mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-09 04:21:49 +08:00
6f56c941ee
there is no output section.
4350 lines
127 KiB
C
4350 lines
127 KiB
C
/* BFD semi-generic back-end for a.out binaries.
|
||
Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
|
||
Written by Cygnus Support.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/*
|
||
SECTION
|
||
a.out backends
|
||
|
||
|
||
DESCRIPTION
|
||
|
||
BFD supports a number of different flavours of a.out format,
|
||
though the major differences are only the sizes of the
|
||
structures on disk, and the shape of the relocation
|
||
information.
|
||
|
||
The support is split into a basic support file @file{aoutx.h}
|
||
and other files which derive functions from the base. One
|
||
derivation file is @file{aoutf1.h} (for a.out flavour 1), and
|
||
adds to the basic a.out functions support for sun3, sun4, 386
|
||
and 29k a.out files, to create a target jump vector for a
|
||
specific target.
|
||
|
||
This information is further split out into more specific files
|
||
for each machine, including @file{sunos.c} for sun3 and sun4,
|
||
@file{newsos3.c} for the Sony NEWS, and @file{demo64.c} for a
|
||
demonstration of a 64 bit a.out format.
|
||
|
||
The base file @file{aoutx.h} defines general mechanisms for
|
||
reading and writing records to and from disk and various
|
||
other methods which BFD requires. It is included by
|
||
@file{aout32.c} and @file{aout64.c} to form the names
|
||
<<aout_32_swap_exec_header_in>>, <<aout_64_swap_exec_header_in>>, etc.
|
||
|
||
As an example, this is what goes on to make the back end for a
|
||
sun4, from @file{aout32.c}:
|
||
|
||
| #define ARCH_SIZE 32
|
||
| #include "aoutx.h"
|
||
|
||
Which exports names:
|
||
|
||
| ...
|
||
| aout_32_canonicalize_reloc
|
||
| aout_32_find_nearest_line
|
||
| aout_32_get_lineno
|
||
| aout_32_get_reloc_upper_bound
|
||
| ...
|
||
|
||
from @file{sunos.c}:
|
||
|
||
| #define ARCH 32
|
||
| #define TARGET_NAME "a.out-sunos-big"
|
||
| #define VECNAME sunos_big_vec
|
||
| #include "aoutf1.h"
|
||
|
||
requires all the names from @file{aout32.c}, and produces the jump vector
|
||
|
||
| sunos_big_vec
|
||
|
||
The file @file{host-aout.c} is a special case. It is for a large set
|
||
of hosts that use ``more or less standard'' a.out files, and
|
||
for which cross-debugging is not interesting. It uses the
|
||
standard 32-bit a.out support routines, but determines the
|
||
file offsets and addresses of the text, data, and BSS
|
||
sections, the machine architecture and machine type, and the
|
||
entry point address, in a host-dependent manner. Once these
|
||
values have been determined, generic code is used to handle
|
||
the object file.
|
||
|
||
When porting it to run on a new system, you must supply:
|
||
|
||
| HOST_PAGE_SIZE
|
||
| HOST_SEGMENT_SIZE
|
||
| HOST_MACHINE_ARCH (optional)
|
||
| HOST_MACHINE_MACHINE (optional)
|
||
| HOST_TEXT_START_ADDR
|
||
| HOST_STACK_END_ADDR
|
||
|
||
in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These
|
||
values, plus the structures and macros defined in @file{a.out.h} on
|
||
your host system, will produce a BFD target that will access
|
||
ordinary a.out files on your host. To configure a new machine
|
||
to use @file{host-aout.c}, specify:
|
||
|
||
| TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
|
||
| TDEPFILES= host-aout.o trad-core.o
|
||
|
||
in the @file{config/@var{XXX}.mt} file, and modify @file{configure.in}
|
||
to use the
|
||
@file{@var{XXX}.mt} file (by setting "<<bfd_target=XXX>>") when your
|
||
configuration is selected.
|
||
|
||
*/
|
||
|
||
/* Some assumptions:
|
||
* Any BFD with D_PAGED set is ZMAGIC, and vice versa.
|
||
Doesn't matter what the setting of WP_TEXT is on output, but it'll
|
||
get set on input.
|
||
* Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC.
|
||
* Any BFD with both flags clear is OMAGIC.
|
||
(Just want to make these explicit, so the conditions tested in this
|
||
file make sense if you're more familiar with a.out than with BFD.) */
|
||
|
||
#define KEEPIT flags
|
||
#define KEEPITTYPE int
|
||
|
||
#include <assert.h>
|
||
#include <string.h> /* For strchr and friends */
|
||
#include "bfd.h"
|
||
#include <sysdep.h>
|
||
#include <ansidecl.h>
|
||
#include "bfdlink.h"
|
||
|
||
#include "libaout.h"
|
||
#include "libbfd.h"
|
||
#include "aout/aout64.h"
|
||
#include "aout/stab_gnu.h"
|
||
#include "aout/ar.h"
|
||
|
||
/*
|
||
SUBSECTION
|
||
Relocations
|
||
|
||
DESCRIPTION
|
||
The file @file{aoutx.h} provides for both the @emph{standard}
|
||
and @emph{extended} forms of a.out relocation records.
|
||
|
||
The standard records contain only an
|
||
address, a symbol index, and a type field. The extended records
|
||
(used on 29ks and sparcs) also have a full integer for an
|
||
addend.
|
||
|
||
*/
|
||
#define CTOR_TABLE_RELOC_IDX 2
|
||
|
||
#define howto_table_ext NAME(aout,ext_howto_table)
|
||
#define howto_table_std NAME(aout,std_howto_table)
|
||
|
||
reloc_howto_type howto_table_ext[] =
|
||
{
|
||
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */
|
||
HOWTO(RELOC_8, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", false, 0,0x000000ff, false),
|
||
HOWTO(RELOC_16, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", false, 0,0x0000ffff, false),
|
||
HOWTO(RELOC_32, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_DISP8, 0, 0, 8, true, 0, complain_overflow_signed,0,"DISP8", false, 0,0x000000ff, false),
|
||
HOWTO(RELOC_DISP16, 0, 1, 16, true, 0, complain_overflow_signed,0,"DISP16", false, 0,0x0000ffff, false),
|
||
HOWTO(RELOC_DISP32, 0, 2, 32, true, 0, complain_overflow_signed,0,"DISP32", false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_WDISP30,2, 2, 30, true, 0, complain_overflow_signed,0,"WDISP30", false, 0,0x3fffffff, false),
|
||
HOWTO(RELOC_WDISP22,2, 2, 22, true, 0, complain_overflow_signed,0,"WDISP22", false, 0,0x003fffff, false),
|
||
HOWTO(RELOC_HI22, 10, 2, 22, false, 0, complain_overflow_bitfield,0,"HI22", false, 0,0x003fffff, false),
|
||
HOWTO(RELOC_22, 0, 2, 22, false, 0, complain_overflow_bitfield,0,"22", false, 0,0x003fffff, false),
|
||
HOWTO(RELOC_13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"13", false, 0,0x00001fff, false),
|
||
HOWTO(RELOC_LO10, 0, 2, 10, false, 0, complain_overflow_dont,0,"LO10", false, 0,0x000003ff, false),
|
||
HOWTO(RELOC_SFA_BASE,0, 2, 32, false, 0, complain_overflow_bitfield,0,"SFA_BASE", false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_SFA_OFF13,0,2, 32, false, 0, complain_overflow_bitfield,0,"SFA_OFF13",false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_BASE10, 0, 2, 16, false, 0, complain_overflow_bitfield,0,"BASE10", false, 0,0x0000ffff, false),
|
||
HOWTO(RELOC_BASE13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"BASE13", false, 0,0x00001fff, false),
|
||
HOWTO(RELOC_BASE22, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"BASE22", false, 0,0x00000000, false),
|
||
HOWTO(RELOC_PC10, 0, 2, 10, false, 0, complain_overflow_bitfield,0,"PC10", false, 0,0x000003ff, false),
|
||
HOWTO(RELOC_PC22, 0, 2, 22, false, 0, complain_overflow_bitfield,0,"PC22", false, 0,0x003fffff, false),
|
||
HOWTO(RELOC_JMP_TBL,0, 2, 32, false, 0, complain_overflow_bitfield,0,"JMP_TBL", false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_SEGOFF16,0, 2, 0, false, 0, complain_overflow_bitfield,0,"SEGOFF16", false, 0,0x00000000, false),
|
||
HOWTO(RELOC_GLOB_DAT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"GLOB_DAT", false, 0,0x00000000, false),
|
||
HOWTO(RELOC_JMP_SLOT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"JMP_SLOT", false, 0,0x00000000, false),
|
||
HOWTO(RELOC_RELATIVE,0, 2, 0, false, 0, complain_overflow_bitfield,0,"RELATIVE", false, 0,0x00000000, false),
|
||
};
|
||
|
||
/* Convert standard reloc records to "arelent" format (incl byte swap). */
|
||
|
||
reloc_howto_type howto_table_std[] = {
|
||
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */
|
||
HOWTO( 0, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", true, 0x000000ff,0x000000ff, false),
|
||
HOWTO( 1, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", true, 0x0000ffff,0x0000ffff, false),
|
||
HOWTO( 2, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", true, 0xffffffff,0xffffffff, false),
|
||
HOWTO( 3, 0, 4, 64, false, 0, complain_overflow_bitfield,0,"64", true, 0xdeaddead,0xdeaddead, false),
|
||
HOWTO( 4, 0, 0, 8, true, 0, complain_overflow_signed, 0,"DISP8", true, 0x000000ff,0x000000ff, false),
|
||
HOWTO( 5, 0, 1, 16, true, 0, complain_overflow_signed, 0,"DISP16", true, 0x0000ffff,0x0000ffff, false),
|
||
HOWTO( 6, 0, 2, 32, true, 0, complain_overflow_signed, 0,"DISP32", true, 0xffffffff,0xffffffff, false),
|
||
HOWTO( 7, 0, 4, 64, true, 0, complain_overflow_signed, 0,"DISP64", true, 0xfeedface,0xfeedface, false),
|
||
{ -1 },
|
||
HOWTO( 9, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"BASE16", false,0xffffffff,0xffffffff, false),
|
||
HOWTO(10, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"BASE32", false,0xffffffff,0xffffffff, false),
|
||
};
|
||
|
||
#define TABLE_SIZE(TABLE) (sizeof(TABLE)/sizeof(TABLE[0]))
|
||
|
||
CONST struct reloc_howto_struct *
|
||
DEFUN(NAME(aout,reloc_type_lookup),(abfd,code),
|
||
bfd *abfd AND
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
#define EXT(i,j) case i: return &howto_table_ext[j]
|
||
#define STD(i,j) case i: return &howto_table_std[j]
|
||
int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE;
|
||
if (code == BFD_RELOC_CTOR)
|
||
switch (bfd_get_arch_info (abfd)->bits_per_address)
|
||
{
|
||
case 32:
|
||
code = BFD_RELOC_32;
|
||
break;
|
||
}
|
||
if (ext)
|
||
switch (code)
|
||
{
|
||
EXT (BFD_RELOC_32, 2);
|
||
EXT (BFD_RELOC_HI22, 8);
|
||
EXT (BFD_RELOC_LO10, 11);
|
||
EXT (BFD_RELOC_32_PCREL_S2, 6);
|
||
EXT (BFD_RELOC_SPARC_WDISP22, 7);
|
||
default: return (CONST struct reloc_howto_struct *) 0;
|
||
}
|
||
else
|
||
/* std relocs */
|
||
switch (code)
|
||
{
|
||
STD (BFD_RELOC_16, 1);
|
||
STD (BFD_RELOC_32, 2);
|
||
STD (BFD_RELOC_8_PCREL, 4);
|
||
STD (BFD_RELOC_16_PCREL, 5);
|
||
STD (BFD_RELOC_32_PCREL, 6);
|
||
STD (BFD_RELOC_16_BASEREL, 9);
|
||
STD (BFD_RELOC_32_BASEREL, 10);
|
||
default: return (CONST struct reloc_howto_struct *) 0;
|
||
}
|
||
}
|
||
|
||
/*
|
||
SUBSECTION
|
||
Internal entry points
|
||
|
||
DESCRIPTION
|
||
@file{aoutx.h} exports several routines for accessing the
|
||
contents of an a.out file, which are gathered and exported in
|
||
turn by various format specific files (eg sunos.c).
|
||
|
||
*/
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_swap_exec_header_in
|
||
|
||
SYNOPSIS
|
||
void aout_@var{size}_swap_exec_header_in,
|
||
(bfd *abfd,
|
||
struct external_exec *raw_bytes,
|
||
struct internal_exec *execp);
|
||
|
||
DESCRIPTION
|
||
Swap the information in an executable header @var{raw_bytes} taken
|
||
from a raw byte stream memory image into the internal exec header
|
||
structure @var{execp}.
|
||
*/
|
||
|
||
#ifndef NAME_swap_exec_header_in
|
||
void
|
||
DEFUN(NAME(aout,swap_exec_header_in),(abfd, raw_bytes, execp),
|
||
bfd *abfd AND
|
||
struct external_exec *raw_bytes AND
|
||
struct internal_exec *execp)
|
||
{
|
||
struct external_exec *bytes = (struct external_exec *)raw_bytes;
|
||
|
||
/* The internal_exec structure has some fields that are unused in this
|
||
configuration (IE for i960), so ensure that all such uninitialized
|
||
fields are zero'd out. There are places where two of these structs
|
||
are memcmp'd, and thus the contents do matter. */
|
||
memset (execp, 0, sizeof (struct internal_exec));
|
||
/* Now fill in fields in the execp, from the bytes in the raw data. */
|
||
execp->a_info = bfd_h_get_32 (abfd, bytes->e_info);
|
||
execp->a_text = GET_WORD (abfd, bytes->e_text);
|
||
execp->a_data = GET_WORD (abfd, bytes->e_data);
|
||
execp->a_bss = GET_WORD (abfd, bytes->e_bss);
|
||
execp->a_syms = GET_WORD (abfd, bytes->e_syms);
|
||
execp->a_entry = GET_WORD (abfd, bytes->e_entry);
|
||
execp->a_trsize = GET_WORD (abfd, bytes->e_trsize);
|
||
execp->a_drsize = GET_WORD (abfd, bytes->e_drsize);
|
||
}
|
||
#define NAME_swap_exec_header_in NAME(aout,swap_exec_header_in)
|
||
#endif
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_swap_exec_header_out
|
||
|
||
SYNOPSIS
|
||
void aout_@var{size}_swap_exec_header_out
|
||
(bfd *abfd,
|
||
struct internal_exec *execp,
|
||
struct external_exec *raw_bytes);
|
||
|
||
DESCRIPTION
|
||
Swap the information in an internal exec header structure
|
||
@var{execp} into the buffer @var{raw_bytes} ready for writing to disk.
|
||
*/
|
||
void
|
||
DEFUN(NAME(aout,swap_exec_header_out),(abfd, execp, raw_bytes),
|
||
bfd *abfd AND
|
||
struct internal_exec *execp AND
|
||
struct external_exec *raw_bytes)
|
||
{
|
||
struct external_exec *bytes = (struct external_exec *)raw_bytes;
|
||
|
||
/* Now fill in fields in the raw data, from the fields in the exec struct. */
|
||
bfd_h_put_32 (abfd, execp->a_info , bytes->e_info);
|
||
PUT_WORD (abfd, execp->a_text , bytes->e_text);
|
||
PUT_WORD (abfd, execp->a_data , bytes->e_data);
|
||
PUT_WORD (abfd, execp->a_bss , bytes->e_bss);
|
||
PUT_WORD (abfd, execp->a_syms , bytes->e_syms);
|
||
PUT_WORD (abfd, execp->a_entry , bytes->e_entry);
|
||
PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize);
|
||
PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize);
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_some_aout_object_p
|
||
|
||
SYNOPSIS
|
||
bfd_target *aout_@var{size}_some_aout_object_p
|
||
(bfd *abfd,
|
||
bfd_target *(*callback_to_real_object_p)());
|
||
|
||
DESCRIPTION
|
||
Some a.out variant thinks that the file open in @var{abfd}
|
||
checking is an a.out file. Do some more checking, and set up
|
||
for access if it really is. Call back to the calling
|
||
environment's "finish up" function just before returning, to
|
||
handle any last-minute setup.
|
||
*/
|
||
|
||
bfd_target *
|
||
DEFUN(NAME(aout,some_aout_object_p),(abfd, execp, callback_to_real_object_p),
|
||
bfd *abfd AND
|
||
struct internal_exec *execp AND
|
||
bfd_target *(*callback_to_real_object_p) PARAMS ((bfd *)))
|
||
{
|
||
struct aout_data_struct *rawptr, *oldrawptr;
|
||
bfd_target *result;
|
||
|
||
rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, sizeof (struct aout_data_struct ));
|
||
if (rawptr == NULL) {
|
||
bfd_error = no_memory;
|
||
return 0;
|
||
}
|
||
|
||
oldrawptr = abfd->tdata.aout_data;
|
||
abfd->tdata.aout_data = rawptr;
|
||
|
||
/* Copy the contents of the old tdata struct.
|
||
In particular, we want the subformat, since for hpux it was set in
|
||
hp300hpux.c:swap_exec_header_in and will be used in
|
||
hp300hpux.c:callback. */
|
||
if (oldrawptr != NULL)
|
||
*abfd->tdata.aout_data = *oldrawptr;
|
||
|
||
abfd->tdata.aout_data->a.hdr = &rawptr->e;
|
||
*(abfd->tdata.aout_data->a.hdr) = *execp; /* Copy in the internal_exec struct */
|
||
execp = abfd->tdata.aout_data->a.hdr;
|
||
|
||
/* Set the file flags */
|
||
abfd->flags = NO_FLAGS;
|
||
if (execp->a_drsize || execp->a_trsize)
|
||
abfd->flags |= HAS_RELOC;
|
||
/* Setting of EXEC_P has been deferred to the bottom of this function */
|
||
if (execp->a_syms)
|
||
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
|
||
if (N_DYNAMIC(*execp))
|
||
abfd->flags |= DYNAMIC;
|
||
|
||
if (N_MAGIC (*execp) == ZMAGIC)
|
||
{
|
||
abfd->flags |= D_PAGED|WP_TEXT;
|
||
adata(abfd).magic = z_magic;
|
||
}
|
||
else if (N_MAGIC (*execp) == NMAGIC)
|
||
{
|
||
abfd->flags |= WP_TEXT;
|
||
adata(abfd).magic = n_magic;
|
||
}
|
||
else
|
||
adata(abfd).magic = o_magic;
|
||
|
||
bfd_get_start_address (abfd) = execp->a_entry;
|
||
|
||
obj_aout_symbols (abfd) = (aout_symbol_type *)NULL;
|
||
bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist);
|
||
|
||
/* The default relocation entry size is that of traditional V7 Unix. */
|
||
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
|
||
|
||
/* The default symbol entry size is that of traditional Unix. */
|
||
obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE;
|
||
|
||
obj_aout_external_syms (abfd) = NULL;
|
||
obj_aout_external_strings (abfd) = NULL;
|
||
obj_aout_sym_hashes (abfd) = NULL;
|
||
|
||
/* Create the sections. This is raunchy, but bfd_close wants to reclaim
|
||
them. */
|
||
|
||
obj_textsec (abfd) = bfd_make_section_old_way (abfd, ".text");
|
||
obj_datasec (abfd) = bfd_make_section_old_way (abfd, ".data");
|
||
obj_bsssec (abfd) = bfd_make_section_old_way (abfd, ".bss");
|
||
|
||
#if 0
|
||
(void)bfd_make_section (abfd, ".text");
|
||
(void)bfd_make_section (abfd, ".data");
|
||
(void)bfd_make_section (abfd, ".bss");
|
||
#endif
|
||
|
||
obj_datasec (abfd)->_raw_size = execp->a_data;
|
||
obj_bsssec (abfd)->_raw_size = execp->a_bss;
|
||
|
||
obj_textsec (abfd)->flags = (execp->a_trsize != 0 ?
|
||
(SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC) :
|
||
(SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS));
|
||
obj_datasec (abfd)->flags = (execp->a_drsize != 0 ?
|
||
(SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC) :
|
||
(SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS));
|
||
obj_bsssec (abfd)->flags = SEC_ALLOC;
|
||
|
||
#ifdef THIS_IS_ONLY_DOCUMENTATION
|
||
/* The common code can't fill in these things because they depend
|
||
on either the start address of the text segment, the rounding
|
||
up of virtual addersses between segments, or the starting file
|
||
position of the text segment -- all of which varies among different
|
||
versions of a.out. */
|
||
|
||
/* Call back to the format-dependent code to fill in the rest of the
|
||
fields and do any further cleanup. Things that should be filled
|
||
in by the callback: */
|
||
|
||
struct exec *execp = exec_hdr (abfd);
|
||
|
||
obj_textsec (abfd)->size = N_TXTSIZE(*execp);
|
||
obj_textsec (abfd)->raw_size = N_TXTSIZE(*execp);
|
||
/* data and bss are already filled in since they're so standard */
|
||
|
||
/* The virtual memory addresses of the sections */
|
||
obj_textsec (abfd)->vma = N_TXTADDR(*execp);
|
||
obj_datasec (abfd)->vma = N_DATADDR(*execp);
|
||
obj_bsssec (abfd)->vma = N_BSSADDR(*execp);
|
||
|
||
/* The file offsets of the sections */
|
||
obj_textsec (abfd)->filepos = N_TXTOFF(*execp);
|
||
obj_datasec (abfd)->filepos = N_DATOFF(*execp);
|
||
|
||
/* The file offsets of the relocation info */
|
||
obj_textsec (abfd)->rel_filepos = N_TRELOFF(*execp);
|
||
obj_datasec (abfd)->rel_filepos = N_DRELOFF(*execp);
|
||
|
||
/* The file offsets of the string table and symbol table. */
|
||
obj_str_filepos (abfd) = N_STROFF (*execp);
|
||
obj_sym_filepos (abfd) = N_SYMOFF (*execp);
|
||
|
||
/* Determine the architecture and machine type of the object file. */
|
||
switch (N_MACHTYPE (*exec_hdr (abfd))) {
|
||
default:
|
||
abfd->obj_arch = bfd_arch_obscure;
|
||
break;
|
||
}
|
||
|
||
adata(abfd)->page_size = PAGE_SIZE;
|
||
adata(abfd)->segment_size = SEGMENT_SIZE;
|
||
adata(abfd)->exec_bytes_size = EXEC_BYTES_SIZE;
|
||
|
||
return abfd->xvec;
|
||
|
||
/* The architecture is encoded in various ways in various a.out variants,
|
||
or is not encoded at all in some of them. The relocation size depends
|
||
on the architecture and the a.out variant. Finally, the return value
|
||
is the bfd_target vector in use. If an error occurs, return zero and
|
||
set bfd_error to the appropriate error code.
|
||
|
||
Formats such as b.out, which have additional fields in the a.out
|
||
header, should cope with them in this callback as well. */
|
||
#endif /* DOCUMENTATION */
|
||
|
||
result = (*callback_to_real_object_p)(abfd);
|
||
|
||
/* Now that the segment addresses have been worked out, take a better
|
||
guess at whether the file is executable. If the entry point
|
||
is within the text segment, assume it is. (This makes files
|
||
executable even if their entry point address is 0, as long as
|
||
their text starts at zero.)
|
||
|
||
At some point we should probably break down and stat the file and
|
||
declare it executable if (one of) its 'x' bits are on... */
|
||
if ((execp->a_entry >= obj_textsec(abfd)->vma) &&
|
||
(execp->a_entry < obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size))
|
||
abfd->flags |= EXEC_P;
|
||
if (result)
|
||
{
|
||
#if 0 /* These should be set correctly anyways. */
|
||
abfd->sections = obj_textsec (abfd);
|
||
obj_textsec (abfd)->next = obj_datasec (abfd);
|
||
obj_datasec (abfd)->next = obj_bsssec (abfd);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
free (rawptr);
|
||
abfd->tdata.aout_data = oldrawptr;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_mkobject
|
||
|
||
SYNOPSIS
|
||
boolean aout_@var{size}_mkobject, (bfd *abfd);
|
||
|
||
DESCRIPTION
|
||
Initialize BFD @var{abfd} for use with a.out files.
|
||
*/
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,mkobject),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
struct aout_data_struct *rawptr;
|
||
|
||
bfd_error = system_call_error;
|
||
|
||
/* Use an intermediate variable for clarity */
|
||
rawptr = (struct aout_data_struct *)bfd_zalloc (abfd, sizeof (struct aout_data_struct ));
|
||
|
||
if (rawptr == NULL) {
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
abfd->tdata.aout_data = rawptr;
|
||
exec_hdr (abfd) = &(rawptr->e);
|
||
|
||
/* For simplicity's sake we just make all the sections right here. */
|
||
|
||
obj_textsec (abfd) = (asection *)NULL;
|
||
obj_datasec (abfd) = (asection *)NULL;
|
||
obj_bsssec (abfd) = (asection *)NULL;
|
||
bfd_make_section (abfd, ".text");
|
||
bfd_make_section (abfd, ".data");
|
||
bfd_make_section (abfd, ".bss");
|
||
bfd_make_section (abfd, BFD_ABS_SECTION_NAME);
|
||
bfd_make_section (abfd, BFD_UND_SECTION_NAME);
|
||
bfd_make_section (abfd, BFD_COM_SECTION_NAME);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_machine_type
|
||
|
||
SYNOPSIS
|
||
enum machine_type aout_@var{size}_machine_type
|
||
(enum bfd_architecture arch,
|
||
unsigned long machine));
|
||
|
||
DESCRIPTION
|
||
Keep track of machine architecture and machine type for
|
||
a.out's. Return the <<machine_type>> for a particular
|
||
architecture and machine, or <<M_UNKNOWN>> if that exact architecture
|
||
and machine can't be represented in a.out format.
|
||
|
||
If the architecture is understood, machine type 0 (default)
|
||
is always understood.
|
||
*/
|
||
|
||
enum machine_type
|
||
DEFUN(NAME(aout,machine_type),(arch, machine),
|
||
enum bfd_architecture arch AND
|
||
unsigned long machine)
|
||
{
|
||
enum machine_type arch_flags;
|
||
|
||
arch_flags = M_UNKNOWN;
|
||
|
||
switch (arch) {
|
||
case bfd_arch_sparc:
|
||
if (machine == 0) arch_flags = M_SPARC;
|
||
break;
|
||
|
||
case bfd_arch_m68k:
|
||
switch (machine) {
|
||
case 0: arch_flags = M_68010; break;
|
||
case 68000: arch_flags = M_UNKNOWN; break;
|
||
case 68010: arch_flags = M_68010; break;
|
||
case 68020: arch_flags = M_68020; break;
|
||
default: arch_flags = M_UNKNOWN; break;
|
||
}
|
||
break;
|
||
|
||
case bfd_arch_i386:
|
||
if (machine == 0) arch_flags = M_386;
|
||
break;
|
||
|
||
case bfd_arch_a29k:
|
||
if (machine == 0) arch_flags = M_29K;
|
||
break;
|
||
|
||
case bfd_arch_mips:
|
||
switch (machine) {
|
||
case 0:
|
||
case 2000:
|
||
case 3000: arch_flags = M_MIPS1; break;
|
||
case 4000:
|
||
case 4400:
|
||
case 6000: arch_flags = M_MIPS2; break;
|
||
default: arch_flags = M_UNKNOWN; break;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
arch_flags = M_UNKNOWN;
|
||
}
|
||
return arch_flags;
|
||
}
|
||
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_set_arch_mach
|
||
|
||
SYNOPSIS
|
||
boolean aout_@var{size}_set_arch_mach,
|
||
(bfd *,
|
||
enum bfd_architecture arch,
|
||
unsigned long machine));
|
||
|
||
DESCRIPTION
|
||
Set the architecture and the machine of the BFD @var{abfd} to the
|
||
values @var{arch} and @var{machine}. Verify that @var{abfd}'s format
|
||
can support the architecture required.
|
||
*/
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,set_arch_mach),(abfd, arch, machine),
|
||
bfd *abfd AND
|
||
enum bfd_architecture arch AND
|
||
unsigned long machine)
|
||
{
|
||
if (! bfd_default_set_arch_mach (abfd, arch, machine))
|
||
return false;
|
||
|
||
if (arch != bfd_arch_unknown &&
|
||
NAME(aout,machine_type) (arch, machine) == M_UNKNOWN)
|
||
return false; /* We can't represent this type */
|
||
|
||
/* Determine the size of a relocation entry */
|
||
switch (arch) {
|
||
case bfd_arch_sparc:
|
||
case bfd_arch_a29k:
|
||
case bfd_arch_mips:
|
||
obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE;
|
||
break;
|
||
default:
|
||
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
|
||
break;
|
||
}
|
||
|
||
return (*aout_backend_info(abfd)->set_sizes) (abfd);
|
||
}
|
||
|
||
static void
|
||
adjust_o_magic (abfd, execp)
|
||
bfd *abfd;
|
||
struct internal_exec *execp;
|
||
{
|
||
file_ptr pos = adata (abfd).exec_bytes_size;
|
||
bfd_vma vma = 0;
|
||
int pad = 0;
|
||
|
||
/* Text. */
|
||
obj_textsec(abfd)->filepos = pos;
|
||
pos += obj_textsec(abfd)->_raw_size;
|
||
vma += obj_textsec(abfd)->_raw_size;
|
||
|
||
/* Data. */
|
||
if (!obj_datasec(abfd)->user_set_vma)
|
||
{
|
||
#if 0 /* ?? Does alignment in the file image really matter? */
|
||
pad = align_power (vma, obj_datasec(abfd)->alignment_power) - vma;
|
||
#endif
|
||
obj_textsec(abfd)->_raw_size += pad;
|
||
pos += pad;
|
||
vma += pad;
|
||
obj_datasec(abfd)->vma = vma;
|
||
}
|
||
obj_datasec(abfd)->filepos = pos;
|
||
pos += obj_datasec(abfd)->_raw_size;
|
||
vma += obj_datasec(abfd)->_raw_size;
|
||
|
||
/* BSS. */
|
||
if (!obj_bsssec(abfd)->user_set_vma)
|
||
{
|
||
#if 0
|
||
pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma;
|
||
#endif
|
||
obj_datasec(abfd)->_raw_size += pad;
|
||
pos += pad;
|
||
vma += pad;
|
||
obj_bsssec(abfd)->vma = vma;
|
||
}
|
||
obj_bsssec(abfd)->filepos = pos;
|
||
|
||
/* Fix up the exec header. */
|
||
execp->a_text = obj_textsec(abfd)->_raw_size;
|
||
execp->a_data = obj_datasec(abfd)->_raw_size;
|
||
execp->a_bss = obj_bsssec(abfd)->_raw_size;
|
||
N_SET_MAGIC (*execp, OMAGIC);
|
||
}
|
||
|
||
static void
|
||
adjust_z_magic (abfd, execp)
|
||
bfd *abfd;
|
||
struct internal_exec *execp;
|
||
{
|
||
bfd_size_type data_pad, text_pad;
|
||
file_ptr text_end;
|
||
CONST struct aout_backend_data *abdp;
|
||
int ztih; /* Nonzero if text includes exec header. */
|
||
|
||
abdp = aout_backend_info (abfd);
|
||
|
||
/* Text. */
|
||
ztih = abdp && abdp->text_includes_header;
|
||
obj_textsec(abfd)->filepos = (ztih
|
||
? adata(abfd).exec_bytes_size
|
||
: adata(abfd).page_size);
|
||
if (! obj_textsec(abfd)->user_set_vma)
|
||
/* ?? Do we really need to check for relocs here? */
|
||
obj_textsec(abfd)->vma = ((abfd->flags & HAS_RELOC)
|
||
? 0
|
||
: (ztih
|
||
? (abdp->default_text_vma
|
||
+ adata(abfd).exec_bytes_size)
|
||
: abdp->default_text_vma));
|
||
/* Could take strange alignment of text section into account here? */
|
||
|
||
/* Find start of data. */
|
||
text_end = obj_textsec(abfd)->filepos + obj_textsec(abfd)->_raw_size;
|
||
text_pad = BFD_ALIGN (text_end, adata(abfd).page_size) - text_end;
|
||
obj_textsec(abfd)->_raw_size += text_pad;
|
||
text_end += text_pad;
|
||
|
||
/* Data. */
|
||
if (!obj_datasec(abfd)->user_set_vma)
|
||
{
|
||
bfd_vma vma;
|
||
vma = obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size;
|
||
obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
|
||
}
|
||
if (abdp && abdp->zmagic_mapped_contiguous)
|
||
{
|
||
text_pad = (obj_datasec(abfd)->vma
|
||
- obj_textsec(abfd)->vma
|
||
- obj_textsec(abfd)->_raw_size);
|
||
obj_textsec(abfd)->_raw_size += text_pad;
|
||
}
|
||
obj_datasec(abfd)->filepos = (obj_textsec(abfd)->filepos
|
||
+ obj_textsec(abfd)->_raw_size);
|
||
|
||
/* Fix up exec header while we're at it. */
|
||
execp->a_text = obj_textsec(abfd)->_raw_size;
|
||
if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted)))
|
||
execp->a_text += adata(abfd).exec_bytes_size;
|
||
N_SET_MAGIC (*execp, ZMAGIC);
|
||
/* Spec says data section should be rounded up to page boundary. */
|
||
/* If extra space in page is left after data section, fudge data
|
||
in the header so that the bss section looks smaller by that
|
||
amount. We'll start the bss section there, and lie to the OS. */
|
||
obj_datasec(abfd)->_raw_size
|
||
= align_power (obj_datasec(abfd)->_raw_size,
|
||
obj_bsssec(abfd)->alignment_power);
|
||
execp->a_data = BFD_ALIGN (obj_datasec(abfd)->_raw_size,
|
||
adata(abfd).page_size);
|
||
data_pad = execp->a_data - obj_datasec(abfd)->_raw_size;
|
||
|
||
/* BSS. */
|
||
if (!obj_bsssec(abfd)->user_set_vma)
|
||
obj_bsssec(abfd)->vma = (obj_datasec(abfd)->vma
|
||
+ obj_datasec(abfd)->_raw_size);
|
||
execp->a_bss = (data_pad > obj_bsssec(abfd)->_raw_size) ? 0 :
|
||
obj_bsssec(abfd)->_raw_size - data_pad;
|
||
}
|
||
|
||
static void
|
||
adjust_n_magic (abfd, execp)
|
||
bfd *abfd;
|
||
struct internal_exec *execp;
|
||
{
|
||
file_ptr pos = adata(abfd).exec_bytes_size;
|
||
bfd_vma vma = 0;
|
||
int pad;
|
||
|
||
/* Text. */
|
||
obj_textsec(abfd)->filepos = pos;
|
||
if (!obj_textsec(abfd)->user_set_vma)
|
||
obj_textsec(abfd)->vma = vma;
|
||
else
|
||
vma = obj_textsec(abfd)->vma;
|
||
pos += obj_textsec(abfd)->_raw_size;
|
||
vma += obj_textsec(abfd)->_raw_size;
|
||
|
||
/* Data. */
|
||
obj_datasec(abfd)->filepos = pos;
|
||
if (!obj_datasec(abfd)->user_set_vma)
|
||
obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
|
||
vma = obj_datasec(abfd)->vma;
|
||
|
||
/* Since BSS follows data immediately, see if it needs alignment. */
|
||
vma += obj_datasec(abfd)->_raw_size;
|
||
pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma;
|
||
obj_datasec(abfd)->_raw_size += pad;
|
||
pos += obj_datasec(abfd)->_raw_size;
|
||
|
||
/* BSS. */
|
||
if (!obj_bsssec(abfd)->user_set_vma)
|
||
obj_bsssec(abfd)->vma = vma;
|
||
else
|
||
vma = obj_bsssec(abfd)->vma;
|
||
|
||
/* Fix up exec header. */
|
||
execp->a_text = obj_textsec(abfd)->_raw_size;
|
||
execp->a_data = obj_datasec(abfd)->_raw_size;
|
||
execp->a_bss = obj_bsssec(abfd)->_raw_size;
|
||
N_SET_MAGIC (*execp, NMAGIC);
|
||
}
|
||
|
||
boolean
|
||
DEFUN (NAME(aout,adjust_sizes_and_vmas), (abfd, text_size, text_end),
|
||
bfd *abfd AND bfd_size_type *text_size AND file_ptr *text_end)
|
||
{
|
||
struct internal_exec *execp = exec_hdr (abfd);
|
||
|
||
if ((obj_textsec (abfd) == NULL) || (obj_datasec (abfd) == NULL))
|
||
{
|
||
bfd_error = invalid_operation;
|
||
return false;
|
||
}
|
||
if (adata(abfd).magic != undecided_magic) return true;
|
||
|
||
obj_textsec(abfd)->_raw_size =
|
||
align_power(obj_textsec(abfd)->_raw_size,
|
||
obj_textsec(abfd)->alignment_power);
|
||
|
||
*text_size = obj_textsec (abfd)->_raw_size;
|
||
/* Rule (heuristic) for when to pad to a new page. Note that there
|
||
are (at least) two ways demand-paged (ZMAGIC) files have been
|
||
handled. Most Berkeley-based systems start the text segment at
|
||
(PAGE_SIZE). However, newer versions of SUNOS start the text
|
||
segment right after the exec header; the latter is counted in the
|
||
text segment size, and is paged in by the kernel with the rest of
|
||
the text. */
|
||
|
||
/* This perhaps isn't the right way to do this, but made it simpler for me
|
||
to understand enough to implement it. Better would probably be to go
|
||
right from BFD flags to alignment/positioning characteristics. But the
|
||
old code was sloppy enough about handling the flags, and had enough
|
||
other magic, that it was a little hard for me to understand. I think
|
||
I understand it better now, but I haven't time to do the cleanup this
|
||
minute. */
|
||
|
||
if (abfd->flags & D_PAGED)
|
||
/* Whether or not WP_TEXT is set -- let D_PAGED override. */
|
||
/* @@ What about QMAGIC? */
|
||
adata(abfd).magic = z_magic;
|
||
else if (abfd->flags & WP_TEXT)
|
||
adata(abfd).magic = n_magic;
|
||
else
|
||
adata(abfd).magic = o_magic;
|
||
|
||
#ifdef BFD_AOUT_DEBUG /* requires gcc2 */
|
||
#if __GNUC__ >= 2
|
||
fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n",
|
||
({ char *str;
|
||
switch (adata(abfd).magic) {
|
||
case n_magic: str = "NMAGIC"; break;
|
||
case o_magic: str = "OMAGIC"; break;
|
||
case z_magic: str = "ZMAGIC"; break;
|
||
default: abort ();
|
||
}
|
||
str;
|
||
}),
|
||
obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size,
|
||
obj_textsec(abfd)->alignment_power,
|
||
obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size,
|
||
obj_datasec(abfd)->alignment_power,
|
||
obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size,
|
||
obj_bsssec(abfd)->alignment_power);
|
||
#endif
|
||
#endif
|
||
|
||
switch (adata(abfd).magic)
|
||
{
|
||
case o_magic:
|
||
adjust_o_magic (abfd, execp);
|
||
break;
|
||
case z_magic:
|
||
adjust_z_magic (abfd, execp);
|
||
break;
|
||
case n_magic:
|
||
adjust_n_magic (abfd, execp);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
#ifdef BFD_AOUT_DEBUG
|
||
fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n",
|
||
obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size,
|
||
obj_textsec(abfd)->filepos,
|
||
obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size,
|
||
obj_datasec(abfd)->filepos,
|
||
obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size);
|
||
#endif
|
||
|
||
return true;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_new_section_hook
|
||
|
||
SYNOPSIS
|
||
boolean aout_@var{size}_new_section_hook,
|
||
(bfd *abfd,
|
||
asection *newsect));
|
||
|
||
DESCRIPTION
|
||
Called by the BFD in response to a @code{bfd_make_section}
|
||
request.
|
||
*/
|
||
boolean
|
||
DEFUN(NAME(aout,new_section_hook),(abfd, newsect),
|
||
bfd *abfd AND
|
||
asection *newsect)
|
||
{
|
||
/* align to double at least */
|
||
newsect->alignment_power = bfd_get_arch_info(abfd)->section_align_power;
|
||
|
||
|
||
if (bfd_get_format (abfd) == bfd_object)
|
||
{
|
||
if (obj_textsec(abfd) == NULL && !strcmp(newsect->name, ".text")) {
|
||
obj_textsec(abfd)= newsect;
|
||
newsect->target_index = N_TEXT | N_EXT;
|
||
return true;
|
||
}
|
||
|
||
if (obj_datasec(abfd) == NULL && !strcmp(newsect->name, ".data")) {
|
||
obj_datasec(abfd) = newsect;
|
||
newsect->target_index = N_DATA | N_EXT;
|
||
return true;
|
||
}
|
||
|
||
if (obj_bsssec(abfd) == NULL && !strcmp(newsect->name, ".bss")) {
|
||
obj_bsssec(abfd) = newsect;
|
||
newsect->target_index = N_BSS | N_EXT;
|
||
return true;
|
||
}
|
||
|
||
}
|
||
|
||
/* We allow more than three sections internally */
|
||
return true;
|
||
}
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,set_section_contents),(abfd, section, location, offset, count),
|
||
bfd *abfd AND
|
||
sec_ptr section AND
|
||
PTR location AND
|
||
file_ptr offset AND
|
||
bfd_size_type count)
|
||
{
|
||
file_ptr text_end;
|
||
bfd_size_type text_size;
|
||
|
||
if (abfd->output_has_begun == false)
|
||
{
|
||
if (NAME(aout,adjust_sizes_and_vmas) (abfd,
|
||
&text_size,
|
||
&text_end) == false)
|
||
return false;
|
||
}
|
||
|
||
/* regardless, once we know what we're doing, we might as well get going */
|
||
if (section != obj_bsssec(abfd))
|
||
{
|
||
bfd_seek (abfd, section->filepos + offset, SEEK_SET);
|
||
|
||
if (count) {
|
||
return (bfd_write ((PTR)location, 1, count, abfd) == count) ?
|
||
true : false;
|
||
}
|
||
return true;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Classify stabs symbols */
|
||
|
||
#define sym_in_text_section(sym) \
|
||
(((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_TEXT)
|
||
|
||
#define sym_in_data_section(sym) \
|
||
(((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_DATA)
|
||
|
||
#define sym_in_bss_section(sym) \
|
||
(((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_BSS)
|
||
|
||
/* Symbol is undefined if type is N_UNDF|N_EXT and if it has
|
||
zero in the "value" field. Nonzeroes there are fortrancommon
|
||
symbols. */
|
||
#define sym_is_undefined(sym) \
|
||
((sym)->type == (N_UNDF | N_EXT) && (sym)->symbol.value == 0)
|
||
|
||
/* Symbol is a global definition if N_EXT is on and if it has
|
||
a nonzero type field. */
|
||
#define sym_is_global_defn(sym) \
|
||
(((sym)->type & N_EXT) && (sym)->type & N_TYPE)
|
||
|
||
/* Symbol is debugger info if any bits outside N_TYPE or N_EXT
|
||
are on. */
|
||
#define sym_is_debugger_info(sym) \
|
||
(((sym)->type & ~(N_EXT | N_TYPE)) || (sym)->type == N_FN)
|
||
|
||
#define sym_is_fortrancommon(sym) \
|
||
(((sym)->type == (N_EXT)) && (sym)->symbol.value != 0)
|
||
|
||
/* Symbol is absolute if it has N_ABS set */
|
||
#define sym_is_absolute(sym) \
|
||
(((sym)->type & N_TYPE)== N_ABS)
|
||
|
||
|
||
#define sym_is_indirect(sym) \
|
||
(((sym)->type & N_ABS)== N_ABS)
|
||
|
||
/* Only in their own functions for ease of debugging; when sym flags have
|
||
stabilised these should be inlined into their (single) caller */
|
||
|
||
static void
|
||
DEFUN (translate_from_native_sym_flags, (sym_pointer, cache_ptr, abfd),
|
||
struct external_nlist *sym_pointer AND
|
||
aout_symbol_type * cache_ptr AND
|
||
bfd * abfd)
|
||
{
|
||
cache_ptr->symbol.section = 0;
|
||
switch (cache_ptr->type & N_TYPE)
|
||
{
|
||
case N_SETA:
|
||
case N_SETT:
|
||
case N_SETD:
|
||
case N_SETB:
|
||
{
|
||
char *copy = bfd_alloc (abfd, strlen (cache_ptr->symbol.name) + 1);
|
||
asection *section;
|
||
asection *into_section;
|
||
|
||
arelent_chain *reloc = (arelent_chain *) bfd_alloc (abfd, sizeof (arelent_chain));
|
||
strcpy (copy, cache_ptr->symbol.name);
|
||
|
||
/* Make sure that this bfd has a section with the right contructor
|
||
name */
|
||
section = bfd_get_section_by_name (abfd, copy);
|
||
if (!section)
|
||
section = bfd_make_section (abfd, copy);
|
||
|
||
/* Build a relocation entry for the constructor */
|
||
switch ((cache_ptr->type & N_TYPE))
|
||
{
|
||
case N_SETA:
|
||
into_section = &bfd_abs_section;
|
||
cache_ptr->type = N_ABS;
|
||
break;
|
||
case N_SETT:
|
||
into_section = (asection *) obj_textsec (abfd);
|
||
cache_ptr->type = N_TEXT;
|
||
break;
|
||
case N_SETD:
|
||
into_section = (asection *) obj_datasec (abfd);
|
||
cache_ptr->type = N_DATA;
|
||
break;
|
||
case N_SETB:
|
||
into_section = (asection *) obj_bsssec (abfd);
|
||
cache_ptr->type = N_BSS;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Build a relocation pointing into the constuctor section
|
||
pointing at the symbol in the set vector specified */
|
||
|
||
reloc->relent.addend = cache_ptr->symbol.value;
|
||
cache_ptr->symbol.section = into_section->symbol->section;
|
||
reloc->relent.sym_ptr_ptr = into_section->symbol_ptr_ptr;
|
||
|
||
|
||
/* We modify the symbol to belong to a section depending upon the
|
||
name of the symbol - probably __CTOR__ or __DTOR__ but we don't
|
||
really care, and add to the size of the section to contain a
|
||
pointer to the symbol. Build a reloc entry to relocate to this
|
||
symbol attached to this section. */
|
||
|
||
section->flags = SEC_CONSTRUCTOR;
|
||
|
||
|
||
section->reloc_count++;
|
||
section->alignment_power = 2;
|
||
|
||
reloc->next = section->constructor_chain;
|
||
section->constructor_chain = reloc;
|
||
reloc->relent.address = section->_raw_size;
|
||
section->_raw_size += sizeof (int *);
|
||
|
||
reloc->relent.howto
|
||
= (obj_reloc_entry_size(abfd) == RELOC_EXT_SIZE
|
||
? howto_table_ext : howto_table_std)
|
||
+ CTOR_TABLE_RELOC_IDX;
|
||
cache_ptr->symbol.flags |= BSF_CONSTRUCTOR;
|
||
}
|
||
break;
|
||
default:
|
||
if (cache_ptr->type == N_WARNING)
|
||
{
|
||
/* This symbol is the text of a warning message, the next symbol
|
||
is the symbol to associate the warning with */
|
||
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING;
|
||
|
||
/* @@ Stuffing pointers into integers is a no-no.
|
||
We can usually get away with it if the integer is
|
||
large enough though. */
|
||
if (sizeof (cache_ptr + 1) > sizeof (bfd_vma))
|
||
abort ();
|
||
cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1));
|
||
|
||
/* We furgle with the next symbol in place.
|
||
We don't want it to be undefined, we'll trample the type */
|
||
(sym_pointer + 1)->e_type[0] = 0xff;
|
||
break;
|
||
}
|
||
if ((cache_ptr->type | N_EXT) == (N_INDR | N_EXT))
|
||
{
|
||
/* Two symbols in a row for an INDR message. The first symbol
|
||
contains the name we will match, the second symbol contains
|
||
the name the first name is translated into. It is supplied to
|
||
us undefined. This is good, since we want to pull in any files
|
||
which define it */
|
||
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT;
|
||
|
||
/* @@ Stuffing pointers into integers is a no-no.
|
||
We can usually get away with it if the integer is
|
||
large enough though. */
|
||
if (sizeof (cache_ptr + 1) > sizeof (bfd_vma))
|
||
abort ();
|
||
|
||
cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1));
|
||
cache_ptr->symbol.section = &bfd_ind_section;
|
||
}
|
||
|
||
else if (sym_is_debugger_info (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.flags = BSF_DEBUGGING;
|
||
/* Work out the section correct for this symbol */
|
||
switch (cache_ptr->type & N_TYPE)
|
||
{
|
||
case N_TEXT:
|
||
case N_FN:
|
||
cache_ptr->symbol.section = obj_textsec (abfd);
|
||
cache_ptr->symbol.value -= obj_textsec (abfd)->vma;
|
||
break;
|
||
case N_DATA:
|
||
cache_ptr->symbol.value -= obj_datasec (abfd)->vma;
|
||
cache_ptr->symbol.section = obj_datasec (abfd);
|
||
break;
|
||
case N_BSS:
|
||
cache_ptr->symbol.section = obj_bsssec (abfd);
|
||
cache_ptr->symbol.value -= obj_bsssec (abfd)->vma;
|
||
break;
|
||
default:
|
||
case N_ABS:
|
||
cache_ptr->symbol.section = &bfd_abs_section;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
|
||
if (sym_is_fortrancommon (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.flags = 0;
|
||
cache_ptr->symbol.section = &bfd_com_section;
|
||
}
|
||
else
|
||
{
|
||
|
||
|
||
}
|
||
|
||
/* In a.out, the value of a symbol is always relative to the
|
||
* start of the file, if this is a data symbol we'll subtract
|
||
* the size of the text section to get the section relative
|
||
* value. If this is a bss symbol (which would be strange)
|
||
* we'll subtract the size of the previous two sections
|
||
* to find the section relative address.
|
||
*/
|
||
|
||
if (sym_in_text_section (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.value -= obj_textsec (abfd)->vma;
|
||
cache_ptr->symbol.section = obj_textsec (abfd);
|
||
}
|
||
else if (sym_in_data_section (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.value -= obj_datasec (abfd)->vma;
|
||
cache_ptr->symbol.section = obj_datasec (abfd);
|
||
}
|
||
else if (sym_in_bss_section (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.section = obj_bsssec (abfd);
|
||
cache_ptr->symbol.value -= obj_bsssec (abfd)->vma;
|
||
}
|
||
else if (sym_is_undefined (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.flags = 0;
|
||
cache_ptr->symbol.section = &bfd_und_section;
|
||
}
|
||
else if (sym_is_absolute (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.section = &bfd_abs_section;
|
||
}
|
||
|
||
if (sym_is_global_defn (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.flags = BSF_GLOBAL | BSF_EXPORT;
|
||
}
|
||
else
|
||
{
|
||
cache_ptr->symbol.flags = BSF_LOCAL;
|
||
}
|
||
}
|
||
}
|
||
if (cache_ptr->symbol.section == 0)
|
||
abort ();
|
||
}
|
||
|
||
|
||
|
||
static boolean
|
||
DEFUN(translate_to_native_sym_flags,(sym_pointer, cache_ptr, abfd),
|
||
struct external_nlist *sym_pointer AND
|
||
asymbol *cache_ptr AND
|
||
bfd *abfd)
|
||
{
|
||
bfd_vma value = cache_ptr->value;
|
||
|
||
/* mask out any existing type bits in case copying from one section
|
||
to another */
|
||
sym_pointer->e_type[0] &= ~N_TYPE;
|
||
|
||
/* We attempt to order these tests by decreasing frequency of success,
|
||
according to tcov when linking the linker. */
|
||
if (bfd_get_output_section(cache_ptr) == &bfd_abs_section) {
|
||
sym_pointer->e_type[0] |= N_ABS;
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == obj_textsec (abfd)) {
|
||
sym_pointer->e_type[0] |= N_TEXT;
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == obj_datasec (abfd)) {
|
||
sym_pointer->e_type[0] |= N_DATA;
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == obj_bsssec (abfd)) {
|
||
sym_pointer->e_type[0] |= N_BSS;
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == &bfd_und_section) {
|
||
sym_pointer->e_type[0] = (N_UNDF | N_EXT);
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == &bfd_ind_section) {
|
||
sym_pointer->e_type[0] = N_INDR;
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == NULL) {
|
||
/* Protect the bfd_is_com_section call.
|
||
This case occurs, e.g., for the *DEBUG* section of a COFF file. */
|
||
bfd_error = bfd_error_nonrepresentable_section;
|
||
return false;
|
||
}
|
||
else if (bfd_is_com_section (bfd_get_output_section (cache_ptr))) {
|
||
sym_pointer->e_type[0] = (N_UNDF | N_EXT);
|
||
}
|
||
else {
|
||
bfd_error = bfd_error_nonrepresentable_section;
|
||
return false;
|
||
}
|
||
|
||
/* Turn the symbol from section relative to absolute again */
|
||
|
||
value += cache_ptr->section->output_section->vma + cache_ptr->section->output_offset ;
|
||
|
||
|
||
if (cache_ptr->flags & (BSF_WARNING)) {
|
||
(sym_pointer+1)->e_type[0] = 1;
|
||
}
|
||
|
||
if (cache_ptr->flags & BSF_DEBUGGING) {
|
||
sym_pointer->e_type[0] = ((aout_symbol_type *)cache_ptr)->type;
|
||
}
|
||
else if (cache_ptr->flags & (BSF_GLOBAL | BSF_EXPORT)) {
|
||
sym_pointer->e_type[0] |= N_EXT;
|
||
}
|
||
if (cache_ptr->flags & BSF_CONSTRUCTOR) {
|
||
int type = ((aout_symbol_type *)cache_ptr)->type;
|
||
switch (type)
|
||
{
|
||
case N_ABS: type = N_SETA; break;
|
||
case N_TEXT: type = N_SETT; break;
|
||
case N_DATA: type = N_SETD; break;
|
||
case N_BSS: type = N_SETB; break;
|
||
}
|
||
sym_pointer->e_type[0] = type;
|
||
}
|
||
|
||
PUT_WORD(abfd, value, sym_pointer->e_value);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Native-level interface to symbols. */
|
||
|
||
/* We read the symbols into a buffer, which is discarded when this
|
||
function exits. We read the strings into a buffer large enough to
|
||
hold them all plus all the cached symbol entries. */
|
||
|
||
asymbol *
|
||
DEFUN(NAME(aout,make_empty_symbol),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
aout_symbol_type *new =
|
||
(aout_symbol_type *)bfd_zalloc (abfd, sizeof (aout_symbol_type));
|
||
new->symbol.the_bfd = abfd;
|
||
|
||
return &new->symbol;
|
||
}
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,slurp_symbol_table),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
bfd_size_type symbol_size;
|
||
bfd_size_type string_size;
|
||
unsigned char string_chars[BYTES_IN_WORD];
|
||
struct external_nlist *syms;
|
||
char *strings;
|
||
aout_symbol_type *cached;
|
||
|
||
/* If there's no work to be done, don't do any */
|
||
if (obj_aout_symbols (abfd) != (aout_symbol_type *)NULL) return true;
|
||
symbol_size = exec_hdr(abfd)->a_syms;
|
||
if (symbol_size == 0)
|
||
{
|
||
bfd_error = no_symbols;
|
||
return false;
|
||
}
|
||
|
||
bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET);
|
||
if (bfd_read ((PTR)string_chars, BYTES_IN_WORD, 1, abfd) != BYTES_IN_WORD)
|
||
return false;
|
||
string_size = GET_WORD (abfd, string_chars);
|
||
|
||
strings =(char *) bfd_alloc(abfd, string_size + 1);
|
||
cached = (aout_symbol_type *)
|
||
bfd_zalloc(abfd, (bfd_size_type)(bfd_get_symcount (abfd) * sizeof(aout_symbol_type)));
|
||
|
||
/* malloc this, so we can free it if simply. The symbol caching
|
||
might want to allocate onto the bfd's obstack */
|
||
syms = (struct external_nlist *) bfd_xmalloc(symbol_size);
|
||
bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET);
|
||
if (bfd_read ((PTR)syms, 1, symbol_size, abfd) != symbol_size)
|
||
{
|
||
bailout:
|
||
if (syms)
|
||
free (syms);
|
||
if (cached)
|
||
bfd_release (abfd, cached);
|
||
if (strings)
|
||
bfd_release (abfd, strings);
|
||
return false;
|
||
}
|
||
|
||
bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET);
|
||
if (bfd_read ((PTR)strings, 1, string_size, abfd) != string_size)
|
||
{
|
||
goto bailout;
|
||
}
|
||
strings[string_size] = 0; /* Just in case. */
|
||
|
||
/* OK, now walk the new symtable, cacheing symbol properties */
|
||
{
|
||
register struct external_nlist *sym_pointer;
|
||
register struct external_nlist *sym_end = syms + bfd_get_symcount (abfd);
|
||
register aout_symbol_type *cache_ptr = cached;
|
||
|
||
/* Run through table and copy values */
|
||
for (sym_pointer = syms, cache_ptr = cached;
|
||
sym_pointer < sym_end; sym_pointer ++, cache_ptr++)
|
||
{
|
||
long x = GET_WORD(abfd, sym_pointer->e_strx);
|
||
cache_ptr->symbol.the_bfd = abfd;
|
||
if (x == 0)
|
||
cache_ptr->symbol.name = "";
|
||
else if (x >= 0 && x < string_size)
|
||
cache_ptr->symbol.name = x + strings;
|
||
else
|
||
goto bailout;
|
||
|
||
cache_ptr->symbol.value = GET_SWORD(abfd, sym_pointer->e_value);
|
||
cache_ptr->desc = bfd_h_get_16(abfd, sym_pointer->e_desc);
|
||
cache_ptr->other = bfd_h_get_8(abfd, sym_pointer->e_other);
|
||
cache_ptr->type = bfd_h_get_8(abfd, sym_pointer->e_type);
|
||
cache_ptr->symbol.udata = 0;
|
||
translate_from_native_sym_flags (sym_pointer, cache_ptr, abfd);
|
||
}
|
||
}
|
||
|
||
obj_aout_symbols (abfd) = cached;
|
||
free((PTR)syms);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Possible improvements:
|
||
+ look for strings matching trailing substrings of other strings
|
||
+ better data structures? balanced trees?
|
||
+ smaller per-string or per-symbol data? re-use some of the symbol's
|
||
data fields?
|
||
+ also look at reducing memory use elsewhere -- maybe if we didn't have to
|
||
construct the entire symbol table at once, we could get by with smaller
|
||
amounts of VM? (What effect does that have on the string table
|
||
reductions?)
|
||
+ rip this out of here, put it into its own file in bfd or libiberty, so
|
||
coff and elf can use it too. I'll work on this soon, but have more
|
||
pressing tasks right now.
|
||
|
||
A hash table might(?) be more efficient for handling exactly the cases that
|
||
are handled now, but for trailing substring matches, I think we want to
|
||
examine the `nearest' values (reverse-)lexically, not merely impose a strict
|
||
order, nor look only for exact-match or not-match. I don't think a hash
|
||
table would be very useful for that, and I don't feel like fleshing out two
|
||
completely different implementations. [raeburn:930419.0331EDT] */
|
||
|
||
struct stringtab_entry {
|
||
/* Hash value for this string. Only useful so long as we aren't doing
|
||
substring matches. */
|
||
unsigned int hash;
|
||
|
||
/* Next node to look at, depending on whether the hash value of the string
|
||
being searched for is less than or greater than the hash value of the
|
||
current node. For now, `equal to' is lumped in with `greater than', for
|
||
space efficiency. It's not a common enough case to warrant another field
|
||
to be used for all nodes. */
|
||
struct stringtab_entry *less;
|
||
struct stringtab_entry *greater;
|
||
|
||
/* The string itself. */
|
||
CONST char *string;
|
||
|
||
/* The index allocated for this string. */
|
||
bfd_size_type index;
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* How many references have there been to this string? (Not currently used;
|
||
could be dumped out for anaylsis, if anyone's interested.) */
|
||
unsigned long count;
|
||
#endif
|
||
|
||
/* Next node in linked list, in suggested output order. */
|
||
struct stringtab_entry *next_to_output;
|
||
};
|
||
|
||
struct stringtab_data {
|
||
/* Tree of string table entries. */
|
||
struct stringtab_entry *strings;
|
||
|
||
/* Fudge factor used to center top node of tree. */
|
||
int hash_zero;
|
||
|
||
/* Next index value to issue. */
|
||
bfd_size_type index;
|
||
|
||
/* Index used for empty strings. Cached here because checking for them
|
||
is really easy, and we can avoid searching the tree. */
|
||
bfd_size_type empty_string_index;
|
||
|
||
/* These fields indicate the two ends of a singly-linked list that indicates
|
||
the order strings should be written out in. Use this order, and no
|
||
seeking will need to be done, so output efficiency should be maximized. */
|
||
struct stringtab_entry **end;
|
||
struct stringtab_entry *output_order;
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* Number of strings which duplicate strings already in the table. */
|
||
unsigned long duplicates;
|
||
|
||
/* Number of bytes saved by not having to write all the duplicate strings. */
|
||
unsigned long bytes_saved;
|
||
|
||
/* Number of zero-length strings. Currently, these all turn into
|
||
references to the null byte at the end of the first string. In some
|
||
cases (possibly not all? explore this...), it should be possible to
|
||
simply write out a zero index value. */
|
||
unsigned long empty_strings;
|
||
|
||
/* Number of times the hash values matched but the strings were different.
|
||
Note that this includes the number of times the other string(s) occurs, so
|
||
there may only be two strings hashing to the same value, even if this
|
||
number is very large. */
|
||
unsigned long bad_hash_matches;
|
||
|
||
/* Null strings aren't counted in this one.
|
||
This will probably only be nonzero if we've got an input file
|
||
which was produced by `ld -r' (i.e., it's already been processed
|
||
through this code). Under some operating systems, native tools
|
||
may make all empty strings have the same index; but the pointer
|
||
check won't catch those, because to get to that stage we'd already
|
||
have to compute the checksum, which requires reading the string,
|
||
so we short-circuit that case with empty_string_index above. */
|
||
unsigned long pointer_matches;
|
||
|
||
/* Number of comparisons done. I figure with the algorithms in use below,
|
||
the average number of comparisons done (per symbol) should be roughly
|
||
log-base-2 of the number of unique strings. */
|
||
unsigned long n_compares;
|
||
#endif
|
||
};
|
||
|
||
/* Some utility functions for the string table code. */
|
||
|
||
/* For speed, only hash on the first this many bytes of strings.
|
||
This number was chosen by profiling ld linking itself, with -g. */
|
||
#define HASHMAXLEN 25
|
||
|
||
#define HASH_CHAR(c) (sum ^= sum >> 20, sum ^= sum << 7, sum += (c))
|
||
|
||
static INLINE unsigned int
|
||
hash (string, len)
|
||
unsigned char *string;
|
||
register unsigned int len;
|
||
{
|
||
register unsigned int sum = 0;
|
||
|
||
if (len > HASHMAXLEN)
|
||
{
|
||
HASH_CHAR (len);
|
||
len = HASHMAXLEN;
|
||
}
|
||
|
||
while (len--)
|
||
{
|
||
HASH_CHAR (*string++);
|
||
}
|
||
return sum;
|
||
}
|
||
|
||
static INLINE void
|
||
stringtab_init (tab)
|
||
struct stringtab_data *tab;
|
||
{
|
||
tab->strings = 0;
|
||
tab->output_order = 0;
|
||
tab->hash_zero = 0;
|
||
tab->end = &tab->output_order;
|
||
|
||
/* Initial string table length includes size of length field. */
|
||
tab->index = BYTES_IN_WORD;
|
||
tab->empty_string_index = -1;
|
||
#ifdef GATHER_STATISTICS
|
||
tab->duplicates = 0;
|
||
tab->empty_strings = 0;
|
||
tab->bad_hash_matches = 0;
|
||
tab->pointer_matches = 0;
|
||
tab->bytes_saved = 0;
|
||
tab->n_compares = 0;
|
||
#endif
|
||
}
|
||
|
||
static INLINE int
|
||
compare (entry, str, hash)
|
||
struct stringtab_entry *entry;
|
||
CONST char *str;
|
||
unsigned int hash;
|
||
{
|
||
return hash - entry->hash;
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* Don't want to have to link in math library with all bfd applications... */
|
||
static INLINE double
|
||
log2 (num)
|
||
int num;
|
||
{
|
||
double d = num;
|
||
int n = 0;
|
||
while (d >= 2.0)
|
||
n++, d /= 2.0;
|
||
return ((d > 1.41) ? 0.5 : 0) + n;
|
||
}
|
||
#endif
|
||
|
||
/* Main string table routines. */
|
||
/* Returns index in string table. Whether or not this actually adds an
|
||
entry into the string table should be irrelevant -- it just has to
|
||
return a valid index. */
|
||
static bfd_size_type
|
||
add_to_stringtab (abfd, str, tab)
|
||
bfd *abfd;
|
||
CONST char *str;
|
||
struct stringtab_data *tab;
|
||
{
|
||
struct stringtab_entry **ep;
|
||
register struct stringtab_entry *entry;
|
||
unsigned int hashval, len;
|
||
|
||
if (str[0] == 0)
|
||
{
|
||
bfd_size_type index;
|
||
CONST bfd_size_type minus_one = -1;
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
tab->empty_strings++;
|
||
#endif
|
||
index = tab->empty_string_index;
|
||
if (index != minus_one)
|
||
{
|
||
got_empty:
|
||
#ifdef GATHER_STATISTICS
|
||
tab->bytes_saved++;
|
||
tab->duplicates++;
|
||
#endif
|
||
return index;
|
||
}
|
||
|
||
/* Need to find it. */
|
||
entry = tab->strings;
|
||
if (entry)
|
||
{
|
||
index = entry->index + strlen (entry->string);
|
||
tab->empty_string_index = index;
|
||
goto got_empty;
|
||
}
|
||
len = 0;
|
||
}
|
||
else
|
||
len = strlen (str);
|
||
|
||
/* The hash_zero value is chosen such that the first symbol gets a value of
|
||
zero. With a balanced tree, this wouldn't be very useful, but without it,
|
||
we might get a more even split at the top level, instead of skewing it
|
||
badly should hash("/usr/lib/crt0.o") (or whatever) be far from zero. */
|
||
hashval = hash (str, len) ^ tab->hash_zero;
|
||
ep = &tab->strings;
|
||
if (!*ep)
|
||
{
|
||
tab->hash_zero = hashval;
|
||
hashval = 0;
|
||
goto add_it;
|
||
}
|
||
|
||
while (*ep)
|
||
{
|
||
register int cmp;
|
||
|
||
entry = *ep;
|
||
#ifdef GATHER_STATISTICS
|
||
tab->n_compares++;
|
||
#endif
|
||
cmp = compare (entry, str, hashval);
|
||
/* The not-equal cases are more frequent, so check them first. */
|
||
if (cmp > 0)
|
||
ep = &entry->greater;
|
||
else if (cmp < 0)
|
||
ep = &entry->less;
|
||
else
|
||
{
|
||
if (entry->string == str)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
tab->pointer_matches++;
|
||
#endif
|
||
goto match;
|
||
}
|
||
/* Compare the first bytes to save a function call if they
|
||
don't match. */
|
||
if (entry->string[0] == str[0] && !strcmp (entry->string, str))
|
||
{
|
||
match:
|
||
#ifdef GATHER_STATISTICS
|
||
entry->count++;
|
||
tab->bytes_saved += len + 1;
|
||
tab->duplicates++;
|
||
#endif
|
||
/* If we're in the linker, and the new string is from a new
|
||
input file which might have already had these reductions
|
||
run over it, we want to keep the new string pointer. I
|
||
don't think we're likely to see any (or nearly as many,
|
||
at least) cases where a later string is in the same location
|
||
as an earlier one rather than this one. */
|
||
entry->string = str;
|
||
return entry->index;
|
||
}
|
||
#ifdef GATHER_STATISTICS
|
||
tab->bad_hash_matches++;
|
||
#endif
|
||
ep = &entry->greater;
|
||
}
|
||
}
|
||
|
||
/* If we get here, nothing that's in the table already matched.
|
||
EP points to the `next' field at the end of the chain; stick a
|
||
new entry on here. */
|
||
add_it:
|
||
entry = (struct stringtab_entry *)
|
||
bfd_alloc_by_size_t (abfd, sizeof (struct stringtab_entry));
|
||
|
||
entry->less = entry->greater = 0;
|
||
entry->hash = hashval;
|
||
entry->index = tab->index;
|
||
entry->string = str;
|
||
entry->next_to_output = 0;
|
||
#ifdef GATHER_STATISTICS
|
||
entry->count = 1;
|
||
#endif
|
||
|
||
assert (*tab->end == 0);
|
||
*(tab->end) = entry;
|
||
tab->end = &entry->next_to_output;
|
||
assert (*tab->end == 0);
|
||
|
||
{
|
||
tab->index += len + 1;
|
||
if (len == 0)
|
||
tab->empty_string_index = entry->index;
|
||
}
|
||
assert (*ep == 0);
|
||
*ep = entry;
|
||
return entry->index;
|
||
}
|
||
|
||
static void
|
||
emit_strtab (abfd, tab)
|
||
bfd *abfd;
|
||
struct stringtab_data *tab;
|
||
{
|
||
struct stringtab_entry *entry;
|
||
#ifdef GATHER_STATISTICS
|
||
int count = 0;
|
||
#endif
|
||
|
||
/* Be sure to put string length into correct byte ordering before writing
|
||
it out. */
|
||
char buffer[BYTES_IN_WORD];
|
||
|
||
PUT_WORD (abfd, tab->index, (unsigned char *) buffer);
|
||
bfd_write ((PTR) buffer, 1, BYTES_IN_WORD, abfd);
|
||
|
||
for (entry = tab->output_order; entry; entry = entry->next_to_output)
|
||
{
|
||
bfd_write ((PTR) entry->string, 1, strlen (entry->string) + 1, abfd);
|
||
#ifdef GATHER_STATISTICS
|
||
count++;
|
||
#endif
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* Short form only, for now.
|
||
To do: Specify output file. Conditionalize on environment? Detailed
|
||
analysis if desired. */
|
||
{
|
||
int n_syms = bfd_get_symcount (abfd);
|
||
|
||
fprintf (stderr, "String table data for output file:\n");
|
||
fprintf (stderr, " %8d symbols output\n", n_syms);
|
||
fprintf (stderr, " %8d duplicate strings\n", tab->duplicates);
|
||
fprintf (stderr, " %8d empty strings\n", tab->empty_strings);
|
||
fprintf (stderr, " %8d unique strings output\n", count);
|
||
fprintf (stderr, " %8d pointer matches\n", tab->pointer_matches);
|
||
fprintf (stderr, " %8d bytes saved\n", tab->bytes_saved);
|
||
fprintf (stderr, " %8d bad hash matches\n", tab->bad_hash_matches);
|
||
fprintf (stderr, " %8d hash-val comparisons\n", tab->n_compares);
|
||
if (n_syms)
|
||
{
|
||
double n_compares = tab->n_compares;
|
||
double avg_compares = n_compares / n_syms;
|
||
/* The second value here should usually be near one. */
|
||
fprintf (stderr,
|
||
"\t average %f comparisons per symbol (%f * log2 nstrings)\n",
|
||
avg_compares, avg_compares / log2 (count));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Old code:
|
||
unsigned int count;
|
||
generic = bfd_get_outsymbols(abfd);
|
||
for (count = 0; count < bfd_get_symcount(abfd); count++)
|
||
{
|
||
asymbol *g = *(generic++);
|
||
|
||
if (g->name)
|
||
{
|
||
size_t length = strlen(g->name)+1;
|
||
bfd_write((PTR)g->name, 1, length, abfd);
|
||
}
|
||
g->KEEPIT = (KEEPITTYPE) count;
|
||
} */
|
||
}
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,write_syms),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
unsigned int count ;
|
||
asymbol **generic = bfd_get_outsymbols (abfd);
|
||
struct stringtab_data strtab;
|
||
|
||
stringtab_init (&strtab);
|
||
|
||
for (count = 0; count < bfd_get_symcount (abfd); count++)
|
||
{
|
||
asymbol *g = generic[count];
|
||
struct external_nlist nsp;
|
||
|
||
if (g->name)
|
||
PUT_WORD (abfd, add_to_stringtab (abfd, g->name, &strtab),
|
||
(unsigned char *) nsp.e_strx);
|
||
else
|
||
PUT_WORD (abfd, 0, (unsigned char *)nsp.e_strx);
|
||
|
||
if (bfd_asymbol_flavour(g) == abfd->xvec->flavour)
|
||
{
|
||
bfd_h_put_16(abfd, aout_symbol(g)->desc, nsp.e_desc);
|
||
bfd_h_put_8(abfd, aout_symbol(g)->other, nsp.e_other);
|
||
bfd_h_put_8(abfd, aout_symbol(g)->type, nsp.e_type);
|
||
}
|
||
else
|
||
{
|
||
bfd_h_put_16(abfd,0, nsp.e_desc);
|
||
bfd_h_put_8(abfd, 0, nsp.e_other);
|
||
bfd_h_put_8(abfd, 0, nsp.e_type);
|
||
}
|
||
|
||
if (! translate_to_native_sym_flags (&nsp, g, abfd))
|
||
return false;
|
||
|
||
if (bfd_write((PTR)&nsp,1,EXTERNAL_NLIST_SIZE, abfd)
|
||
!= EXTERNAL_NLIST_SIZE)
|
||
return false;
|
||
|
||
/* NB: `KEEPIT' currently overlays `flags', so set this only
|
||
here, at the end. */
|
||
g->KEEPIT = count;
|
||
}
|
||
|
||
emit_strtab (abfd, &strtab);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
unsigned int
|
||
DEFUN(NAME(aout,get_symtab),(abfd, location),
|
||
bfd *abfd AND
|
||
asymbol **location)
|
||
{
|
||
unsigned int counter = 0;
|
||
aout_symbol_type *symbase;
|
||
|
||
if (!NAME(aout,slurp_symbol_table)(abfd)) return 0;
|
||
|
||
for (symbase = obj_aout_symbols(abfd); counter++ < bfd_get_symcount (abfd);)
|
||
*(location++) = (asymbol *)( symbase++);
|
||
*location++ =0;
|
||
return bfd_get_symcount (abfd);
|
||
}
|
||
|
||
|
||
/* Standard reloc stuff */
|
||
/* Output standard relocation information to a file in target byte order. */
|
||
|
||
void
|
||
DEFUN(NAME(aout,swap_std_reloc_out),(abfd, g, natptr),
|
||
bfd *abfd AND
|
||
arelent *g AND
|
||
struct reloc_std_external *natptr)
|
||
{
|
||
int r_index;
|
||
asymbol *sym = *(g->sym_ptr_ptr);
|
||
int r_extern;
|
||
unsigned int r_length;
|
||
int r_pcrel;
|
||
int r_baserel, r_jmptable, r_relative;
|
||
asection *output_section = sym->section->output_section;
|
||
|
||
PUT_WORD(abfd, g->address, natptr->r_address);
|
||
|
||
r_length = g->howto->size ; /* Size as a power of two */
|
||
r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */
|
||
/* XXX This relies on relocs coming from a.out files. */
|
||
r_baserel = (g->howto->type & 8) != 0;
|
||
/* r_jmptable, r_relative??? FIXME-soon */
|
||
r_jmptable = 0;
|
||
r_relative = 0;
|
||
|
||
#if 0
|
||
/* For a standard reloc, the addend is in the object file. */
|
||
r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma;
|
||
#endif
|
||
|
||
/* name was clobbered by aout_write_syms to be symbol index */
|
||
|
||
/* If this relocation is relative to a symbol then set the
|
||
r_index to the symbols index, and the r_extern bit.
|
||
|
||
Absolute symbols can come in in two ways, either as an offset
|
||
from the abs section, or as a symbol which has an abs value.
|
||
check for that here
|
||
*/
|
||
|
||
|
||
if (bfd_is_com_section (output_section)
|
||
|| output_section == &bfd_abs_section
|
||
|| output_section == &bfd_und_section)
|
||
{
|
||
if (bfd_abs_section.symbol == sym)
|
||
{
|
||
/* Whoops, looked like an abs symbol, but is really an offset
|
||
from the abs section */
|
||
r_index = 0;
|
||
r_extern = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Fill in symbol */
|
||
r_extern = 1;
|
||
r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT);
|
||
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Just an ordinary section */
|
||
r_extern = 0;
|
||
r_index = output_section->target_index;
|
||
}
|
||
|
||
/* now the fun stuff */
|
||
if (abfd->xvec->header_byteorder_big_p != false) {
|
||
natptr->r_index[0] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[2] = r_index;
|
||
natptr->r_type[0] =
|
||
(r_extern? RELOC_STD_BITS_EXTERN_BIG: 0)
|
||
| (r_pcrel? RELOC_STD_BITS_PCREL_BIG: 0)
|
||
| (r_baserel? RELOC_STD_BITS_BASEREL_BIG: 0)
|
||
| (r_jmptable? RELOC_STD_BITS_JMPTABLE_BIG: 0)
|
||
| (r_relative? RELOC_STD_BITS_RELATIVE_BIG: 0)
|
||
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG);
|
||
} else {
|
||
natptr->r_index[2] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[0] = r_index;
|
||
natptr->r_type[0] =
|
||
(r_extern? RELOC_STD_BITS_EXTERN_LITTLE: 0)
|
||
| (r_pcrel? RELOC_STD_BITS_PCREL_LITTLE: 0)
|
||
| (r_baserel? RELOC_STD_BITS_BASEREL_LITTLE: 0)
|
||
| (r_jmptable? RELOC_STD_BITS_JMPTABLE_LITTLE: 0)
|
||
| (r_relative? RELOC_STD_BITS_RELATIVE_LITTLE: 0)
|
||
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE);
|
||
}
|
||
}
|
||
|
||
|
||
/* Extended stuff */
|
||
/* Output extended relocation information to a file in target byte order. */
|
||
|
||
void
|
||
DEFUN(NAME(aout,swap_ext_reloc_out),(abfd, g, natptr),
|
||
bfd *abfd AND
|
||
arelent *g AND
|
||
register struct reloc_ext_external *natptr)
|
||
{
|
||
int r_index;
|
||
int r_extern;
|
||
unsigned int r_type;
|
||
unsigned int r_addend;
|
||
asymbol *sym = *(g->sym_ptr_ptr);
|
||
asection *output_section = sym->section->output_section;
|
||
|
||
PUT_WORD (abfd, g->address, natptr->r_address);
|
||
|
||
r_type = (unsigned int) g->howto->type;
|
||
|
||
r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma;
|
||
|
||
/* If this relocation is relative to a symbol then set the
|
||
r_index to the symbols index, and the r_extern bit.
|
||
|
||
Absolute symbols can come in in two ways, either as an offset
|
||
from the abs section, or as a symbol which has an abs value.
|
||
check for that here. */
|
||
|
||
if (bfd_is_com_section (output_section)
|
||
|| output_section == &bfd_abs_section
|
||
|| output_section == &bfd_und_section)
|
||
{
|
||
if (bfd_abs_section.symbol == sym)
|
||
{
|
||
/* Whoops, looked like an abs symbol, but is really an offset
|
||
from the abs section */
|
||
r_index = 0;
|
||
r_extern = 0;
|
||
}
|
||
else
|
||
{
|
||
r_extern = 1;
|
||
r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Just an ordinary section */
|
||
r_extern = 0;
|
||
r_index = output_section->target_index;
|
||
}
|
||
|
||
/* now the fun stuff */
|
||
if (abfd->xvec->header_byteorder_big_p != false) {
|
||
natptr->r_index[0] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[2] = r_index;
|
||
natptr->r_type[0] =
|
||
((r_extern? RELOC_EXT_BITS_EXTERN_BIG: 0)
|
||
| (r_type << RELOC_EXT_BITS_TYPE_SH_BIG));
|
||
} else {
|
||
natptr->r_index[2] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[0] = r_index;
|
||
natptr->r_type[0] =
|
||
(r_extern? RELOC_EXT_BITS_EXTERN_LITTLE: 0)
|
||
| (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE);
|
||
}
|
||
|
||
PUT_WORD (abfd, r_addend, natptr->r_addend);
|
||
}
|
||
|
||
/* BFD deals internally with all things based from the section they're
|
||
in. so, something in 10 bytes into a text section with a base of
|
||
50 would have a symbol (.text+10) and know .text vma was 50.
|
||
|
||
Aout keeps all it's symbols based from zero, so the symbol would
|
||
contain 60. This macro subs the base of each section from the value
|
||
to give the true offset from the section */
|
||
|
||
|
||
#define MOVE_ADDRESS(ad) \
|
||
if (r_extern) { \
|
||
/* undefined symbol */ \
|
||
cache_ptr->sym_ptr_ptr = symbols + r_index; \
|
||
cache_ptr->addend = ad; \
|
||
} else { \
|
||
/* defined, section relative. replace symbol with pointer to \
|
||
symbol which points to section */ \
|
||
switch (r_index) { \
|
||
case N_TEXT: \
|
||
case N_TEXT | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = obj_textsec(abfd)->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad - su->textsec->vma; \
|
||
break; \
|
||
case N_DATA: \
|
||
case N_DATA | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = obj_datasec(abfd)->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad - su->datasec->vma; \
|
||
break; \
|
||
case N_BSS: \
|
||
case N_BSS | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = obj_bsssec(abfd)->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad - su->bsssec->vma; \
|
||
break; \
|
||
default: \
|
||
case N_ABS: \
|
||
case N_ABS | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad; \
|
||
break; \
|
||
} \
|
||
} \
|
||
|
||
void
|
||
DEFUN(NAME(aout,swap_ext_reloc_in), (abfd, bytes, cache_ptr, symbols),
|
||
bfd *abfd AND
|
||
struct reloc_ext_external *bytes AND
|
||
arelent *cache_ptr AND
|
||
asymbol **symbols)
|
||
{
|
||
int r_index;
|
||
int r_extern;
|
||
unsigned int r_type;
|
||
struct aoutdata *su = &(abfd->tdata.aout_data->a);
|
||
|
||
cache_ptr->address = (GET_SWORD (abfd, bytes->r_address));
|
||
|
||
/* now the fun stuff */
|
||
if (abfd->xvec->header_byteorder_big_p != false) {
|
||
r_index = (bytes->r_index[0] << 16)
|
||
| (bytes->r_index[1] << 8)
|
||
| bytes->r_index[2];
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
|
||
r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
|
||
>> RELOC_EXT_BITS_TYPE_SH_BIG;
|
||
} else {
|
||
r_index = (bytes->r_index[2] << 16)
|
||
| (bytes->r_index[1] << 8)
|
||
| bytes->r_index[0];
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
|
||
r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
|
||
>> RELOC_EXT_BITS_TYPE_SH_LITTLE;
|
||
}
|
||
|
||
cache_ptr->howto = howto_table_ext + r_type;
|
||
MOVE_ADDRESS(GET_SWORD(abfd, bytes->r_addend));
|
||
}
|
||
|
||
void
|
||
DEFUN(NAME(aout,swap_std_reloc_in), (abfd, bytes, cache_ptr, symbols),
|
||
bfd *abfd AND
|
||
struct reloc_std_external *bytes AND
|
||
arelent *cache_ptr AND
|
||
asymbol **symbols)
|
||
{
|
||
int r_index;
|
||
int r_extern;
|
||
unsigned int r_length;
|
||
int r_pcrel;
|
||
int r_baserel, r_jmptable, r_relative;
|
||
struct aoutdata *su = &(abfd->tdata.aout_data->a);
|
||
int howto_idx;
|
||
|
||
cache_ptr->address = bfd_h_get_32 (abfd, bytes->r_address);
|
||
|
||
/* now the fun stuff */
|
||
if (abfd->xvec->header_byteorder_big_p != false) {
|
||
r_index = (bytes->r_index[0] << 16)
|
||
| (bytes->r_index[1] << 8)
|
||
| bytes->r_index[2];
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
|
||
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
|
||
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
|
||
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
|
||
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
|
||
r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
|
||
>> RELOC_STD_BITS_LENGTH_SH_BIG;
|
||
} else {
|
||
r_index = (bytes->r_index[2] << 16)
|
||
| (bytes->r_index[1] << 8)
|
||
| bytes->r_index[0];
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
|
||
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
|
||
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
|
||
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
|
||
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE));
|
||
r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
|
||
>> RELOC_STD_BITS_LENGTH_SH_LITTLE;
|
||
}
|
||
|
||
howto_idx = r_length + 4 * r_pcrel + 8 * r_baserel;
|
||
BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std));
|
||
cache_ptr->howto = howto_table_std + howto_idx;
|
||
BFD_ASSERT (cache_ptr->howto->type != -1);
|
||
BFD_ASSERT (r_jmptable == 0);
|
||
BFD_ASSERT (r_relative == 0);
|
||
/* FIXME-soon: Roll jmptable, relative bits into howto setting */
|
||
|
||
MOVE_ADDRESS(0);
|
||
}
|
||
|
||
/* Reloc hackery */
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,slurp_reloc_table),(abfd, asect, symbols),
|
||
bfd *abfd AND
|
||
sec_ptr asect AND
|
||
asymbol **symbols)
|
||
{
|
||
unsigned int count;
|
||
bfd_size_type reloc_size;
|
||
PTR relocs;
|
||
arelent *reloc_cache;
|
||
size_t each_size;
|
||
|
||
if (asect->relocation) return true;
|
||
|
||
if (asect->flags & SEC_CONSTRUCTOR) return true;
|
||
|
||
if (asect == obj_datasec (abfd)) {
|
||
reloc_size = exec_hdr(abfd)->a_drsize;
|
||
} else if (asect == obj_textsec (abfd)) {
|
||
reloc_size = exec_hdr(abfd)->a_trsize;
|
||
} else {
|
||
bfd_error = invalid_operation;
|
||
return false;
|
||
}
|
||
|
||
bfd_seek (abfd, asect->rel_filepos, SEEK_SET);
|
||
each_size = obj_reloc_entry_size (abfd);
|
||
|
||
count = reloc_size / each_size;
|
||
|
||
|
||
reloc_cache = (arelent *) bfd_zalloc (abfd, (size_t)(count * sizeof
|
||
(arelent)));
|
||
if (!reloc_cache) {
|
||
nomem:
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
relocs = (PTR) bfd_alloc (abfd, reloc_size);
|
||
if (!relocs) {
|
||
bfd_release (abfd, reloc_cache);
|
||
goto nomem;
|
||
}
|
||
|
||
if (bfd_read (relocs, 1, reloc_size, abfd) != reloc_size) {
|
||
bfd_release (abfd, relocs);
|
||
bfd_release (abfd, reloc_cache);
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
if (each_size == RELOC_EXT_SIZE) {
|
||
register struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs;
|
||
unsigned int counter = 0;
|
||
arelent *cache_ptr = reloc_cache;
|
||
|
||
for (; counter < count; counter++, rptr++, cache_ptr++) {
|
||
NAME(aout,swap_ext_reloc_in)(abfd, rptr, cache_ptr, symbols);
|
||
}
|
||
} else {
|
||
register struct reloc_std_external *rptr = (struct reloc_std_external *) relocs;
|
||
unsigned int counter = 0;
|
||
arelent *cache_ptr = reloc_cache;
|
||
|
||
for (; counter < count; counter++, rptr++, cache_ptr++) {
|
||
NAME(aout,swap_std_reloc_in)(abfd, rptr, cache_ptr, symbols);
|
||
}
|
||
|
||
}
|
||
|
||
bfd_release (abfd,relocs);
|
||
asect->relocation = reloc_cache;
|
||
asect->reloc_count = count;
|
||
return true;
|
||
}
|
||
|
||
|
||
|
||
/* Write out a relocation section into an object file. */
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,squirt_out_relocs),(abfd, section),
|
||
bfd *abfd AND
|
||
asection *section)
|
||
{
|
||
arelent **generic;
|
||
unsigned char *native, *natptr;
|
||
size_t each_size;
|
||
|
||
unsigned int count = section->reloc_count;
|
||
size_t natsize;
|
||
|
||
if (count == 0) return true;
|
||
|
||
each_size = obj_reloc_entry_size (abfd);
|
||
natsize = each_size * count;
|
||
native = (unsigned char *) bfd_zalloc (abfd, natsize);
|
||
if (!native) {
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
generic = section->orelocation;
|
||
|
||
if (each_size == RELOC_EXT_SIZE)
|
||
{
|
||
for (natptr = native;
|
||
count != 0;
|
||
--count, natptr += each_size, ++generic)
|
||
NAME(aout,swap_ext_reloc_out) (abfd, *generic, (struct reloc_ext_external *)natptr);
|
||
}
|
||
else
|
||
{
|
||
for (natptr = native;
|
||
count != 0;
|
||
--count, natptr += each_size, ++generic)
|
||
NAME(aout,swap_std_reloc_out)(abfd, *generic, (struct reloc_std_external *)natptr);
|
||
}
|
||
|
||
if ( bfd_write ((PTR) native, 1, natsize, abfd) != natsize) {
|
||
bfd_release(abfd, native);
|
||
return false;
|
||
}
|
||
bfd_release (abfd, native);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This is stupid. This function should be a boolean predicate */
|
||
unsigned int
|
||
DEFUN(NAME(aout,canonicalize_reloc),(abfd, section, relptr, symbols),
|
||
bfd *abfd AND
|
||
sec_ptr section AND
|
||
arelent **relptr AND
|
||
asymbol **symbols)
|
||
{
|
||
arelent *tblptr = section->relocation;
|
||
unsigned int count;
|
||
|
||
if (!(tblptr || NAME(aout,slurp_reloc_table)(abfd, section, symbols)))
|
||
return 0;
|
||
|
||
if (section->flags & SEC_CONSTRUCTOR) {
|
||
arelent_chain *chain = section->constructor_chain;
|
||
for (count = 0; count < section->reloc_count; count ++) {
|
||
*relptr ++ = &chain->relent;
|
||
chain = chain->next;
|
||
}
|
||
}
|
||
else {
|
||
tblptr = section->relocation;
|
||
if (!tblptr) return 0;
|
||
|
||
for (count = 0; count++ < section->reloc_count;)
|
||
{
|
||
*relptr++ = tblptr++;
|
||
}
|
||
}
|
||
*relptr = 0;
|
||
|
||
return section->reloc_count;
|
||
}
|
||
|
||
unsigned int
|
||
DEFUN(NAME(aout,get_reloc_upper_bound),(abfd, asect),
|
||
bfd *abfd AND
|
||
sec_ptr asect)
|
||
{
|
||
if (bfd_get_format (abfd) != bfd_object) {
|
||
bfd_error = invalid_operation;
|
||
return 0;
|
||
}
|
||
if (asect->flags & SEC_CONSTRUCTOR) {
|
||
return (sizeof (arelent *) * (asect->reloc_count+1));
|
||
}
|
||
|
||
|
||
if (asect == obj_datasec (abfd))
|
||
return (sizeof (arelent *) *
|
||
((exec_hdr(abfd)->a_drsize / obj_reloc_entry_size (abfd))
|
||
+1));
|
||
|
||
if (asect == obj_textsec (abfd))
|
||
return (sizeof (arelent *) *
|
||
((exec_hdr(abfd)->a_trsize / obj_reloc_entry_size (abfd))
|
||
+1));
|
||
|
||
bfd_error = invalid_operation;
|
||
return 0;
|
||
}
|
||
|
||
|
||
unsigned int
|
||
DEFUN(NAME(aout,get_symtab_upper_bound),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
if (!NAME(aout,slurp_symbol_table)(abfd)) return 0;
|
||
|
||
return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *));
|
||
}
|
||
|
||
/*ARGSUSED*/
|
||
alent *
|
||
DEFUN(NAME(aout,get_lineno),(ignore_abfd, ignore_symbol),
|
||
bfd *ignore_abfd AND
|
||
asymbol *ignore_symbol)
|
||
{
|
||
return (alent *)NULL;
|
||
}
|
||
|
||
/*ARGSUSED*/
|
||
void
|
||
DEFUN(NAME(aout,get_symbol_info),(ignore_abfd, symbol, ret),
|
||
bfd *ignore_abfd AND
|
||
asymbol *symbol AND
|
||
symbol_info *ret)
|
||
{
|
||
bfd_symbol_info (symbol, ret);
|
||
|
||
if (ret->type == '?')
|
||
{
|
||
int type_code = aout_symbol(symbol)->type & 0xff;
|
||
CONST char *stab_name = aout_stab_name(type_code);
|
||
static char buf[10];
|
||
|
||
if (stab_name == NULL)
|
||
{
|
||
sprintf(buf, "(%d)", type_code);
|
||
stab_name = buf;
|
||
}
|
||
ret->type = '-';
|
||
ret->stab_other = (unsigned)(aout_symbol(symbol)->other & 0xff);
|
||
ret->stab_desc = (unsigned)(aout_symbol(symbol)->desc & 0xffff);
|
||
ret->stab_name = stab_name;
|
||
}
|
||
}
|
||
|
||
/*ARGSUSED*/
|
||
void
|
||
DEFUN(NAME(aout,print_symbol),(ignore_abfd, afile, symbol, how),
|
||
bfd *ignore_abfd AND
|
||
PTR afile AND
|
||
asymbol *symbol AND
|
||
bfd_print_symbol_type how)
|
||
{
|
||
FILE *file = (FILE *)afile;
|
||
|
||
switch (how) {
|
||
case bfd_print_symbol_name:
|
||
if (symbol->name)
|
||
fprintf(file,"%s", symbol->name);
|
||
break;
|
||
case bfd_print_symbol_more:
|
||
fprintf(file,"%4x %2x %2x",(unsigned)(aout_symbol(symbol)->desc & 0xffff),
|
||
(unsigned)(aout_symbol(symbol)->other & 0xff),
|
||
(unsigned)(aout_symbol(symbol)->type));
|
||
break;
|
||
case bfd_print_symbol_all:
|
||
{
|
||
CONST char *section_name = symbol->section->name;
|
||
|
||
|
||
bfd_print_symbol_vandf((PTR)file,symbol);
|
||
|
||
fprintf(file," %-5s %04x %02x %02x",
|
||
section_name,
|
||
(unsigned)(aout_symbol(symbol)->desc & 0xffff),
|
||
(unsigned)(aout_symbol(symbol)->other & 0xff),
|
||
(unsigned)(aout_symbol(symbol)->type & 0xff));
|
||
if (symbol->name)
|
||
fprintf(file," %s", symbol->name);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/*
|
||
provided a BFD, a section and an offset into the section, calculate
|
||
and return the name of the source file and the line nearest to the
|
||
wanted location.
|
||
*/
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,find_nearest_line),(abfd,
|
||
section,
|
||
symbols,
|
||
offset,
|
||
filename_ptr,
|
||
functionname_ptr,
|
||
line_ptr),
|
||
bfd *abfd AND
|
||
asection *section AND
|
||
asymbol **symbols AND
|
||
bfd_vma offset AND
|
||
CONST char **filename_ptr AND
|
||
CONST char **functionname_ptr AND
|
||
unsigned int *line_ptr)
|
||
{
|
||
/* Run down the file looking for the filename, function and linenumber */
|
||
asymbol **p;
|
||
static char buffer[100];
|
||
static char filename_buffer[200];
|
||
CONST char *directory_name = NULL;
|
||
CONST char *main_file_name = NULL;
|
||
CONST char *current_file_name = NULL;
|
||
CONST char *line_file_name = NULL; /* Value of current_file_name at line number. */
|
||
bfd_vma high_line_vma = ~0;
|
||
bfd_vma low_func_vma = 0;
|
||
asymbol *func = 0;
|
||
*filename_ptr = abfd->filename;
|
||
*functionname_ptr = 0;
|
||
*line_ptr = 0;
|
||
if (symbols != (asymbol **)NULL) {
|
||
for (p = symbols; *p; p++) {
|
||
aout_symbol_type *q = (aout_symbol_type *)(*p);
|
||
next:
|
||
switch (q->type){
|
||
case N_SO:
|
||
main_file_name = current_file_name = q->symbol.name;
|
||
/* Look ahead to next symbol to check if that too is an N_SO. */
|
||
p++;
|
||
if (*p == NULL)
|
||
break;
|
||
q = (aout_symbol_type *)(*p);
|
||
if (q->type != (int)N_SO)
|
||
goto next;
|
||
|
||
/* Found a second N_SO First is directory; second is filename. */
|
||
directory_name = current_file_name;
|
||
main_file_name = current_file_name = q->symbol.name;
|
||
if (obj_textsec(abfd) != section)
|
||
goto done;
|
||
break;
|
||
case N_SOL:
|
||
current_file_name = q->symbol.name;
|
||
break;
|
||
|
||
case N_SLINE:
|
||
|
||
case N_DSLINE:
|
||
case N_BSLINE:
|
||
/* We'll keep this if it resolves nearer than the one we have already */
|
||
if (q->symbol.value >= offset &&
|
||
q->symbol.value < high_line_vma) {
|
||
*line_ptr = q->desc;
|
||
high_line_vma = q->symbol.value;
|
||
line_file_name = current_file_name;
|
||
}
|
||
break;
|
||
case N_FUN:
|
||
{
|
||
/* We'll keep this if it is nearer than the one we have already */
|
||
if (q->symbol.value >= low_func_vma &&
|
||
q->symbol.value <= offset) {
|
||
low_func_vma = q->symbol.value;
|
||
func = (asymbol *)q;
|
||
}
|
||
if (*line_ptr && func) {
|
||
CONST char *function = func->name;
|
||
char *p;
|
||
strncpy(buffer, function, sizeof(buffer)-1);
|
||
buffer[sizeof(buffer)-1] = 0;
|
||
/* Have to remove : stuff */
|
||
p = strchr(buffer,':');
|
||
if (p != NULL) { *p = '\0'; }
|
||
*functionname_ptr = buffer;
|
||
goto done;
|
||
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
done:
|
||
if (*line_ptr)
|
||
main_file_name = line_file_name;
|
||
if (main_file_name) {
|
||
if (main_file_name[0] == '/' || directory_name == NULL)
|
||
*filename_ptr = main_file_name;
|
||
else {
|
||
sprintf(filename_buffer, "%.140s%.50s",
|
||
directory_name, main_file_name);
|
||
*filename_ptr = filename_buffer;
|
||
}
|
||
}
|
||
return true;
|
||
|
||
}
|
||
|
||
/*ARGSUSED*/
|
||
int
|
||
DEFUN(NAME(aout,sizeof_headers),(abfd, execable),
|
||
bfd *abfd AND
|
||
boolean execable)
|
||
{
|
||
return adata(abfd).exec_bytes_size;
|
||
}
|
||
|
||
/* a.out link code. */
|
||
|
||
/* a.out linker hash table entries. */
|
||
|
||
struct aout_link_hash_entry
|
||
{
|
||
struct bfd_link_hash_entry root;
|
||
/* Symbol index in output file. */
|
||
int indx;
|
||
};
|
||
|
||
/* a.out linker hash table. */
|
||
|
||
struct aout_link_hash_table
|
||
{
|
||
struct bfd_link_hash_table root;
|
||
};
|
||
|
||
static struct bfd_hash_entry *aout_link_hash_newfunc
|
||
PARAMS ((struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string));
|
||
static boolean aout_link_add_object_symbols
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static boolean aout_link_check_archive_element
|
||
PARAMS ((bfd *, struct bfd_link_info *, boolean *));
|
||
static boolean aout_link_get_symbols PARAMS ((bfd *));
|
||
static boolean aout_link_free_symbols PARAMS ((bfd *));
|
||
static boolean aout_link_check_ar_symbols
|
||
PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
|
||
static boolean aout_link_add_symbols
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
|
||
/* Routine to create an entry in an a.out link hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
aout_link_hash_newfunc (entry, table, string)
|
||
struct bfd_hash_entry *entry;
|
||
struct bfd_hash_table *table;
|
||
const char *string;
|
||
{
|
||
struct aout_link_hash_entry *ret = (struct aout_link_hash_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == (struct aout_link_hash_entry *) NULL)
|
||
ret = ((struct aout_link_hash_entry *)
|
||
bfd_hash_allocate (table, sizeof (struct aout_link_hash_entry)));
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = ((struct aout_link_hash_entry *)
|
||
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
||
table, string));
|
||
|
||
/* Set local fields. */
|
||
ret->indx = -1;
|
||
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
/* Create an a.out link hash table. */
|
||
|
||
struct bfd_link_hash_table *
|
||
NAME(aout,link_hash_table_create) (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct aout_link_hash_table *ret;
|
||
|
||
ret = ((struct aout_link_hash_table *)
|
||
bfd_xmalloc (sizeof (struct aout_link_hash_table)));
|
||
if (! _bfd_link_hash_table_init (&ret->root, abfd,
|
||
aout_link_hash_newfunc))
|
||
{
|
||
free (ret);
|
||
return (struct bfd_link_hash_table *) NULL;
|
||
}
|
||
return &ret->root;
|
||
}
|
||
|
||
/* Look up an entry in an a.out link hash table. */
|
||
|
||
#define aout_link_hash_lookup(table, string, create, copy, follow) \
|
||
((struct aout_link_hash_entry *) \
|
||
bfd_link_hash_lookup (&(table)->root, (string), (create), (copy), (follow)))
|
||
|
||
/* Traverse an a.out link hash table. */
|
||
|
||
#define aout_link_hash_traverse(table, func, info) \
|
||
(bfd_link_hash_traverse \
|
||
(&(table)->root, \
|
||
(boolean (*) PARAMS ((struct bfd_link_hash_entry *, PTR))) (func), \
|
||
(info)))
|
||
|
||
/* Get the a.out link hash table from the info structure. This is
|
||
just a cast. */
|
||
|
||
#define aout_hash_table(p) ((struct aout_link_hash_table *) ((p)->hash))
|
||
|
||
/* Given an a.out BFD, add symbols to the global hash table as
|
||
appropriate. */
|
||
|
||
boolean
|
||
NAME(aout,link_add_symbols) (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
switch (bfd_get_format (abfd))
|
||
{
|
||
case bfd_object:
|
||
return aout_link_add_object_symbols (abfd, info);
|
||
case bfd_archive:
|
||
return _bfd_generic_link_add_archive_symbols
|
||
(abfd, info, aout_link_check_archive_element);
|
||
default:
|
||
bfd_error = wrong_format;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Add symbols from an a.out object file. */
|
||
|
||
static boolean
|
||
aout_link_add_object_symbols (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
if (! aout_link_get_symbols (abfd))
|
||
return false;
|
||
if (! aout_link_add_symbols (abfd, info))
|
||
return false;
|
||
if (! info->keep_memory)
|
||
{
|
||
if (! aout_link_free_symbols (abfd))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Check a single archive element to see if we need to include it in
|
||
the link. *PNEEDED is set according to whether this element is
|
||
needed in the link or not. This is called from
|
||
_bfd_generic_link_add_archive_symbols. */
|
||
|
||
static boolean
|
||
aout_link_check_archive_element (abfd, info, pneeded)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
boolean *pneeded;
|
||
{
|
||
if (! aout_link_get_symbols (abfd))
|
||
return false;
|
||
|
||
if (! aout_link_check_ar_symbols (abfd, info, pneeded))
|
||
return false;
|
||
|
||
if (*pneeded)
|
||
{
|
||
if (! aout_link_add_symbols (abfd, info))
|
||
return false;
|
||
}
|
||
|
||
/* We keep around the symbols even if we aren't going to use this
|
||
object file, because we may want to reread it. This doesn't
|
||
waste too much memory, because it isn't all that common to read
|
||
an archive element but not need it. */
|
||
if (! info->keep_memory)
|
||
{
|
||
if (! aout_link_free_symbols (abfd))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Read the internal symbols from an a.out file. */
|
||
|
||
static boolean
|
||
aout_link_get_symbols (abfd)
|
||
bfd *abfd;
|
||
{
|
||
bfd_size_type count;
|
||
struct external_nlist *syms;
|
||
unsigned char string_chars[BYTES_IN_WORD];
|
||
bfd_size_type stringsize;
|
||
char *strings;
|
||
|
||
if (obj_aout_external_syms (abfd) != (struct external_nlist *) NULL)
|
||
{
|
||
/* We already have them. */
|
||
return true;
|
||
}
|
||
|
||
count = exec_hdr (abfd)->a_syms / EXTERNAL_NLIST_SIZE;
|
||
|
||
/* We allocate using bfd_xmalloc to make the values easy to free
|
||
later on. If we put them on the obstack it might not be possible
|
||
to free them. */
|
||
syms = ((struct external_nlist *)
|
||
bfd_xmalloc ((size_t) count * EXTERNAL_NLIST_SIZE));
|
||
|
||
if (bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET) != 0
|
||
|| (bfd_read ((PTR) syms, 1, exec_hdr (abfd)->a_syms, abfd)
|
||
!= exec_hdr (abfd)->a_syms))
|
||
return false;
|
||
|
||
/* Get the size of the strings. */
|
||
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0
|
||
|| (bfd_read ((PTR) string_chars, BYTES_IN_WORD, 1, abfd)
|
||
!= BYTES_IN_WORD))
|
||
return false;
|
||
stringsize = GET_WORD (abfd, string_chars);
|
||
strings = (char *) bfd_xmalloc ((size_t) stringsize);
|
||
|
||
/* Skip space for the string count in the buffer for convenience
|
||
when using indexes. */
|
||
if (bfd_read (strings + BYTES_IN_WORD, 1, stringsize - BYTES_IN_WORD, abfd)
|
||
!= stringsize - BYTES_IN_WORD)
|
||
return false;
|
||
|
||
/* Save the data. */
|
||
obj_aout_external_syms (abfd) = syms;
|
||
obj_aout_external_sym_count (abfd) = count;
|
||
obj_aout_external_strings (abfd) = strings;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Free up the internal symbols read from an a.out file. */
|
||
|
||
static boolean
|
||
aout_link_free_symbols (abfd)
|
||
bfd *abfd;
|
||
{
|
||
if (obj_aout_external_syms (abfd) != (struct external_nlist *) NULL)
|
||
{
|
||
free ((PTR) obj_aout_external_syms (abfd));
|
||
obj_aout_external_syms (abfd) = (struct external_nlist *) NULL;
|
||
}
|
||
if (obj_aout_external_strings (abfd) != (char *) NULL)
|
||
{
|
||
free ((PTR) obj_aout_external_strings (abfd));
|
||
obj_aout_external_strings (abfd) = (char *) NULL;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Look through the internal symbols to see if this object file should
|
||
be included in the link. We should include this object file if it
|
||
defines any symbols which are currently undefined. If this object
|
||
file defines a common symbol, then we may adjust the size of the
|
||
known symbol but we do not include the object file in the link
|
||
(unless there is some other reason to include it). */
|
||
|
||
static boolean
|
||
aout_link_check_ar_symbols (abfd, info, pneeded)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
boolean *pneeded;
|
||
{
|
||
register struct external_nlist *p;
|
||
struct external_nlist *pend;
|
||
char *strings;
|
||
|
||
*pneeded = false;
|
||
|
||
/* Look through all the symbols. */
|
||
p = obj_aout_external_syms (abfd);
|
||
pend = p + obj_aout_external_sym_count (abfd);
|
||
strings = obj_aout_external_strings (abfd);
|
||
for (; p < pend; p++)
|
||
{
|
||
int type = bfd_h_get_8 (abfd, p->e_type);
|
||
const char *name;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
/* Ignore symbols that are not externally visible. */
|
||
if ((type & N_EXT) == 0)
|
||
continue;
|
||
|
||
name = strings + GET_WORD (abfd, p->e_strx);
|
||
h = bfd_link_hash_lookup (info->hash, name, false, false, true);
|
||
|
||
/* We are only interested in symbols that are currently
|
||
undefined or common. */
|
||
if (h == (struct bfd_link_hash_entry *) NULL
|
||
|| (h->type != bfd_link_hash_undefined
|
||
&& h->type != bfd_link_hash_common))
|
||
continue;
|
||
|
||
if ((type & (N_TEXT | N_DATA | N_BSS)) != 0)
|
||
{
|
||
/* This object file defines this symbol. We must link it
|
||
in. This is true regardless of whether the current
|
||
definition of the symbol is undefined or common. If the
|
||
current definition is common, we have a case in which we
|
||
have already seen an object file including
|
||
int a;
|
||
and this object file from the archive includes
|
||
int a = 5;
|
||
In such a case we must include this object file. */
|
||
if (! (*info->callbacks->add_archive_element) (info, abfd, name))
|
||
return false;
|
||
*pneeded = true;
|
||
return true;
|
||
}
|
||
|
||
if (type == (N_EXT | N_UNDF))
|
||
{
|
||
bfd_vma value;
|
||
|
||
value = GET_WORD (abfd, p->e_value);
|
||
if (value != 0)
|
||
{
|
||
/* This symbol is common in the object from the archive
|
||
file. */
|
||
if (h->type == bfd_link_hash_undefined)
|
||
{
|
||
bfd *symbfd;
|
||
|
||
symbfd = h->u.undef.abfd;
|
||
if (symbfd == (bfd *) NULL)
|
||
{
|
||
/* This symbol was created as undefined from
|
||
outside BFD. We assume that we should link
|
||
in the object file. This is done for the -u
|
||
option in the linker. */
|
||
if (! (*info->callbacks->add_archive_element) (info,
|
||
abfd,
|
||
name))
|
||
return false;
|
||
*pneeded = true;
|
||
return true;
|
||
}
|
||
/* Turn the current link symbol into a common
|
||
symbol. It is already on the undefs list. */
|
||
h->type = bfd_link_hash_common;
|
||
h->u.c.size = value;
|
||
h->u.c.section = bfd_make_section_old_way (symbfd,
|
||
"COMMON");
|
||
}
|
||
else
|
||
{
|
||
/* Adjust the size of the common symbol if
|
||
necessary. */
|
||
if (value > h->u.c.size)
|
||
h->u.c.size = value;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We do not need this object file. */
|
||
return true;
|
||
}
|
||
|
||
/* Add all symbols from an object file to the hash table. */
|
||
|
||
static boolean
|
||
aout_link_add_symbols (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd_size_type sym_count;
|
||
char *strings;
|
||
boolean copy;
|
||
struct aout_link_hash_entry **sym_hash;
|
||
register struct external_nlist *p;
|
||
struct external_nlist *pend;
|
||
|
||
sym_count = obj_aout_external_sym_count (abfd);
|
||
strings = obj_aout_external_strings (abfd);
|
||
if (info->keep_memory)
|
||
copy = false;
|
||
else
|
||
copy = true;
|
||
|
||
/* We keep a list of the linker hash table entries that correspond
|
||
to particular symbols. We could just look them up in the hash
|
||
table, but keeping the list is more efficient. Perhaps this
|
||
should be conditional on info->keep_memory. */
|
||
sym_hash = ((struct aout_link_hash_entry **)
|
||
bfd_alloc (abfd,
|
||
((size_t) sym_count
|
||
* sizeof (struct aout_link_hash_entry *))));
|
||
obj_aout_sym_hashes (abfd) = sym_hash;
|
||
|
||
p = obj_aout_external_syms (abfd);
|
||
pend = p + sym_count;
|
||
for (; p < pend; p++, sym_hash++)
|
||
{
|
||
int type;
|
||
const char *name;
|
||
bfd_vma value;
|
||
asection *section;
|
||
flagword flags;
|
||
const char *string;
|
||
|
||
*sym_hash = NULL;
|
||
|
||
type = bfd_h_get_8 (abfd, p->e_type);
|
||
|
||
/* Ignore debugging symbols. */
|
||
if ((type & N_STAB) != 0)
|
||
continue;
|
||
|
||
/* Ignore symbols that are not external. */
|
||
if ((type & N_EXT) == 0
|
||
&& type != N_WARNING
|
||
&& type != N_SETA
|
||
&& type != N_SETT
|
||
&& type != N_SETD
|
||
&& type != N_SETB)
|
||
{
|
||
/* If this is an N_INDR symbol we must skip the next entry,
|
||
which is the symbol to indirect to (actually, an N_INDR
|
||
symbol without N_EXT set is pretty useless). */
|
||
if (type == N_INDR)
|
||
++p;
|
||
continue;
|
||
}
|
||
|
||
/* Ignore N_FN symbols (these appear to have N_EXT set). */
|
||
if (type == N_FN)
|
||
continue;
|
||
|
||
name = strings + GET_WORD (abfd, p->e_strx);
|
||
value = GET_WORD (abfd, p->e_value);
|
||
flags = BSF_GLOBAL;
|
||
string = NULL;
|
||
switch (type)
|
||
{
|
||
default:
|
||
abort ();
|
||
case N_UNDF | N_EXT:
|
||
if (value != 0)
|
||
section = &bfd_com_section;
|
||
else
|
||
section = &bfd_und_section;
|
||
break;
|
||
case N_ABS | N_EXT:
|
||
section = &bfd_abs_section;
|
||
break;
|
||
case N_TEXT | N_EXT:
|
||
section = obj_textsec (abfd);
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_DATA | N_EXT:
|
||
section = obj_datasec (abfd);
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_BSS | N_EXT:
|
||
section = obj_bsssec (abfd);
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_INDR | N_EXT:
|
||
/* An indirect symbol. The next symbol is the symbol
|
||
which this one really is. */
|
||
BFD_ASSERT (p + 1 < pend);
|
||
++p;
|
||
string = strings + GET_WORD (abfd, p->e_strx);
|
||
section = &bfd_ind_section;
|
||
flags |= BSF_INDIRECT;
|
||
break;
|
||
case N_COMM | N_EXT:
|
||
section = &bfd_com_section;
|
||
break;
|
||
case N_SETA:
|
||
section = &bfd_abs_section;
|
||
flags |= BSF_CONSTRUCTOR;
|
||
break;
|
||
case N_SETT:
|
||
section = obj_textsec (abfd);
|
||
flags |= BSF_CONSTRUCTOR;
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_SETD:
|
||
section = obj_datasec (abfd);
|
||
flags |= BSF_CONSTRUCTOR;
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_SETB:
|
||
section = obj_bsssec (abfd);
|
||
flags |= BSF_CONSTRUCTOR;
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_WARNING:
|
||
/* A warning symbol. The next symbol is the one to warn
|
||
about. */
|
||
BFD_ASSERT (p + 1 < pend);
|
||
++p;
|
||
string = name;
|
||
name = strings + GET_WORD (abfd, p->e_strx);
|
||
section = &bfd_und_section;
|
||
flags |= BSF_WARNING;
|
||
break;
|
||
}
|
||
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, name, flags, section, value, string, copy, false,
|
||
ARCH_SIZE, (struct bfd_link_hash_entry **) sym_hash)))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* During the final link step we need to pass around a bunch of
|
||
information, so we do it in an instance of this structure. */
|
||
|
||
struct aout_final_link_info
|
||
{
|
||
/* General link information. */
|
||
struct bfd_link_info *info;
|
||
/* Output bfd. */
|
||
bfd *output_bfd;
|
||
/* Reloc file positions. */
|
||
file_ptr treloff, dreloff;
|
||
/* File position of symbols. */
|
||
file_ptr symoff;
|
||
/* String table. */
|
||
struct stringtab_data strtab;
|
||
};
|
||
|
||
static boolean aout_link_input_bfd
|
||
PARAMS ((struct aout_final_link_info *, bfd *input_bfd));
|
||
static boolean aout_link_write_symbols
|
||
PARAMS ((struct aout_final_link_info *, bfd *input_bfd, int *symbol_map));
|
||
static boolean aout_link_write_other_symbol
|
||
PARAMS ((struct aout_link_hash_entry *, PTR));
|
||
static boolean aout_link_input_section
|
||
PARAMS ((struct aout_final_link_info *, bfd *input_bfd,
|
||
asection *input_section, file_ptr *reloff_ptr,
|
||
bfd_size_type rel_size, int *symbol_map));
|
||
static boolean aout_link_input_section_std
|
||
PARAMS ((struct aout_final_link_info *, bfd *input_bfd,
|
||
asection *input_section, struct reloc_std_external *,
|
||
bfd_size_type rel_size, bfd_byte *contents, int *symbol_map));
|
||
static boolean aout_link_input_section_ext
|
||
PARAMS ((struct aout_final_link_info *, bfd *input_bfd,
|
||
asection *input_section, struct reloc_ext_external *,
|
||
bfd_size_type rel_size, bfd_byte *contents, int *symbol_map));
|
||
static INLINE asection *aout_reloc_index_to_section
|
||
PARAMS ((bfd *, int));
|
||
|
||
/* Do the final link step. This is called on the output BFD. The
|
||
INFO structure should point to a list of BFDs linked through the
|
||
link_next field which can be used to find each BFD which takes part
|
||
in the output. Also, each section in ABFD should point to a list
|
||
of bfd_link_order structures which list all the input sections for
|
||
the output section. */
|
||
|
||
boolean
|
||
NAME(aout,final_link) (abfd, info, callback)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
void (*callback) PARAMS ((bfd *, file_ptr *, file_ptr *, file_ptr *));
|
||
{
|
||
struct aout_final_link_info aout_info;
|
||
register bfd *sub;
|
||
bfd_size_type text_size;
|
||
file_ptr text_end;
|
||
register struct bfd_link_order *p;
|
||
asection *o;
|
||
|
||
aout_info.info = info;
|
||
aout_info.output_bfd = abfd;
|
||
|
||
if (! info->relocateable)
|
||
{
|
||
exec_hdr (abfd)->a_trsize = 0;
|
||
exec_hdr (abfd)->a_drsize = 0;
|
||
}
|
||
else
|
||
{
|
||
bfd_size_type trsize, drsize;
|
||
|
||
/* Count up the relocation sizes. */
|
||
trsize = 0;
|
||
drsize = 0;
|
||
for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
|
||
{
|
||
if (bfd_get_flavour (abfd) == bfd_target_aout_flavour)
|
||
{
|
||
trsize += exec_hdr (sub)->a_trsize;
|
||
drsize += exec_hdr (sub)->a_drsize;
|
||
}
|
||
else
|
||
{
|
||
/* FIXME: We need to identify the .text and .data sections
|
||
and call get_reloc_upper_bound and canonicalize_reloc to
|
||
work out the number of relocs needed, and then multiply
|
||
by the reloc size. */
|
||
abort ();
|
||
}
|
||
}
|
||
exec_hdr (abfd)->a_trsize = trsize;
|
||
exec_hdr (abfd)->a_drsize = drsize;
|
||
}
|
||
|
||
/* Adjust the section sizes and vmas according to the magic number.
|
||
This sets a_text, a_data and a_bss in the exec_hdr and sets the
|
||
filepos for each section. */
|
||
if (! NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end))
|
||
return false;
|
||
|
||
/* The relocation and symbol file positions differ among a.out
|
||
targets. We are passed a callback routine from the backend
|
||
specific code to handle this.
|
||
FIXME: At this point we do not know how much space the symbol
|
||
table will require. This will not work for any (nonstandard)
|
||
a.out target that needs to know the symbol table size before it
|
||
can compute the relocation file positions. This may or may not
|
||
be the case for the hp300hpux target, for example. */
|
||
(*callback) (abfd, &aout_info.treloff, &aout_info.dreloff,
|
||
&aout_info.symoff);
|
||
obj_textsec (abfd)->rel_filepos = aout_info.treloff;
|
||
obj_datasec (abfd)->rel_filepos = aout_info.dreloff;
|
||
obj_sym_filepos (abfd) = aout_info.symoff;
|
||
|
||
/* We keep a count of the symbols as we output them. */
|
||
obj_aout_external_sym_count (abfd) = 0;
|
||
|
||
/* We accumulate the string table as we write out the symbols. */
|
||
stringtab_init (&aout_info.strtab);
|
||
|
||
/* The most time efficient way to do the link would be to read all
|
||
the input object files into memory and then sort out the
|
||
information into the output file. Unfortunately, that will
|
||
probably use too much memory. Another method would be to step
|
||
through everything that composes the text section and write it
|
||
out, and then everything that composes the data section and write
|
||
it out, and then write out the relocs, and then write out the
|
||
symbols. Unfortunately, that requires reading stuff from each
|
||
input file several times, and we will not be able to keep all the
|
||
input files open simultaneously, and reopening them will be slow.
|
||
|
||
What we do is basically process one input file at a time. We do
|
||
everything we need to do with an input file once--copy over the
|
||
section contents, handle the relocation information, and write
|
||
out the symbols--and then we throw away the information we read
|
||
from it. This approach requires a lot of lseeks of the output
|
||
file, which is unfortunate but still faster than reopening a lot
|
||
of files.
|
||
|
||
We use the output_has_begun field of the input BFDs to see
|
||
whether we have already handled it. */
|
||
for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
|
||
sub->output_has_begun = false;
|
||
|
||
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
|
||
{
|
||
for (p = o->link_order_head;
|
||
p != (struct bfd_link_order *) NULL;
|
||
p = p->next)
|
||
{
|
||
/* If we might be using the C based alloca function, we need
|
||
to dump the memory allocated by aout_link_input_bfd. */
|
||
#ifndef __GNUC__
|
||
#ifndef alloca
|
||
(void) alloca (0);
|
||
#endif
|
||
#endif
|
||
if (p->type == bfd_indirect_link_order
|
||
&& (bfd_get_flavour (p->u.indirect.section->owner)
|
||
== bfd_target_aout_flavour))
|
||
{
|
||
bfd *input_bfd;
|
||
|
||
input_bfd = p->u.indirect.section->owner;
|
||
if (! input_bfd->output_has_begun)
|
||
{
|
||
if (! aout_link_input_bfd (&aout_info, input_bfd))
|
||
return false;
|
||
input_bfd->output_has_begun = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (! _bfd_default_link_order (abfd, info, o, p))
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Write out any symbols that we have not already written out. */
|
||
aout_link_hash_traverse (aout_hash_table (info),
|
||
aout_link_write_other_symbol,
|
||
(PTR) &aout_info);
|
||
|
||
/* Update the header information. */
|
||
abfd->symcount = obj_aout_external_sym_count (abfd);
|
||
exec_hdr (abfd)->a_syms = abfd->symcount * EXTERNAL_NLIST_SIZE;
|
||
obj_str_filepos (abfd) = obj_sym_filepos (abfd) + exec_hdr (abfd)->a_syms;
|
||
obj_textsec (abfd)->reloc_count =
|
||
exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd);
|
||
obj_datasec (abfd)->reloc_count =
|
||
exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd);
|
||
|
||
/* Write out the string table. */
|
||
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0)
|
||
return false;
|
||
emit_strtab (abfd, &aout_info.strtab);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Link an a.out input BFD into the output file. */
|
||
|
||
static boolean
|
||
aout_link_input_bfd (finfo, input_bfd)
|
||
struct aout_final_link_info *finfo;
|
||
bfd *input_bfd;
|
||
{
|
||
bfd_size_type sym_count;
|
||
int *symbol_map;
|
||
|
||
BFD_ASSERT (bfd_get_format (input_bfd) == bfd_object);
|
||
|
||
/* Get the symbols. We probably have them already, unless
|
||
finfo->info->keep_memory is false. */
|
||
if (! aout_link_get_symbols (input_bfd))
|
||
return false;
|
||
|
||
sym_count = obj_aout_external_sym_count (input_bfd);
|
||
symbol_map = (int *) alloca ((size_t) sym_count * sizeof (int));
|
||
|
||
/* Write out the symbols and get a map of the new indices. */
|
||
if (! aout_link_write_symbols (finfo, input_bfd, symbol_map))
|
||
return false;
|
||
|
||
/* Relocate and write out the sections. */
|
||
if (! aout_link_input_section (finfo, input_bfd,
|
||
obj_textsec (input_bfd),
|
||
&finfo->treloff,
|
||
exec_hdr (input_bfd)->a_trsize,
|
||
symbol_map)
|
||
|| ! aout_link_input_section (finfo, input_bfd,
|
||
obj_datasec (input_bfd),
|
||
&finfo->dreloff,
|
||
exec_hdr (input_bfd)->a_drsize,
|
||
symbol_map))
|
||
return false;
|
||
|
||
/* If we are not keeping memory, we don't need the symbols any
|
||
longer. We still need them if we are keeping memory, because the
|
||
strings in the hash table point into them. */
|
||
if (! finfo->info->keep_memory)
|
||
{
|
||
if (! aout_link_free_symbols (input_bfd))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Adjust and write out the symbols for an a.out file. Set the new
|
||
symbol indices into a symbol_map. */
|
||
|
||
static boolean
|
||
aout_link_write_symbols (finfo, input_bfd, symbol_map)
|
||
struct aout_final_link_info *finfo;
|
||
bfd *input_bfd;
|
||
int *symbol_map;
|
||
{
|
||
bfd *output_bfd;
|
||
bfd_size_type sym_count;
|
||
char *strings;
|
||
enum bfd_link_strip strip;
|
||
enum bfd_link_discard discard;
|
||
struct external_nlist *output_syms;
|
||
struct external_nlist *outsym;
|
||
register struct external_nlist *sym;
|
||
struct external_nlist *sym_end;
|
||
struct aout_link_hash_entry **sym_hash;
|
||
boolean pass;
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
sym_count = obj_aout_external_sym_count (input_bfd);
|
||
strings = obj_aout_external_strings (input_bfd);
|
||
strip = finfo->info->strip;
|
||
discard = finfo->info->discard;
|
||
output_syms = ((struct external_nlist *)
|
||
alloca ((size_t) (sym_count + 1) * EXTERNAL_NLIST_SIZE));
|
||
outsym = output_syms;
|
||
|
||
/* First write out a symbol for this object file, unless we are
|
||
discarding such symbols. */
|
||
if (strip != strip_all
|
||
&& (strip != strip_some
|
||
|| bfd_hash_lookup (finfo->info->keep_hash, input_bfd->filename,
|
||
false, false) != NULL)
|
||
&& discard != discard_all)
|
||
{
|
||
bfd_h_put_8 (output_bfd, N_TEXT, outsym->e_type);
|
||
bfd_h_put_8 (output_bfd, 0, outsym->e_other);
|
||
bfd_h_put_16 (output_bfd, (bfd_vma) 0, outsym->e_desc);
|
||
PUT_WORD (output_bfd,
|
||
add_to_stringtab (output_bfd, input_bfd->filename,
|
||
&finfo->strtab),
|
||
outsym->e_strx);
|
||
PUT_WORD (output_bfd,
|
||
bfd_get_section_vma (input_bfd, obj_textsec (input_bfd)),
|
||
outsym->e_value);
|
||
++obj_aout_external_sym_count (output_bfd);
|
||
++outsym;
|
||
}
|
||
|
||
pass = false;
|
||
sym = obj_aout_external_syms (input_bfd);
|
||
sym_end = sym + sym_count;
|
||
sym_hash = obj_aout_sym_hashes (input_bfd);
|
||
for (; sym < sym_end; sym++, sym_hash++, symbol_map++)
|
||
{
|
||
const char *name;
|
||
int type;
|
||
boolean skip;
|
||
asection *symsec;
|
||
bfd_vma val = 0;
|
||
|
||
*symbol_map = -1;
|
||
|
||
type = bfd_h_get_8 (input_bfd, sym->e_type);
|
||
name = strings + GET_WORD (input_bfd, sym->e_strx);
|
||
|
||
if (pass)
|
||
{
|
||
/* Pass this symbol through. */
|
||
val = GET_WORD (input_bfd, sym->e_value);
|
||
pass = false;
|
||
}
|
||
else
|
||
{
|
||
struct aout_link_hash_entry *h;
|
||
|
||
/* We have saved the hash table entry for this symbol, if
|
||
there is one. Note that we could just look it up again
|
||
in the hash table, provided we first check that it is an
|
||
external symbol. */
|
||
h = *sym_hash;
|
||
|
||
/* If the symbol has already been written out, skip it. */
|
||
if (h != (struct aout_link_hash_entry *) NULL
|
||
&& h->root.written)
|
||
{
|
||
*symbol_map = h->indx;
|
||
continue;
|
||
}
|
||
|
||
/* See if we are stripping this symbol. */
|
||
skip = false;
|
||
switch (strip)
|
||
{
|
||
case strip_none:
|
||
break;
|
||
case strip_debugger:
|
||
if ((type & N_STAB) != 0)
|
||
skip = true;
|
||
break;
|
||
case strip_some:
|
||
if (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
|
||
== NULL)
|
||
skip = true;
|
||
break;
|
||
case strip_all:
|
||
skip = true;
|
||
break;
|
||
}
|
||
if (skip)
|
||
{
|
||
if (h != (struct aout_link_hash_entry *) NULL)
|
||
h->root.written = true;
|
||
continue;
|
||
}
|
||
|
||
/* Get the value of the symbol. */
|
||
if ((type & N_TYPE) == N_TEXT)
|
||
symsec = obj_textsec (input_bfd);
|
||
else if ((type & N_TYPE) == N_DATA)
|
||
symsec = obj_datasec (input_bfd);
|
||
else if ((type & N_TYPE) == N_BSS)
|
||
symsec = obj_bsssec (input_bfd);
|
||
else if ((type & N_TYPE) == N_ABS)
|
||
symsec = &bfd_abs_section;
|
||
else if ((type & N_TYPE) == N_INDR
|
||
|| type == N_WARNING)
|
||
{
|
||
/* Pass the next symbol through unchanged. */
|
||
pass = true;
|
||
val = GET_WORD (input_bfd, sym->e_value);
|
||
symsec = NULL;
|
||
}
|
||
else if ((type & N_STAB) != 0)
|
||
{
|
||
val = GET_WORD (input_bfd, sym->e_value);
|
||
symsec = NULL;
|
||
}
|
||
else
|
||
{
|
||
if (h == (struct aout_link_hash_entry *) NULL)
|
||
val = 0;
|
||
else if (h->root.type == bfd_link_hash_defined)
|
||
{
|
||
asection *output_section;
|
||
|
||
/* This case means a common symbol which was turned
|
||
into a defined symbol. */
|
||
output_section = h->root.u.def.section->output_section;
|
||
BFD_ASSERT (output_section == &bfd_abs_section
|
||
|| output_section->owner == output_bfd);
|
||
val = (h->root.u.def.value
|
||
+ bfd_get_section_vma (output_bfd, output_section)
|
||
+ h->root.u.def.section->output_offset);
|
||
|
||
/* Get the correct type based on the section. If
|
||
this is a constructed set, force it to be
|
||
globally visible. */
|
||
if (type == N_SETT
|
||
|| type == N_SETD
|
||
|| type == N_SETB
|
||
|| type == N_SETA)
|
||
type |= N_EXT;
|
||
|
||
type &=~ N_TYPE;
|
||
|
||
if (output_section == obj_textsec (output_bfd))
|
||
type |= N_TEXT;
|
||
else if (output_section == obj_datasec (output_bfd))
|
||
type |= N_DATA;
|
||
else if (output_section == obj_bsssec (output_bfd))
|
||
type |= N_BSS;
|
||
else
|
||
type |= N_ABS;
|
||
}
|
||
else if (h->root.type == bfd_link_hash_common)
|
||
val = h->root.u.c.size;
|
||
else
|
||
val = 0;
|
||
|
||
symsec = NULL;
|
||
}
|
||
if (symsec != (asection *) NULL)
|
||
val = (symsec->output_section->vma
|
||
+ symsec->output_offset
|
||
+ (GET_WORD (input_bfd, sym->e_value)
|
||
- symsec->vma));
|
||
|
||
/* If this is a global symbol set the written flag, and if
|
||
it is a local symbol see if we should discard it. */
|
||
if (h != (struct aout_link_hash_entry *) NULL)
|
||
{
|
||
h->root.written = true;
|
||
h->indx = obj_aout_external_sym_count (output_bfd);
|
||
}
|
||
else
|
||
{
|
||
switch (discard)
|
||
{
|
||
case discard_none:
|
||
break;
|
||
case discard_l:
|
||
if (*name == *finfo->info->lprefix
|
||
&& (finfo->info->lprefix_len == 1
|
||
|| strncmp (name, finfo->info->lprefix,
|
||
finfo->info->lprefix_len) == 0))
|
||
skip = true;
|
||
break;
|
||
case discard_all:
|
||
skip = true;
|
||
break;
|
||
}
|
||
if (skip)
|
||
{
|
||
pass = false;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Copy this symbol into the list of symbols we are going to
|
||
write out. */
|
||
bfd_h_put_8 (output_bfd, type, outsym->e_type);
|
||
bfd_h_put_8 (output_bfd, bfd_h_get_8 (input_bfd, sym->e_other),
|
||
outsym->e_other);
|
||
bfd_h_put_16 (output_bfd, bfd_h_get_16 (input_bfd, sym->e_desc),
|
||
outsym->e_desc);
|
||
PUT_WORD (output_bfd,
|
||
add_to_stringtab (output_bfd, name, &finfo->strtab),
|
||
outsym->e_strx);
|
||
PUT_WORD (output_bfd, val, outsym->e_value);
|
||
*symbol_map = obj_aout_external_sym_count (output_bfd);
|
||
++obj_aout_external_sym_count (output_bfd);
|
||
++outsym;
|
||
}
|
||
|
||
/* Write out the output symbols we have just constructed. */
|
||
if (outsym > output_syms)
|
||
{
|
||
bfd_size_type outsym_count;
|
||
|
||
if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0)
|
||
return false;
|
||
outsym_count = outsym - output_syms;
|
||
if (bfd_write ((PTR) output_syms, (bfd_size_type) EXTERNAL_NLIST_SIZE,
|
||
(bfd_size_type) outsym_count, output_bfd)
|
||
!= outsym_count * EXTERNAL_NLIST_SIZE)
|
||
return false;
|
||
finfo->symoff += outsym_count * EXTERNAL_NLIST_SIZE;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Write out a symbol that was not associated with an a.out input
|
||
object. */
|
||
|
||
static boolean
|
||
aout_link_write_other_symbol (h, data)
|
||
struct aout_link_hash_entry *h;
|
||
PTR data;
|
||
{
|
||
struct aout_final_link_info *finfo = (struct aout_final_link_info *) data;
|
||
bfd *output_bfd;
|
||
int type;
|
||
bfd_vma val;
|
||
struct external_nlist outsym;
|
||
|
||
if (h->root.written)
|
||
return true;
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
|
||
switch (h->root.type)
|
||
{
|
||
default:
|
||
case bfd_link_hash_new:
|
||
abort ();
|
||
/* Avoid variable not initialized warnings. */
|
||
return true;
|
||
case bfd_link_hash_undefined:
|
||
type = N_UNDF | N_EXT;
|
||
val = 0;
|
||
break;
|
||
case bfd_link_hash_defined:
|
||
{
|
||
asection *sec;
|
||
|
||
sec = h->root.u.def.section;
|
||
BFD_ASSERT (sec == &bfd_abs_section
|
||
|| sec->owner == output_bfd);
|
||
if (sec == obj_textsec (output_bfd))
|
||
type = N_TEXT | N_EXT;
|
||
else if (sec == obj_datasec (output_bfd))
|
||
type = N_DATA | N_EXT;
|
||
else if (sec == obj_bsssec (output_bfd))
|
||
type = N_BSS | N_EXT;
|
||
else
|
||
type = N_ABS | N_EXT;
|
||
val = (h->root.u.def.value
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset);
|
||
}
|
||
break;
|
||
case bfd_link_hash_common:
|
||
type = N_UNDF | N_EXT;
|
||
val = h->root.u.c.size;
|
||
break;
|
||
case bfd_link_hash_indirect:
|
||
case bfd_link_hash_warning:
|
||
/* FIXME: Ignore these for now. The circumstances under which
|
||
they should be written out are not clear to me. */
|
||
return true;
|
||
}
|
||
|
||
bfd_h_put_8 (output_bfd, type, outsym.e_type);
|
||
bfd_h_put_8 (output_bfd, 0, outsym.e_other);
|
||
bfd_h_put_16 (output_bfd, 0, outsym.e_desc);
|
||
PUT_WORD (output_bfd,
|
||
add_to_stringtab (output_bfd, h->root.root.string, &finfo->strtab),
|
||
outsym.e_strx);
|
||
PUT_WORD (output_bfd, val, outsym.e_value);
|
||
|
||
if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0
|
||
|| bfd_write ((PTR) &outsym, (bfd_size_type) EXTERNAL_NLIST_SIZE,
|
||
(bfd_size_type) 1, output_bfd) != EXTERNAL_NLIST_SIZE)
|
||
{
|
||
/* FIXME: No way to handle errors. */
|
||
abort ();
|
||
}
|
||
|
||
finfo->symoff += EXTERNAL_NLIST_SIZE;
|
||
h->indx = obj_aout_external_sym_count (output_bfd);
|
||
++obj_aout_external_sym_count (output_bfd);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Link an a.out section into the output file. */
|
||
|
||
static boolean
|
||
aout_link_input_section (finfo, input_bfd, input_section, reloff_ptr,
|
||
rel_size, symbol_map)
|
||
struct aout_final_link_info *finfo;
|
||
bfd *input_bfd;
|
||
asection *input_section;
|
||
file_ptr *reloff_ptr;
|
||
bfd_size_type rel_size;
|
||
int *symbol_map;
|
||
{
|
||
bfd_size_type input_size;
|
||
bfd_byte *contents;
|
||
PTR relocs;
|
||
|
||
/* Get the section contents. */
|
||
input_size = bfd_section_size (input_bfd, input_section);
|
||
contents = (bfd_byte *) alloca (input_size);
|
||
if (! bfd_get_section_contents (input_bfd, input_section, (PTR) contents,
|
||
(file_ptr) 0, input_size))
|
||
return false;
|
||
|
||
/* Read in the relocs. */
|
||
relocs = (PTR) alloca (rel_size);
|
||
if (bfd_seek (input_bfd, input_section->rel_filepos, SEEK_SET) != 0
|
||
|| bfd_read (relocs, 1, rel_size, input_bfd) != rel_size)
|
||
return false;
|
||
|
||
/* Relocate the section contents. */
|
||
if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
|
||
{
|
||
if (! aout_link_input_section_std (finfo, input_bfd, input_section,
|
||
(struct reloc_std_external *) relocs,
|
||
rel_size, contents, symbol_map))
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
if (! aout_link_input_section_ext (finfo, input_bfd, input_section,
|
||
(struct reloc_ext_external *) relocs,
|
||
rel_size, contents, symbol_map))
|
||
return false;
|
||
}
|
||
|
||
/* Write out the section contents. */
|
||
if (! bfd_set_section_contents (finfo->output_bfd,
|
||
input_section->output_section,
|
||
(PTR) contents,
|
||
input_section->output_offset,
|
||
input_size))
|
||
return false;
|
||
|
||
/* If we are producing relocateable output, the relocs were
|
||
modified, and we now write them out. */
|
||
if (finfo->info->relocateable)
|
||
{
|
||
if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0)
|
||
return false;
|
||
if (bfd_write (relocs, (bfd_size_type) 1, rel_size, finfo->output_bfd)
|
||
!= rel_size)
|
||
return false;
|
||
*reloff_ptr += rel_size;
|
||
|
||
/* Assert that the relocs have not run into the symbols, and
|
||
that if these are the text relocs they have not run into the
|
||
data relocs. */
|
||
BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd)
|
||
&& (reloff_ptr != &finfo->treloff
|
||
|| (*reloff_ptr
|
||
<= obj_datasec (finfo->output_bfd)->rel_filepos)));
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Get the section corresponding to a reloc index. */
|
||
|
||
static INLINE asection *
|
||
aout_reloc_index_to_section (abfd, indx)
|
||
bfd *abfd;
|
||
int indx;
|
||
{
|
||
switch (indx & N_TYPE)
|
||
{
|
||
case N_TEXT:
|
||
return obj_textsec (abfd);
|
||
case N_DATA:
|
||
return obj_datasec (abfd);
|
||
case N_BSS:
|
||
return obj_bsssec (abfd);
|
||
case N_ABS:
|
||
return &bfd_abs_section;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Relocate an a.out section using standard a.out relocs. */
|
||
|
||
static boolean
|
||
aout_link_input_section_std (finfo, input_bfd, input_section, relocs,
|
||
rel_size, contents, symbol_map)
|
||
struct aout_final_link_info *finfo;
|
||
bfd *input_bfd;
|
||
asection *input_section;
|
||
struct reloc_std_external *relocs;
|
||
bfd_size_type rel_size;
|
||
bfd_byte *contents;
|
||
int *symbol_map;
|
||
{
|
||
bfd *output_bfd;
|
||
boolean relocateable;
|
||
struct external_nlist *syms;
|
||
char *strings;
|
||
struct aout_link_hash_entry **sym_hashes;
|
||
bfd_size_type reloc_count;
|
||
register struct reloc_std_external *rel;
|
||
struct reloc_std_external *rel_end;
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
|
||
BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE);
|
||
BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p
|
||
== output_bfd->xvec->header_byteorder_big_p);
|
||
|
||
relocateable = finfo->info->relocateable;
|
||
syms = obj_aout_external_syms (input_bfd);
|
||
strings = obj_aout_external_strings (input_bfd);
|
||
sym_hashes = obj_aout_sym_hashes (input_bfd);
|
||
|
||
reloc_count = rel_size / RELOC_STD_SIZE;
|
||
rel = relocs;
|
||
rel_end = rel + reloc_count;
|
||
for (; rel < rel_end; rel++)
|
||
{
|
||
bfd_vma r_addr;
|
||
int r_index;
|
||
int r_extern;
|
||
int r_pcrel;
|
||
int r_baserel;
|
||
int r_jmptable;
|
||
int r_relative;
|
||
int r_length;
|
||
int howto_idx;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
|
||
r_addr = GET_SWORD (input_bfd, rel->r_address);
|
||
|
||
if (input_bfd->xvec->header_byteorder_big_p)
|
||
{
|
||
r_index = ((rel->r_index[0] << 16)
|
||
| (rel->r_index[1] << 8)
|
||
| rel->r_index[2]);
|
||
r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
|
||
r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
|
||
r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
|
||
r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
|
||
r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
|
||
r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
|
||
>> RELOC_STD_BITS_LENGTH_SH_BIG);
|
||
}
|
||
else
|
||
{
|
||
r_index = ((rel->r_index[2] << 16)
|
||
| (rel->r_index[1] << 8)
|
||
| rel->r_index[0]);
|
||
r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
|
||
r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
|
||
r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
|
||
r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
|
||
r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE));
|
||
r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
|
||
>> RELOC_STD_BITS_LENGTH_SH_LITTLE);
|
||
}
|
||
|
||
howto_idx = r_length + 4 * r_pcrel + 8 * r_baserel;
|
||
BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std));
|
||
BFD_ASSERT (r_jmptable == 0);
|
||
BFD_ASSERT (r_relative == 0);
|
||
|
||
if (relocateable)
|
||
{
|
||
/* We are generating a relocateable output file, and must
|
||
modify the reloc accordingly. */
|
||
if (r_extern)
|
||
{
|
||
struct aout_link_hash_entry *h;
|
||
|
||
/* If we know the symbol this relocation is against,
|
||
convert it into a relocation against a section. This
|
||
is what the native linker does. */
|
||
h = sym_hashes[r_index];
|
||
if (h != (struct aout_link_hash_entry *) NULL
|
||
&& h->root.type == bfd_link_hash_defined)
|
||
{
|
||
asection *output_section;
|
||
|
||
/* Change the r_extern value. */
|
||
if (output_bfd->xvec->header_byteorder_big_p)
|
||
rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_BIG;
|
||
else
|
||
rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_LITTLE;
|
||
|
||
/* Compute a new r_index. */
|
||
output_section = h->root.u.def.section->output_section;
|
||
if (output_section == obj_textsec (output_bfd))
|
||
r_index = N_TEXT;
|
||
else if (output_section == obj_datasec (output_bfd))
|
||
r_index = N_DATA;
|
||
else if (output_section == obj_bsssec (output_bfd))
|
||
r_index = N_BSS;
|
||
else
|
||
r_index = N_ABS;
|
||
|
||
/* Add the symbol value and the section VMA to the
|
||
addend stored in the contents. */
|
||
relocation = (h->root.u.def.value
|
||
+ output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
else
|
||
{
|
||
/* We must change r_index according to the symbol
|
||
map. */
|
||
r_index = symbol_map[r_index];
|
||
|
||
if (r_index == -1)
|
||
{
|
||
const char *name;
|
||
|
||
name = strings + GET_WORD (input_bfd,
|
||
syms[r_index].e_strx);
|
||
if (! ((*finfo->info->callbacks->unattached_reloc)
|
||
(finfo->info, name, input_bfd, input_section,
|
||
r_addr)))
|
||
return false;
|
||
r_index = 0;
|
||
}
|
||
|
||
relocation = 0;
|
||
}
|
||
|
||
/* Write out the new r_index value. */
|
||
if (output_bfd->xvec->header_byteorder_big_p)
|
||
{
|
||
rel->r_index[0] = r_index >> 16;
|
||
rel->r_index[1] = r_index >> 8;
|
||
rel->r_index[2] = r_index;
|
||
}
|
||
else
|
||
{
|
||
rel->r_index[2] = r_index >> 16;
|
||
rel->r_index[1] = r_index >> 8;
|
||
rel->r_index[0] = r_index;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
asection *section;
|
||
|
||
/* This is a relocation against a section. We must
|
||
adjust by the amount that the section moved. */
|
||
section = aout_reloc_index_to_section (input_bfd, r_index);
|
||
relocation = (section->output_section->vma
|
||
+ section->output_offset
|
||
- section->vma);
|
||
}
|
||
|
||
/* Change the address of the relocation. */
|
||
PUT_WORD (output_bfd,
|
||
r_addr + input_section->output_offset,
|
||
rel->r_address);
|
||
|
||
/* Adjust a PC relative relocation by removing the reference
|
||
to the original address in the section and including the
|
||
reference to the new address. */
|
||
if (r_pcrel)
|
||
relocation -= (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
- input_section->vma);
|
||
|
||
if (relocation == 0)
|
||
r = bfd_reloc_ok;
|
||
else
|
||
r = _bfd_relocate_contents (howto_table_std + howto_idx,
|
||
input_bfd, relocation,
|
||
contents + r_addr);
|
||
}
|
||
else
|
||
{
|
||
/* We are generating an executable, and must do a full
|
||
relocation. */
|
||
if (r_extern)
|
||
{
|
||
struct aout_link_hash_entry *h;
|
||
|
||
h = sym_hashes[r_index];
|
||
if (h != (struct aout_link_hash_entry *) NULL
|
||
&& h->root.type == bfd_link_hash_defined)
|
||
{
|
||
relocation = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
else
|
||
{
|
||
const char *name;
|
||
|
||
name = strings + GET_WORD (input_bfd, syms[r_index].e_strx);
|
||
if (! ((*finfo->info->callbacks->undefined_symbol)
|
||
(finfo->info, name, input_bfd, input_section,
|
||
r_addr)))
|
||
return false;
|
||
relocation = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
asection *section;
|
||
|
||
section = aout_reloc_index_to_section (input_bfd, r_index);
|
||
relocation = (section->output_section->vma
|
||
+ section->output_offset
|
||
- section->vma);
|
||
if (r_pcrel)
|
||
relocation += input_section->vma;
|
||
}
|
||
|
||
r = _bfd_final_link_relocate (howto_table_std + howto_idx,
|
||
input_bfd, input_section,
|
||
contents, r_addr, relocation,
|
||
(bfd_vma) 0);
|
||
}
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
switch (r)
|
||
{
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
case bfd_reloc_overflow:
|
||
if (! ((*finfo->info->callbacks->reloc_overflow)
|
||
(finfo->info, input_bfd, input_section, r_addr)))
|
||
return false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Relocate an a.out section using extended a.out relocs. */
|
||
|
||
static boolean
|
||
aout_link_input_section_ext (finfo, input_bfd, input_section, relocs,
|
||
rel_size, contents, symbol_map)
|
||
struct aout_final_link_info *finfo;
|
||
bfd *input_bfd;
|
||
asection *input_section;
|
||
struct reloc_ext_external *relocs;
|
||
bfd_size_type rel_size;
|
||
bfd_byte *contents;
|
||
int *symbol_map;
|
||
{
|
||
bfd *output_bfd;
|
||
boolean relocateable;
|
||
struct external_nlist *syms;
|
||
char *strings;
|
||
struct aout_link_hash_entry **sym_hashes;
|
||
bfd_size_type reloc_count;
|
||
register struct reloc_ext_external *rel;
|
||
struct reloc_ext_external *rel_end;
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
|
||
BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_EXT_SIZE);
|
||
BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p
|
||
== output_bfd->xvec->header_byteorder_big_p);
|
||
|
||
relocateable = finfo->info->relocateable;
|
||
syms = obj_aout_external_syms (input_bfd);
|
||
strings = obj_aout_external_strings (input_bfd);
|
||
sym_hashes = obj_aout_sym_hashes (input_bfd);
|
||
|
||
reloc_count = rel_size / RELOC_EXT_SIZE;
|
||
rel = relocs;
|
||
rel_end = rel + reloc_count;
|
||
for (; rel < rel_end; rel++)
|
||
{
|
||
bfd_vma r_addr;
|
||
int r_index;
|
||
int r_extern;
|
||
int r_type;
|
||
bfd_vma r_addend;
|
||
bfd_vma relocation;
|
||
|
||
r_addr = GET_SWORD (input_bfd, rel->r_address);
|
||
|
||
if (input_bfd->xvec->header_byteorder_big_p)
|
||
{
|
||
r_index = ((rel->r_index[0] << 16)
|
||
| (rel->r_index[1] << 8)
|
||
| rel->r_index[2]);
|
||
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
|
||
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
|
||
>> RELOC_EXT_BITS_TYPE_SH_BIG);
|
||
}
|
||
else
|
||
{
|
||
r_index = ((rel->r_index[2] << 16)
|
||
| (rel->r_index[1] << 8)
|
||
| rel->r_index[0]);
|
||
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
|
||
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
|
||
>> RELOC_EXT_BITS_TYPE_SH_LITTLE);
|
||
}
|
||
|
||
r_addend = GET_SWORD (input_bfd, rel->r_addend);
|
||
|
||
BFD_ASSERT (r_type >= 0
|
||
&& r_type < TABLE_SIZE (howto_table_ext));
|
||
|
||
if (relocateable)
|
||
{
|
||
/* We are generating a relocateable output file, and must
|
||
modify the reloc accordingly. */
|
||
if (r_extern)
|
||
{
|
||
struct aout_link_hash_entry *h;
|
||
|
||
/* If we know the symbol this relocation is against,
|
||
convert it into a relocation against a section. This
|
||
is what the native linker does. */
|
||
h = sym_hashes[r_index];
|
||
if (h != (struct aout_link_hash_entry *) NULL
|
||
&& h->root.type == bfd_link_hash_defined)
|
||
{
|
||
asection *output_section;
|
||
|
||
/* Change the r_extern value. */
|
||
if (output_bfd->xvec->header_byteorder_big_p)
|
||
rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_BIG;
|
||
else
|
||
rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_LITTLE;
|
||
|
||
/* Compute a new r_index. */
|
||
output_section = h->root.u.def.section->output_section;
|
||
if (output_section == obj_textsec (output_bfd))
|
||
r_index = N_TEXT;
|
||
else if (output_section == obj_datasec (output_bfd))
|
||
r_index = N_DATA;
|
||
else if (output_section == obj_bsssec (output_bfd))
|
||
r_index = N_BSS;
|
||
else
|
||
r_index = N_ABS;
|
||
|
||
/* Add the symbol value and the section VMA to the
|
||
addend. */
|
||
relocation = (h->root.u.def.value
|
||
+ output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
|
||
/* Now RELOCATION is the VMA of the final
|
||
destination. If this is a PC relative reloc,
|
||
then ADDEND is the negative of the source VMA.
|
||
We want to set ADDEND to the difference between
|
||
the destination VMA and the source VMA, which
|
||
means we must adjust RELOCATION by the change in
|
||
the source VMA. This is done below. */
|
||
}
|
||
else
|
||
{
|
||
/* We must change r_index according to the symbol
|
||
map. */
|
||
r_index = symbol_map[r_index];
|
||
|
||
if (r_index == -1)
|
||
{
|
||
const char *name;
|
||
|
||
name = (strings
|
||
+ GET_WORD (input_bfd, syms[r_index].e_strx));
|
||
if (! ((*finfo->info->callbacks->unattached_reloc)
|
||
(finfo->info, name, input_bfd, input_section,
|
||
r_addr)))
|
||
return false;
|
||
r_index = 0;
|
||
}
|
||
|
||
relocation = 0;
|
||
|
||
/* If this is a PC relative reloc, then the addend
|
||
is the negative of the source VMA. We must
|
||
adjust it by the change in the source VMA. This
|
||
is done below. */
|
||
}
|
||
|
||
/* Write out the new r_index value. */
|
||
if (output_bfd->xvec->header_byteorder_big_p)
|
||
{
|
||
rel->r_index[0] = r_index >> 16;
|
||
rel->r_index[1] = r_index >> 8;
|
||
rel->r_index[2] = r_index;
|
||
}
|
||
else
|
||
{
|
||
rel->r_index[2] = r_index >> 16;
|
||
rel->r_index[1] = r_index >> 8;
|
||
rel->r_index[0] = r_index;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
asection *section;
|
||
|
||
/* This is a relocation against a section. We must
|
||
adjust by the amount that the section moved. */
|
||
section = aout_reloc_index_to_section (input_bfd, r_index);
|
||
relocation = (section->output_section->vma
|
||
+ section->output_offset
|
||
- section->vma);
|
||
|
||
/* If this is a PC relative reloc, then the addend is
|
||
the difference in VMA between the destination and the
|
||
source. We have just adjusted for the change in VMA
|
||
of the destination, so we must also adjust by the
|
||
change in VMA of the source. This is done below. */
|
||
}
|
||
|
||
/* As described above, we must always adjust a PC relative
|
||
reloc by the change in VMA of the source. */
|
||
if (howto_table_ext[r_type].pc_relative)
|
||
relocation -= (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
- input_section->vma);
|
||
|
||
/* Change the addend if necessary. */
|
||
if (relocation != 0)
|
||
PUT_WORD (output_bfd, r_addend + relocation, rel->r_addend);
|
||
|
||
/* Change the address of the relocation. */
|
||
PUT_WORD (output_bfd,
|
||
r_addr + input_section->output_offset,
|
||
rel->r_address);
|
||
}
|
||
else
|
||
{
|
||
bfd_reloc_status_type r;
|
||
|
||
/* We are generating an executable, and must do a full
|
||
relocation. */
|
||
if (r_extern)
|
||
{
|
||
struct aout_link_hash_entry *h;
|
||
|
||
h = sym_hashes[r_index];
|
||
if (h != (struct aout_link_hash_entry *) NULL
|
||
&& h->root.type == bfd_link_hash_defined)
|
||
{
|
||
relocation = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
else
|
||
{
|
||
const char *name;
|
||
|
||
name = strings + GET_WORD (input_bfd, syms[r_index].e_strx);
|
||
if (! ((*finfo->info->callbacks->undefined_symbol)
|
||
(finfo->info, name, input_bfd, input_section,
|
||
r_addr)))
|
||
return false;
|
||
relocation = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
asection *section;
|
||
|
||
section = aout_reloc_index_to_section (input_bfd, r_index);
|
||
|
||
/* If this is a PC relative reloc, then R_ADDEND is the
|
||
difference between the two vmas, or
|
||
old_dest_sec + old_dest_off - (old_src_sec + old_src_off)
|
||
where
|
||
old_dest_sec == section->vma
|
||
and
|
||
old_src_sec == input_section->vma
|
||
and
|
||
old_src_off == r_addr
|
||
|
||
_bfd_final_link_relocate expects RELOCATION +
|
||
R_ADDEND to be the VMA of the destination minus
|
||
r_addr (the minus r_addr is because this relocation
|
||
is not pcrel_offset, which is a bit confusing and
|
||
should, perhaps, be changed), or
|
||
new_dest_sec
|
||
where
|
||
new_dest_sec == output_section->vma + output_offset
|
||
We arrange for this to happen by setting RELOCATION to
|
||
new_dest_sec + old_src_sec - old_dest_sec
|
||
|
||
If this is not a PC relative reloc, then R_ADDEND is
|
||
simply the VMA of the destination, so we set
|
||
RELOCATION to the change in the destination VMA, or
|
||
new_dest_sec - old_dest_sec
|
||
*/
|
||
relocation = (section->output_section->vma
|
||
+ section->output_offset
|
||
- section->vma);
|
||
if (howto_table_ext[r_type].pc_relative)
|
||
relocation += input_section->vma;
|
||
}
|
||
|
||
r = _bfd_final_link_relocate (howto_table_ext + r_type,
|
||
input_bfd, input_section,
|
||
contents, r_addr, relocation,
|
||
r_addend);
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
switch (r)
|
||
{
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
case bfd_reloc_overflow:
|
||
if (! ((*finfo->info->callbacks->reloc_overflow)
|
||
(finfo->info, input_bfd, input_section, r_addr)))
|
||
return false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|