mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
c8693053f8
GDB currently doesn't build on 32-bit Solaris: * On Solaris 11.4/x86: In file included from /usr/include/sys/procfs.h:26, from /vol/src/gnu/gdb/hg/master/dist/gdb/i386-sol2-nat.c:24: /usr/include/sys/old_procfs.h:31:2: error: #error "Cannot use procfs in the large file compilation environment" #error "Cannot use procfs in the large file compilation environment" ^~~~~ * On Solaris 11.3/x86 there are several more instances of this. The interaction between procfs and large-file support historically has been a royal mess on Solaris: * There are two versions of the procfs interface: ** The old ioctl-based /proc, deprecated and not used any longer in either gdb or binutils. ** The `new' (introduced in Solaris 2.6, 1997) structured /proc. * There are two headers one can possibly include: ** <procfs.h> which only provides the structured /proc, definining _STRUCTURED_PROC=1 and then including ... ** <sys/procfs.h> which defaults to _STRUCTURED_PROC=0, the ioctl-based /proc, but provides structured /proc if _STRUCTURED_PROC == 1. * procfs and the large-file environment didn't go well together: ** Until Solaris 11.3, <sys/procfs.h> would always #error in 32-bit compilations when the large-file environment was active (_FILE_OFFSET_BITS == 64). ** In both Solaris 11.4 and Illumos, this restriction was lifted for structured /proc. So one has to be careful always to define _STRUCTURED_PROC=1 when testing for or using <sys/procfs.h> on Solaris. As the errors above show, this isn't always the case in binutils-gdb right now. Also one may need to disable large-file support for 32-bit compilations on Solaris. config/largefile.m4 meant to do this by wrapping the AC_SYS_LARGEFILE autoconf macro with appropriate checks, yielding ACX_LARGEFILE. Unfortunately the macro doesn't always succeed because it neglects the _STRUCTURED_PROC part. To make things even worse, since GCC 9 g++ predefines _FILE_OFFSET_BITS=64 on Solaris. So even if largefile.m4 deciced not to enable large-file support, this has no effect, breaking the gdb build. This patch addresses all this as follows: * All tests for the <sys/procfs.h> header are made with _STRUCTURED_PROC=1, the definition going into the various config.h files instead of having to make them (and sometimes failing) in the affected sources. * To cope with the g++ predefine of _FILE_OFFSET_BITS=64, -U_FILE_OFFSET_BITS is added to various *_CPPFLAGS variables. It had been far easier to have just #undef _FILE_OFFSET_BITS in config.h, but unfortunately such a construct in config.in is commented by config.status irrespective of indentation and whitespace if large-file support is disabled. I found no way around this and putting the #undef in several global headers for bfd, binutils, ld, and gdb seemed way more invasive. * Last, the applicability check in largefile.m4 was modified only to disable largefile support if really needed. To do so, it checks if <sys/procfs.h> compiles with _FILE_OFFSET_BITS=64 defined. If it doesn't, the disabling only happens if gdb exists in-tree and isn't disabled, otherwise (building binutils from a tarball), there's no conflict. What initially confused me was the check for $plugins here, which originally caused the disabling not to take place. Since AC_PLUGINGS does enable plugin support if <dlfcn.h> exists (which it does on Solaris), the disabling never happened. I could find no explanation why the linker plugin needs large-file support but thought it would be enough if gld and GCC's lto-plugin agreed on the _FILE_OFFSET_BITS value. Unfortunately, that's not enough: lto-plugin uses the simple-object interface from libiberty, which includes off_t arguments. So to fully disable large-file support would mean also disabling it in libiberty and its users: gcc and libstdc++-v3. This seems highly undesirable, so I decided to disable the linker plugin instead if large-file support won't work. The patch allows binutils+gdb to build on i386-pc-solaris2.11 (both Solaris 11.3 and 11.4, using GCC 9.3.0 which is the worst case due to predefined _FILE_OFFSET_BITS=64). Also regtested on amd64-pc-solaris2.11 (again on Solaris 11.3 and 11.4), x86_64-pc-linux-gnu and i686-pc-linux-gnu. config: * largefile.m4 (ACX_LARGEFILE) <sparc-*-solaris*|i?86-*-solaris*>: Check for <sys/procfs.h> incompatilibity with large-file support on Solaris. Only disable large-file support and perhaps plugins if needed. Set, substitute LARGEFILE_CPPFLAGS if so. bfd: * bfd.m4 (BFD_SYS_PROCFS_H): New macro. (BFD_HAVE_SYS_PROCFS_TYPE): Require BFD_SYS_PROCFS_H. Don't define _STRUCTURED_PROC. (BFD_HAVE_SYS_PROCFS_TYPE_MEMBER): Likewise. * elf.c [HAVE_SYS_PROCFS_H] (_STRUCTURED_PROC): Don't define. * configure.ac: Use BFD_SYS_PROCFS_H to check for <sys/procfs.h>. * configure, config.in: Regenerate. * Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS. * Makefile.in, doc/Makefile.in: Regenerate. binutils: * Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS. * Makefile.in, doc/Makefile.in: Regenerate. * configure: Regenerate. gas: * Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS. * Makefile.in, doc/Makefile.in: Regenerate. * configure: Regenerate. gdb: * proc-api.c (_STRUCTURED_PROC): Don't define. * proc-events.c: Likewise. * proc-flags.c: Likewise. * proc-why.c: Likewise. * procfs.c: Likewise. * Makefile.in (INTERNAL_CPPFLAGS): Add LARGEFILE_CPPFLAGS. * configure, config.in: Regenerate. gdbserver: * configure, config.in: Regenerate. gdbsupport: * Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS. * common.m4 (GDB_AC_COMMON): Use BFD_SYS_PROCFS_H to check for <sys/procfs.h>. * Makefile.in: Regenerate. * configure, config.in: Regenerate. gnulib: * configure.ac: Run ACX_LARGEFILE before gl_EARLY. * configure: Regenerate. gprof: * Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS. * Makefile.in: Regenerate. * configure: Regenerate. ld: * Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS. * Makefile.in: Regenerate. * configure: Regenerate. |
||
---|---|---|
.. | ||
.dir-locals.el | ||
.gitattributes | ||
.gitignore | ||
acinclude.m4 | ||
aclocal.m4 | ||
ax.cc | ||
ax.h | ||
ChangeLog | ||
config.in | ||
configure | ||
configure.ac | ||
configure.srv | ||
debug.cc | ||
debug.h | ||
dll.cc | ||
dll.h | ||
fork-child.cc | ||
gdb_proc_service.h | ||
gdbreplay.cc | ||
gdbthread.h | ||
hostio-errno.cc | ||
hostio.cc | ||
hostio.h | ||
i387-fp.cc | ||
i387-fp.h | ||
inferiors.cc | ||
inferiors.h | ||
linux-aarch32-low.cc | ||
linux-aarch32-low.h | ||
linux-aarch32-tdesc.cc | ||
linux-aarch32-tdesc.h | ||
linux-aarch64-ipa.cc | ||
linux-aarch64-low.cc | ||
linux-aarch64-tdesc.cc | ||
linux-aarch64-tdesc.h | ||
linux-amd64-ipa.cc | ||
linux-arm-low.cc | ||
linux-arm-tdesc.cc | ||
linux-arm-tdesc.h | ||
linux-i386-ipa.cc | ||
linux-ia64-low.cc | ||
linux-low.cc | ||
linux-low.h | ||
linux-m68k-low.cc | ||
linux-mips-low.cc | ||
linux-nios2-low.cc | ||
linux-ppc-ipa.cc | ||
linux-ppc-low.cc | ||
linux-ppc-tdesc-init.h | ||
linux-riscv-low.cc | ||
linux-s390-ipa.cc | ||
linux-s390-low.cc | ||
linux-s390-tdesc.h | ||
linux-sh-low.cc | ||
linux-sparc-low.cc | ||
linux-tic6x-low.cc | ||
linux-x86-low.cc | ||
linux-x86-tdesc.cc | ||
linux-x86-tdesc.h | ||
linux-xtensa-low.cc | ||
Makefile.in | ||
mem-break.cc | ||
mem-break.h | ||
notif.cc | ||
notif.h | ||
proc-service.cc | ||
proc-service.list | ||
README | ||
regcache.cc | ||
regcache.h | ||
remote-utils.cc | ||
remote-utils.h | ||
server.cc | ||
server.h | ||
symbol.cc | ||
target.cc | ||
target.h | ||
tdesc.cc | ||
tdesc.h | ||
thread-db.cc | ||
tracepoint.cc | ||
tracepoint.h | ||
utils.cc | ||
utils.h | ||
win32-i386-low.cc | ||
win32-low.cc | ||
win32-low.h | ||
x86-low.cc | ||
x86-low.h | ||
x86-tdesc.h | ||
xtensa-xtregs.cc |
README for GDBserver & GDBreplay by Stu Grossman and Fred Fish Introduction: This is GDBserver, a remote server for Un*x-like systems. It can be used to control the execution of a program on a target system from a GDB on a different host. GDB and GDBserver communicate using the standard remote serial protocol. They communicate via either a serial line or a TCP connection. For more information about GDBserver, see the GDB manual: https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html Usage (server (target) side): First, you need to have a copy of the program you want to debug put onto the target system. The program can be stripped to save space if needed, as GDBserver doesn't care about symbols. All symbol handling is taken care of by the GDB running on the host system. To use the server, you log on to the target system, and run the `gdbserver' program. You must tell it (a) how to communicate with GDB, (b) the name of your program, and (c) its arguments. The general syntax is: target> gdbserver COMM PROGRAM [ARGS ...] For example, using a serial port, you might say: target> gdbserver /dev/com1 emacs foo.txt This tells GDBserver to debug emacs with an argument of foo.txt, and to communicate with GDB via /dev/com1. GDBserver now waits patiently for the host GDB to communicate with it. To use a TCP connection, you could say: target> gdbserver host:2345 emacs foo.txt This says pretty much the same thing as the last example, except that we are going to communicate with the host GDB via TCP. The `host:2345' argument means that we are expecting to see a TCP connection to local TCP port 2345. (Currently, the `host' part is ignored.) You can choose any number you want for the port number as long as it does not conflict with any existing TCP ports on the target system. This same port number must be used in the host GDB's `target remote' command, which will be described shortly. Note that if you chose a port number that conflicts with another service, GDBserver will print an error message and exit. On some targets, GDBserver can also attach to running programs. This is accomplished via the --attach argument. The syntax is: target> gdbserver --attach COMM PID PID is the process ID of a currently running process. It isn't necessary to point GDBserver at a binary for the running process. Usage (host side): You need an unstripped copy of the target program on your host system, since GDB needs to examine it's symbol tables and such. Start up GDB as you normally would, with the target program as the first argument. (You may need to use the --baud option if the serial line is running at anything except 9600 baud.) Ie: `gdb TARGET-PROG', or `gdb --baud BAUD TARGET-PROG'. After that, the only new command you need to know about is `target remote'. It's argument is either a device name (usually a serial device, like `/dev/ttyb'), or a HOST:PORT descriptor. For example: (gdb) target remote /dev/ttyb communicates with the server via serial line /dev/ttyb, and: (gdb) target remote the-target:2345 communicates via a TCP connection to port 2345 on host `the-target', where you previously started up GDBserver with the same port number. Note that for TCP connections, you must start up GDBserver prior to using the `target remote' command, otherwise you may get an error that looks something like `Connection refused'. Building GDBserver: See the `configure.srv` file for the list of host triplets you can build GDBserver for. Building GDBserver for your host is very straightforward. If you build GDB natively on a host which GDBserver supports, it will be built automatically when you build GDB. You can also build just GDBserver: % mkdir obj % cd obj % path-to-toplevel-sources/configure --disable-gdb % make all-gdbserver (If you have a combined binutils+gdb tree, you may want to also disable other directories when configuring, e.g., binutils, gas, gold, gprof, and ld.) If you prefer to cross-compile to your target, then you can also build GDBserver that way. For example: % export CC=your-cross-compiler % path-to-topevel-sources/configure --disable-gdb % make all-gdbserver Using GDBreplay: A special hacked down version of GDBserver can be used to replay remote debug log files created by GDB. Before using the GDB "target" command to initiate a remote debug session, use "set remotelogfile <filename>" to tell GDB that you want to make a recording of the serial or tcp session. Note that when replaying the session, GDB communicates with GDBreplay via tcp, regardless of whether the original session was via a serial link or tcp. Once you are done with the remote debug session, start GDBreplay and tell it the name of the log file and the host and port number that GDB should connect to (typically the same as the host running GDB): $ gdbreplay logfile host:port Then start GDB (preferably in a different screen or window) and use the "target" command to connect to GDBreplay: (gdb) target remote host:port Repeat the same sequence of user commands to GDB that you gave in the original debug session. GDB should not be able to tell that it is talking to GDBreplay rather than a real target, all other things being equal. Note that GDBreplay echos the command lines to stderr, as well as the contents of the packets it sends and receives. The last command echoed by GDBreplay is the next command that needs to be typed to GDB to continue the session in sync with the original session.