binutils-gdb/gdb/m68k-linux-tdep.c
Alan Hayward a616bb9450 Split size in regset section iterators
In the existing code, when using the regset section iteration functions, the
size parameter is used in different ways.

With collect, size is used to create the buffer in which to write the regset.
(see linux-tdep.c::linux_collect_regset_section_cb).

With supply, size is used to confirm the existing regset is the correct size.
If REGSET_VARIABLE_SIZE is set then the regset can be bigger than size.
Effectively, size is the minimum possible size of the regset.
(see corelow.c::get_core_register_section).

There are currently no targets with both REGSET_VARIABLE_SIZE and a collect
function.
In SVE, a corefile can contain one of two formats after the header, both of
which are different sizes. However, when writing a core file, we always want
to write out the full bigger size.

To allow support of collects for REGSET_VARIABLE_SIZE we need two sizes.
This is done by adding supply_size and collect_size.

gdb/

	* aarch64-fbsd-tdep.c
	(aarch64_fbsd_iterate_over_regset_sections): Add supply_size and
	collect_size.
	* aarch64-linux-tdep.c
	(aarch64_linux_iterate_over_regset_sections): Likewise.
	* alpha-linux-tdep.c
	(alpha_linux_iterate_over_regset_sections):
	* alpha-nbsd-tdep.c
	(alphanbsd_iterate_over_regset_sections): Likewise.
	* amd64-fbsd-tdep.c
	(amd64fbsd_iterate_over_regset_sections): Likewise.
	* amd64-linux-tdep.c
	(amd64_linux_iterate_over_regset_sections): Likewise.
	* arm-bsd-tdep.c
	(armbsd_iterate_over_regset_sections): Likewise.
	* arm-fbsd-tdep.c
	(arm_fbsd_iterate_over_regset_sections): Likewise.
	* arm-linux-tdep.c
	(arm_linux_iterate_over_regset_sections): Likewise.
	* corelow.c (get_core_registers_cb): Likewise.
	(core_target::fetch_registers): Likewise.
	* fbsd-tdep.c (fbsd_collect_regset_section_cb): Likewise.
	* frv-linux-tdep.c (frv_linux_iterate_over_regset_sections): Likewise.
	* gdbarch.h (void): Regenerate.
	* gdbarch.sh: Add supply_size and collect_size.
	* hppa-linux-tdep.c (hppa_linux_iterate_over_regset_sections): Likewise.
	* hppa-nbsd-tdep.c (hppanbsd_iterate_over_regset_sections): Likewise.
	* hppa-obsd-tdep.c (hppaobsd_iterate_over_regset_sections): Likewise.
	* i386-fbsd-tdep.c (i386fbsd_iterate_over_regset_sections): Likewise.
	* i386-linux-tdep.c (i386_linux_iterate_over_regset_sections): Likewise.
	* i386-tdep.c (i386_iterate_over_regset_sections): Likewise.
	* ia64-linux-tdep.c (ia64_linux_iterate_over_regset_sections): Likewise.
	* linux-tdep.c (linux_collect_regset_section_cb): Likewise.
	* m32r-linux-tdep.c (m32r_linux_iterate_over_regset_sections): Likewise.
	* m68k-bsd-tdep.c (m68kbsd_iterate_over_regset_sections): Likewise.
	* m68k-linux-tdep.c (m68k_linux_iterate_over_regset_sections): Likewise.
	* mips-fbsd-tdep.c (mips_fbsd_iterate_over_regset_sections): Likewise.
	* mips-linux-tdep.c (mips_linux_iterate_over_regset_sections): Likewise.
	* mips-nbsd-tdep.c (mipsnbsd_iterate_over_regset_sections): Likewise.
	* mips64-obsd-tdep.c (mips64obsd_iterate_over_regset_sections): Likewise.
	* mn10300-linux-tdep.c (am33_iterate_over_regset_sections): Likewise.
	* nios2-linux-tdep.c (nios2_iterate_over_regset_sections): Likewise.
	* ppc-fbsd-tdep.c (ppcfbsd_iterate_over_regset_sections): Likewise.
	* ppc-linux-tdep.c (ppc_linux_iterate_over_regset_sections): Likewise.
	* ppc-nbsd-tdep.c (ppcnbsd_iterate_over_regset_sections): Likewise.
	* ppc-obsd-tdep.c (ppcobsd_iterate_over_regset_sections): Likewise.
	* riscv-linux-tdep.c (riscv_linux_iterate_over_regset_sections): Likewise.
	* rs6000-aix-tdep.c (rs6000_aix_iterate_over_regset_sections): Likewise.
	* s390-linux-tdep.c (s390_iterate_over_regset_sections): Likewise.
	* score-tdep.c (score7_linux_iterate_over_regset_sections): Likewise.
	* sh-tdep.c (sh_iterate_over_regset_sections): Likewise.
	* sparc-tdep.c (sparc_iterate_over_regset_sections): Likewise.
	* tilegx-linux-tdep.c (tilegx_iterate_over_regset_sections): Likewise.
	* vax-tdep.c (vax_iterate_over_regset_sections): Likewise.
	* xtensa-tdep.c (xtensa_iterate_over_regset_sections): Likewise.
2018-08-13 10:16:41 +01:00

433 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Motorola m68k target-dependent support for GNU/Linux.
Copyright (C) 1996-2018 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbcore.h"
#include "frame.h"
#include "target.h"
#include "gdbtypes.h"
#include "osabi.h"
#include "regcache.h"
#include "objfiles.h"
#include "symtab.h"
#include "m68k-tdep.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "glibc-tdep.h"
#include "solib-svr4.h"
#include "auxv.h"
#include "observable.h"
#include "elf/common.h"
#include "linux-tdep.h"
#include "regset.h"
/* Offsets (in target ints) into jmp_buf. */
#define M68K_LINUX_JB_ELEMENT_SIZE 4
#define M68K_LINUX_JB_PC 7
/* Check whether insn1 and insn2 are parts of a signal trampoline. */
#define IS_SIGTRAMP(insn1, insn2) \
(/* addaw #20,sp; moveq #119,d0; trap #0 */ \
(insn1 == 0xdefc0014 && insn2 == 0x70774e40) \
/* moveq #119,d0; trap #0 */ \
|| insn1 == 0x70774e40)
#define IS_RT_SIGTRAMP(insn1, insn2) \
(/* movel #173,d0; trap #0 */ \
(insn1 == 0x203c0000 && insn2 == 0x00ad4e40) \
/* moveq #82,d0; notb d0; trap #0 */ \
|| (insn1 == 0x70524600 && (insn2 >> 16) == 0x4e40))
/* Return non-zero if THIS_FRAME corresponds to a signal trampoline. For
the sake of m68k_linux_get_sigtramp_info we also distinguish between
non-RT and RT signal trampolines. */
static int
m68k_linux_pc_in_sigtramp (struct frame_info *this_frame)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[12];
unsigned long insn0, insn1, insn2;
CORE_ADDR pc = get_frame_pc (this_frame);
if (!safe_frame_unwind_memory (this_frame, pc - 4, buf, sizeof (buf)))
return 0;
insn1 = extract_unsigned_integer (buf + 4, 4, byte_order);
insn2 = extract_unsigned_integer (buf + 8, 4, byte_order);
if (IS_SIGTRAMP (insn1, insn2))
return 1;
if (IS_RT_SIGTRAMP (insn1, insn2))
return 2;
insn0 = extract_unsigned_integer (buf, 4, byte_order);
if (IS_SIGTRAMP (insn0, insn1))
return 1;
if (IS_RT_SIGTRAMP (insn0, insn1))
return 2;
insn0 = ((insn0 << 16) & 0xffffffff) | (insn1 >> 16);
insn1 = ((insn1 << 16) & 0xffffffff) | (insn2 >> 16);
if (IS_SIGTRAMP (insn0, insn1))
return 1;
if (IS_RT_SIGTRAMP (insn0, insn1))
return 2;
return 0;
}
/* From <asm/sigcontext.h>. */
static int m68k_linux_sigcontext_reg_offset[M68K_NUM_REGS] =
{
2 * 4, /* %d0 */
3 * 4, /* %d1 */
-1, /* %d2 */
-1, /* %d3 */
-1, /* %d4 */
-1, /* %d5 */
-1, /* %d6 */
-1, /* %d7 */
4 * 4, /* %a0 */
5 * 4, /* %a1 */
-1, /* %a2 */
-1, /* %a3 */
-1, /* %a4 */
-1, /* %a5 */
-1, /* %fp */
1 * 4, /* %sp */
6 * 4, /* %sr */
6 * 4 + 2, /* %pc */
8 * 4, /* %fp0 */
11 * 4, /* %fp1 */
-1, /* %fp2 */
-1, /* %fp3 */
-1, /* %fp4 */
-1, /* %fp5 */
-1, /* %fp6 */
-1, /* %fp7 */
14 * 4, /* %fpcr */
15 * 4, /* %fpsr */
16 * 4 /* %fpiaddr */
};
static int m68k_uclinux_sigcontext_reg_offset[M68K_NUM_REGS] =
{
2 * 4, /* %d0 */
3 * 4, /* %d1 */
-1, /* %d2 */
-1, /* %d3 */
-1, /* %d4 */
-1, /* %d5 */
-1, /* %d6 */
-1, /* %d7 */
4 * 4, /* %a0 */
5 * 4, /* %a1 */
-1, /* %a2 */
-1, /* %a3 */
-1, /* %a4 */
6 * 4, /* %a5 */
-1, /* %fp */
1 * 4, /* %sp */
7 * 4, /* %sr */
7 * 4 + 2, /* %pc */
-1, /* %fp0 */
-1, /* %fp1 */
-1, /* %fp2 */
-1, /* %fp3 */
-1, /* %fp4 */
-1, /* %fp5 */
-1, /* %fp6 */
-1, /* %fp7 */
-1, /* %fpcr */
-1, /* %fpsr */
-1 /* %fpiaddr */
};
/* From <asm/ucontext.h>. */
static int m68k_linux_ucontext_reg_offset[M68K_NUM_REGS] =
{
6 * 4, /* %d0 */
7 * 4, /* %d1 */
8 * 4, /* %d2 */
9 * 4, /* %d3 */
10 * 4, /* %d4 */
11 * 4, /* %d5 */
12 * 4, /* %d6 */
13 * 4, /* %d7 */
14 * 4, /* %a0 */
15 * 4, /* %a1 */
16 * 4, /* %a2 */
17 * 4, /* %a3 */
18 * 4, /* %a4 */
19 * 4, /* %a5 */
20 * 4, /* %fp */
21 * 4, /* %sp */
23 * 4, /* %sr */
22 * 4, /* %pc */
27 * 4, /* %fp0 */
30 * 4, /* %fp1 */
33 * 4, /* %fp2 */
36 * 4, /* %fp3 */
39 * 4, /* %fp4 */
42 * 4, /* %fp5 */
45 * 4, /* %fp6 */
48 * 4, /* %fp7 */
24 * 4, /* %fpcr */
25 * 4, /* %fpsr */
26 * 4 /* %fpiaddr */
};
/* Get info about saved registers in sigtramp. */
struct m68k_linux_sigtramp_info
{
/* Address of sigcontext. */
CORE_ADDR sigcontext_addr;
/* Offset of registers in `struct sigcontext'. */
int *sc_reg_offset;
};
/* Nonzero if running on uClinux. */
static int target_is_uclinux;
static void
m68k_linux_inferior_created (struct target_ops *objfile, int from_tty)
{
/* Record that we will need to re-evaluate whether we are running on a
uClinux or normal GNU/Linux target (see m68k_linux_get_sigtramp_info). */
target_is_uclinux = -1;
}
static struct m68k_linux_sigtramp_info
m68k_linux_get_sigtramp_info (struct frame_info *this_frame)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR sp;
struct m68k_linux_sigtramp_info info;
/* Determine whether we are running on a uClinux or normal GNU/Linux
target so we can use the correct sigcontext layouts. */
if (target_is_uclinux == -1)
target_is_uclinux = linux_is_uclinux ();
sp = get_frame_register_unsigned (this_frame, M68K_SP_REGNUM);
/* Get sigcontext address, it is the third parameter on the stack. */
info.sigcontext_addr = read_memory_unsigned_integer (sp + 8, 4, byte_order);
if (m68k_linux_pc_in_sigtramp (this_frame) == 2)
info.sc_reg_offset = m68k_linux_ucontext_reg_offset;
else
info.sc_reg_offset = (target_is_uclinux
? m68k_uclinux_sigcontext_reg_offset
: m68k_linux_sigcontext_reg_offset);
return info;
}
/* Signal trampolines. */
static struct trad_frame_cache *
m68k_linux_sigtramp_frame_cache (struct frame_info *this_frame,
void **this_cache)
{
struct frame_id this_id;
struct trad_frame_cache *cache;
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct m68k_linux_sigtramp_info info;
gdb_byte buf[4];
int i;
if (*this_cache)
return (struct trad_frame_cache *) *this_cache;
cache = trad_frame_cache_zalloc (this_frame);
/* FIXME: cagney/2004-05-01: This is is long standing broken code.
The frame ID's code address should be the start-address of the
signal trampoline and not the current PC within that
trampoline. */
get_frame_register (this_frame, M68K_SP_REGNUM, buf);
/* See the end of m68k_push_dummy_call. */
this_id = frame_id_build (extract_unsigned_integer (buf, 4, byte_order)
- 4 + 8, get_frame_pc (this_frame));
trad_frame_set_id (cache, this_id);
info = m68k_linux_get_sigtramp_info (this_frame);
for (i = 0; i < M68K_NUM_REGS; i++)
if (info.sc_reg_offset[i] != -1)
trad_frame_set_reg_addr (cache, i,
info.sigcontext_addr + info.sc_reg_offset[i]);
*this_cache = cache;
return cache;
}
static void
m68k_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct trad_frame_cache *cache =
m68k_linux_sigtramp_frame_cache (this_frame, this_cache);
trad_frame_get_id (cache, this_id);
}
static struct value *
m68k_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
void **this_cache,
int regnum)
{
/* Make sure we've initialized the cache. */
struct trad_frame_cache *cache =
m68k_linux_sigtramp_frame_cache (this_frame, this_cache);
return trad_frame_get_register (cache, this_frame, regnum);
}
static int
m68k_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_prologue_cache)
{
return m68k_linux_pc_in_sigtramp (this_frame);
}
static const struct frame_unwind m68k_linux_sigtramp_frame_unwind =
{
SIGTRAMP_FRAME,
default_frame_unwind_stop_reason,
m68k_linux_sigtramp_frame_this_id,
m68k_linux_sigtramp_frame_prev_register,
NULL,
m68k_linux_sigtramp_frame_sniffer
};
/* Register maps for supply/collect regset functions. */
static const struct regcache_map_entry m68k_linux_gregmap[] =
{
{ 7, M68K_D1_REGNUM, 4 }, /* d1 ... d7 */
{ 7, M68K_A0_REGNUM, 4 }, /* a0 ... a6 */
{ 1, M68K_D0_REGNUM, 4 },
{ 1, M68K_SP_REGNUM, 4 },
{ 1, REGCACHE_MAP_SKIP, 4 }, /* orig_d0 (skip) */
{ 1, M68K_PS_REGNUM, 4 },
{ 1, M68K_PC_REGNUM, 4 },
/* Ignore 16-bit fields 'fmtvec' and '__fill'. */
{ 0 }
};
#define M68K_LINUX_GREGS_SIZE (20 * 4)
static const struct regcache_map_entry m68k_linux_fpregmap[] =
{
{ 8, M68K_FP0_REGNUM, 12 }, /* fp0 ... fp7 */
{ 1, M68K_FPC_REGNUM, 4 },
{ 1, M68K_FPS_REGNUM, 4 },
{ 1, M68K_FPI_REGNUM, 4 },
{ 0 }
};
#define M68K_LINUX_FPREGS_SIZE (27 * 4)
/* Register sets. */
static const struct regset m68k_linux_gregset =
{
m68k_linux_gregmap,
regcache_supply_regset, regcache_collect_regset
};
static const struct regset m68k_linux_fpregset =
{
m68k_linux_fpregmap,
regcache_supply_regset, regcache_collect_regset
};
/* Iterate over core file register note sections. */
static void
m68k_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
iterate_over_regset_sections_cb *cb,
void *cb_data,
const struct regcache *regcache)
{
cb (".reg", M68K_LINUX_GREGS_SIZE, M68K_LINUX_GREGS_SIZE, &m68k_linux_gregset,
NULL, cb_data);
cb (".reg2", M68K_LINUX_FPREGS_SIZE, M68K_LINUX_FPREGS_SIZE,
&m68k_linux_fpregset, NULL, cb_data);
}
static void
m68k_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
linux_init_abi (info, gdbarch);
tdep->jb_pc = M68K_LINUX_JB_PC;
tdep->jb_elt_size = M68K_LINUX_JB_ELEMENT_SIZE;
/* GNU/Linux uses a calling convention that's similar to SVR4. It
returns integer values in %d0/%d1, pointer values in %a0 and
floating values in %fp0, just like SVR4, but uses %a1 to pass the
address to store a structure value. It also returns small
structures in registers instead of memory. */
m68k_svr4_init_abi (info, gdbarch);
tdep->struct_value_regnum = M68K_A1_REGNUM;
tdep->struct_return = reg_struct_return;
set_gdbarch_decr_pc_after_break (gdbarch, 2);
frame_unwind_append_unwinder (gdbarch, &m68k_linux_sigtramp_frame_unwind);
/* Shared library handling. */
/* GNU/Linux uses SVR4-style shared libraries. */
set_solib_svr4_fetch_link_map_offsets (gdbarch,
svr4_ilp32_fetch_link_map_offsets);
/* GNU/Linux uses the dynamic linker included in the GNU C Library. */
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
/* Core file support. */
set_gdbarch_iterate_over_regset_sections
(gdbarch, m68k_linux_iterate_over_regset_sections);
/* Enable TLS support. */
set_gdbarch_fetch_tls_load_module_address (gdbarch,
svr4_fetch_objfile_link_map);
}
void
_initialize_m68k_linux_tdep (void)
{
gdbarch_register_osabi (bfd_arch_m68k, 0, GDB_OSABI_LINUX,
m68k_linux_init_abi);
gdb::observers::inferior_created.attach (m68k_linux_inferior_created);
}