|
||
}
|
||
|
||
/* Implement the to_info_proc method. */
|
||
|
||
bool
|
||
core_target::info_proc (const char *args, enum info_proc_what request)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
|
||
/* Since this is the core file target, call the 'core_info_proc'
|
||
method on gdbarch, not 'info_proc'. */
|
||
if (gdbarch_core_info_proc_p (gdbarch))
|
||
gdbarch_core_info_proc (gdbarch, args, request);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Implementation of the "supports_memory_tagging" target_ops method. */
|
||
|
||
bool
|
||
core_target::supports_memory_tagging ()
|
||
{
|
||
/* Look for memory tag sections. If they exist, that means this core file
|
||
supports memory tagging. */
|
||
|
||
return (bfd_get_section_by_name (core_bfd, "memtag") != nullptr);
|
||
}
|
||
|
||
/* Implementation of the "fetch_memtags" target_ops method. */
|
||
|
||
bool
|
||
core_target::fetch_memtags (CORE_ADDR address, size_t len,
|
||
gdb::byte_vector &tags, int type)
|
||
{
|
||
struct gdbarch *gdbarch = target_gdbarch ();
|
||
|
||
/* Make sure we have a way to decode the memory tag notes. */
|
||
if (!gdbarch_decode_memtag_section_p (gdbarch))
|
||
error (_("gdbarch_decode_memtag_section not implemented for this "
|
||
"architecture."));
|
||
|
||
memtag_section_info info;
|
||
info.memtag_section = nullptr;
|
||
|
||
while (get_next_core_memtag_section (core_bfd, info.memtag_section,
|
||
address, info))
|
||
{
|
||
size_t adjusted_length
|
||
= (address + len < info.end_address) ? len : (info.end_address - address);
|
||
|
||
/* Decode the memory tag note and return the tags. */
|
||
gdb::byte_vector tags_read
|
||
= gdbarch_decode_memtag_section (gdbarch, info.memtag_section, type,
|
||
address, adjusted_length);
|
||
|
||
/* Transfer over the tags that have been read. */
|
||
tags.insert (tags.end (), tags_read.begin (), tags_read.end ());
|
||
|
||
/* ADDRESS + LEN may cross the boundaries of a particular memory tag
|
||
segment. Check if we need to fetch tags from a different section. */
|
||
if (!tags_read.empty () && (address + len) < info.end_address)
|
||
return true;
|
||
|
||
/* There are more tags to fetch. Update ADDRESS and LEN. */
|
||
len -= (info.end_address - address);
|
||
address = info.end_address;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Get a pointer to the current core target. If not connected to a
|
||
core target, return NULL. */
|
||
|
||
static core_target *
|
||
get_current_core_target ()
|
||
{
|
||
target_ops *proc_target = current_inferior ()->process_target ();
|
||
return dynamic_cast<core_target *> (proc_target);
|
||
}
|
||
|
||
/* Display file backed mappings from core file. */
|
||
|
||
void
|
||
core_target::info_proc_mappings (struct gdbarch *gdbarch)
|
||
{
|
||
if (!m_core_file_mappings.empty ())
|
||
{
|
||
gdb_printf (_("Mapped address spaces:\n\n"));
|
||
if (gdbarch_addr_bit (gdbarch) == 32)
|
||
{
|
||
gdb_printf ("\t%10s %10s %10s %10s %s\n",
|
||
"Start Addr",
|
||
" End Addr",
|
||
" Size", " Offset", "objfile");
|
||
}
|
||
else
|
||
{
|
||
gdb_printf (" %18s %18s %10s %10s %s\n",
|
||
"Start Addr",
|
||
" End Addr",
|
||
" Size", " Offset", "objfile");
|
||
}
|
||
}
|
||
|
||
for (const target_section &tsp : m_core_file_mappings)
|
||
{
|
||
ULONGEST start = tsp.addr;
|
||
ULONGEST end = tsp.endaddr;
|
||
ULONGEST file_ofs = tsp.the_bfd_section->filepos;
|
||
const char *filename = bfd_get_filename (tsp.the_bfd_section->owner);
|
||
|
||
if (gdbarch_addr_bit (gdbarch) == 32)
|
||
gdb_printf ("\t%10s %10s %10s %10s %s\n",
|
||
paddress (gdbarch, start),
|
||
paddress (gdbarch, end),
|
||
hex_string (end - start),
|
||
hex_string (file_ofs),
|
||
filename);
|
||
else
|
||
gdb_printf (" %18s %18s %10s %10s %s\n",
|
||
paddress (gdbarch, start),
|
||
paddress (gdbarch, end),
|
||
hex_string (end - start),
|
||
hex_string (file_ofs),
|
||
filename);
|
||
}
|
||
}
|
||
|
||
/* Implement "maintenance print core-file-backed-mappings" command.
|
||
|
||
If mappings are loaded, the results should be similar to the
|
||
mappings shown by "info proc mappings". This command is mainly a
|
||
debugging tool for GDB developers to make sure that the expected
|
||
mappings are present after loading a core file. For Linux, the
|
||
output provided by this command will be very similar (if not
|
||
identical) to that provided by "info proc mappings". This is not
|
||
necessarily the case for other OSes which might provide
|
||
more/different information in the "info proc mappings" output. */
|
||
|
||
static void
|
||
maintenance_print_core_file_backed_mappings (const char *args, int from_tty)
|
||
{
|
||
core_target *targ = get_current_core_target ();
|
||
if (targ != nullptr)
|
||
targ->info_proc_mappings (targ->core_gdbarch ());
|
||
}
|
||
|
||
void _initialize_corelow ();
|
||
void
|
||
_initialize_corelow ()
|
||
{
|
||
add_target (core_target_info, core_target_open, filename_completer);
|
||
add_cmd ("core-file-backed-mappings", class_maintenance,
|
||
maintenance_print_core_file_backed_mappings,
|
||
_("Print core file's file-backed mappings."),
|
||
&maintenanceprintlist);
|
||
}
|