mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
611aa09d99
LOC(X) returns the address of X as an integer: https://gcc.gnu.org/onlinedocs/gfortran/LOC.html Before: (gdb) p LOC(r) No symbol "LOC" in current context. After: (gdb) p LOC(r) $1 = 0xffffdf48 gdb/ChangeLog: 2021-03-09 Felix Willgerodt <felix.willgerodt@intel.com> * f-exp.h (eval_op_f_loc): Declare. (expr::fortran_loc_operation): New typedef. * f-exp.y (exp): Handle UNOP_FORTRAN_LOC after parsing an UNOP_INTRINSIC. (f77_keywords): Add LOC keyword. * f-lang.c (eval_op_f_loc): New function. * std-operator.def (UNOP_FORTRAN_LOC): New operator. gdb/testsuite/ChangeLog: 2020-03-09 Felix Willgerodt <felix.willgerodt@intel.com> * gdb.fortran/intrinsics.exp: Add LOC tests.
394 lines
14 KiB
Modula-2
394 lines
14 KiB
Modula-2
/* Standard language operator definitions for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1986-2021 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* Used when it's necessary to pass an opcode which will be ignored,
|
|
or to catch uninitialized values. */
|
|
OP (OP_NULL)
|
|
|
|
/* BINOP_... operate on two values computed by following subexpressions,
|
|
replacing them by one result value. They take no immediate arguments. */
|
|
|
|
OP (BINOP_ADD) /* + */
|
|
OP (BINOP_SUB) /* - */
|
|
OP (BINOP_MUL) /* * */
|
|
OP (BINOP_DIV) /* / */
|
|
OP (BINOP_REM) /* % */
|
|
OP (BINOP_MOD) /* mod (Knuth 1.2.4) */
|
|
OP (BINOP_LSH) /* << */
|
|
OP (BINOP_RSH) /* >> */
|
|
OP (BINOP_LOGICAL_AND) /* && */
|
|
OP (BINOP_LOGICAL_OR) /* || */
|
|
OP (BINOP_BITWISE_AND) /* & */
|
|
OP (BINOP_BITWISE_IOR) /* | */
|
|
OP (BINOP_BITWISE_XOR) /* ^ */
|
|
OP (BINOP_EQUAL) /* == */
|
|
OP (BINOP_NOTEQUAL) /* != */
|
|
OP (BINOP_LESS) /* < */
|
|
OP (BINOP_GTR) /* > */
|
|
OP (BINOP_LEQ) /* <= */
|
|
OP (BINOP_GEQ) /* >= */
|
|
OP (BINOP_REPEAT) /* @ */
|
|
OP (BINOP_ASSIGN) /* = */
|
|
OP (BINOP_COMMA) /* , */
|
|
OP (BINOP_SUBSCRIPT) /* x[y] */
|
|
OP (BINOP_EXP) /* Exponentiation */
|
|
|
|
/* C++. */
|
|
|
|
OP (BINOP_MIN) /* <? */
|
|
OP (BINOP_MAX) /* >? */
|
|
|
|
/* STRUCTOP_MEMBER is used for pointer-to-member constructs.
|
|
X . * Y translates into X STRUCTOP_MEMBER Y. */
|
|
OP (STRUCTOP_MEMBER)
|
|
|
|
/* STRUCTOP_MPTR is used for pointer-to-member constructs
|
|
when X is a pointer instead of an aggregate. */
|
|
OP (STRUCTOP_MPTR)
|
|
|
|
/* TYPE_INSTANCE is used when the user specifies a specific
|
|
type instantiation for overloaded methods/functions.
|
|
|
|
The format is:
|
|
TYPE_INSTANCE num_types type0 ... typeN num_types TYPE_INSTANCE. */
|
|
OP (TYPE_INSTANCE)
|
|
|
|
/* end of C++. */
|
|
|
|
/* For Modula-2 integer division DIV. */
|
|
OP (BINOP_INTDIV)
|
|
|
|
/* +=, -=, *=, and so on. The following exp_element is another opcode,
|
|
a BINOP_, saying how to modify. Then comes another BINOP_ASSIGN_MODIFY,
|
|
making three exp_elements in total. */
|
|
OP (BINOP_ASSIGN_MODIFY)
|
|
|
|
/* Modula-2 standard (binary) procedures. */
|
|
OP (BINOP_VAL)
|
|
|
|
/* Concatenate two operands, such as character strings or bitstrings.
|
|
If the first operand is a integer expression, then it means concatenate
|
|
the second operand with itself that many times. */
|
|
OP (BINOP_CONCAT)
|
|
|
|
/* Operates on three values computed by following subexpressions. */
|
|
OP (TERNOP_COND) /* ?: */
|
|
|
|
/* A sub-string/sub-array. Ada syntax: OP1(OP2..OP3). Return
|
|
elements OP2 through OP3 of OP1. */
|
|
OP (TERNOP_SLICE)
|
|
|
|
/* Multidimensional subscript operator, such as Modula-2 x[a,b,...].
|
|
The dimensionality is encoded in the operator, like the number of
|
|
function arguments in OP_FUNCALL, I.E. <OP><dimension><OP>.
|
|
The value of the first following subexpression is subscripted
|
|
by each of the next following subexpressions, one per dimension. */
|
|
OP (MULTI_SUBSCRIPT)
|
|
|
|
/* The OP_... series take immediate following arguments.
|
|
After the arguments come another OP_... (the same one)
|
|
so that the grouping can be recognized from the end. */
|
|
|
|
/* OP_LONG is followed by a type pointer in the next exp_element
|
|
and the long constant value in the following exp_element.
|
|
Then comes another OP_LONG.
|
|
Thus, the operation occupies four exp_elements. */
|
|
OP (OP_LONG)
|
|
|
|
/* OP_FLOAT is similar but takes a floating-point constant encoded in
|
|
the target format for the given type instead of a long. */
|
|
OP (OP_FLOAT)
|
|
|
|
/* OP_VAR_VALUE takes one struct block * in the following element,
|
|
and one struct symbol * in the following exp_element, followed
|
|
by another OP_VAR_VALUE, making four exp_elements. If the
|
|
block is non-NULL, evaluate the symbol relative to the
|
|
innermost frame executing in that block; if the block is NULL
|
|
use the selected frame. */
|
|
OP (OP_VAR_VALUE)
|
|
|
|
/* OP_VAR_ENTRY_VALUE takes one struct symbol * in the following element,
|
|
followed by another OP_VAR_ENTRY_VALUE, making three exp_elements.
|
|
somename@entry may mean parameter value as present at the entry of the
|
|
current function. Implemented via DW_OP_entry_value. */
|
|
OP (OP_VAR_ENTRY_VALUE)
|
|
|
|
/* OP_VAR_MSYM_VALUE takes one struct objfile * in the following
|
|
element, and one struct minimal_symbol * in the following
|
|
exp_element, followed by another OP_VAR_MSYM_VALUE, making four
|
|
exp_elements. */
|
|
OP (OP_VAR_MSYM_VALUE)
|
|
|
|
/* OP_LAST is followed by an integer in the next exp_element.
|
|
The integer is zero for the last value printed,
|
|
or it is the absolute number of a history element.
|
|
With another OP_LAST at the end, this makes three exp_elements. */
|
|
OP (OP_LAST)
|
|
|
|
/* OP_REGISTER is followed by a string in the next exp_element.
|
|
This is the name of a register to fetch. */
|
|
OP (OP_REGISTER)
|
|
|
|
/* OP_INTERNALVAR is followed by an internalvar ptr in the next
|
|
exp_element. With another OP_INTERNALVAR at the end, this
|
|
makes three exp_elements. */
|
|
OP (OP_INTERNALVAR)
|
|
|
|
/* OP_FUNCALL is followed by an integer in the next exp_element.
|
|
The integer is the number of args to the function call.
|
|
That many plus one values from following subexpressions
|
|
are used, the first one being the function.
|
|
The integer is followed by a repeat of OP_FUNCALL,
|
|
making three exp_elements. */
|
|
OP (OP_FUNCALL)
|
|
|
|
/* OP_OBJC_MSGCALL is followed by a string in the next exp_element
|
|
and then an integer. The string is the selector string. The
|
|
integer is the number of arguments to the message call. That
|
|
many plus one values are used, the first one being the object
|
|
pointer. This is an Objective C message. */
|
|
OP (OP_OBJC_MSGCALL)
|
|
|
|
/* OP_COMPLEX takes a type in the following element, followed by another
|
|
OP_COMPLEX, making three exp_elements. It is followed by two double
|
|
args, and converts them into a complex number of the given type. */
|
|
OP (OP_COMPLEX)
|
|
|
|
/* OP_STRING represents a string constant.
|
|
Its format is the same as that of a STRUCTOP, but the string
|
|
data is just made into a string constant when the operation
|
|
is executed. */
|
|
OP (OP_STRING)
|
|
|
|
/* OP_ARRAY creates an array constant out of the following subexpressions.
|
|
It is followed by two exp_elements, the first containing an integer
|
|
that is the lower bound of the array and the second containing another
|
|
integer that is the upper bound of the array. The second integer is
|
|
followed by a repeat of OP_ARRAY, making four exp_elements total.
|
|
The bounds are used to compute the number of following subexpressions
|
|
to consume, as well as setting the bounds in the created array constant.
|
|
The type of the elements is taken from the type of the first subexp,
|
|
and they must all match. */
|
|
OP (OP_ARRAY)
|
|
|
|
/* UNOP_CAST is followed by a type pointer in the next exp_element.
|
|
With another UNOP_CAST at the end, this makes three exp_elements.
|
|
It casts the value of the following subexpression. */
|
|
OP (UNOP_CAST)
|
|
|
|
/* Like UNOP_CAST, but the type is a subexpression. */
|
|
OP (UNOP_CAST_TYPE)
|
|
|
|
/* The C++ dynamic_cast operator. */
|
|
OP (UNOP_DYNAMIC_CAST)
|
|
|
|
/* The C++ reinterpret_cast operator. */
|
|
OP (UNOP_REINTERPRET_CAST)
|
|
|
|
/* UNOP_MEMVAL is followed by a type pointer in the next exp_element
|
|
With another UNOP_MEMVAL at the end, this makes three exp_elements.
|
|
It casts the contents of the word addressed by the value of the
|
|
following subexpression. */
|
|
OP (UNOP_MEMVAL)
|
|
|
|
/* Like UNOP_MEMVAL, but the type is supplied as a subexpression. */
|
|
OP (UNOP_MEMVAL_TYPE)
|
|
|
|
/* UNOP_... operate on one value from a following subexpression
|
|
and replace it with a result. They take no immediate arguments. */
|
|
|
|
OP (UNOP_NEG) /* Unary - */
|
|
OP (UNOP_LOGICAL_NOT) /* Unary ! */
|
|
OP (UNOP_COMPLEMENT) /* Unary ~ */
|
|
OP (UNOP_IND) /* Unary * */
|
|
OP (UNOP_ADDR) /* Unary & */
|
|
OP (UNOP_PREINCREMENT) /* ++ before an expression */
|
|
OP (UNOP_POSTINCREMENT) /* ++ after an expression */
|
|
OP (UNOP_PREDECREMENT) /* -- before an expression */
|
|
OP (UNOP_POSTDECREMENT) /* -- after an expression */
|
|
OP (UNOP_SIZEOF) /* Unary sizeof (followed by expression) */
|
|
OP (UNOP_ALIGNOF) /* Unary alignof (followed by expression) */
|
|
|
|
OP (UNOP_PLUS) /* Unary plus */
|
|
|
|
OP (UNOP_ABS)
|
|
OP (UNOP_HIGH)
|
|
|
|
OP (OP_BOOL) /* Modula-2 builtin BOOLEAN type */
|
|
|
|
/* STRUCTOP_... operate on a value from a following subexpression
|
|
by extracting a structure component specified by a string
|
|
that appears in the following exp_elements (as many as needed).
|
|
STRUCTOP_STRUCT is used for "." and STRUCTOP_PTR for "->".
|
|
They differ only in the error message given in case the value is
|
|
not suitable or the structure component specified is not found.
|
|
|
|
The length of the string follows the opcode, followed by
|
|
BYTES_TO_EXP_ELEM(length) elements containing the data of the
|
|
string, followed by the length again and the opcode again. */
|
|
|
|
OP (STRUCTOP_STRUCT)
|
|
OP (STRUCTOP_PTR)
|
|
|
|
/* Anonymous field access, e.g. "foo.3". Used in Rust. */
|
|
OP (STRUCTOP_ANONYMOUS)
|
|
|
|
/* C++: OP_THIS is just a placeholder for the class instance variable.
|
|
It just comes in a tight (OP_THIS, OP_THIS) pair. */
|
|
OP (OP_THIS)
|
|
|
|
/* Objective C: "@selector" pseudo-operator. */
|
|
OP (OP_OBJC_SELECTOR)
|
|
|
|
/* OP_SCOPE surrounds a type name and a field name. The type
|
|
name is encoded as one element, but the field name stays as
|
|
a string, which, of course, is variable length. */
|
|
OP (OP_SCOPE)
|
|
|
|
/* OP_FUNC_STATIC_VAR refers to a function local static variable. The
|
|
function is taken from the following subexpression. The length of
|
|
the variable name as a string follows the opcode, followed by
|
|
BYTES_TO_EXP_ELEM(length) elements containing the data of the
|
|
string, followed by the length again and the opcode again.
|
|
|
|
Note this is used by C++, but not C. The C parser handles local
|
|
static variables in the parser directly. Also, this is only used
|
|
in C++ if the function/method name is not quoted, like e.g.:
|
|
|
|
p S:method()::var
|
|
p S:method() const::var
|
|
|
|
If the function/method is quoted like instead:
|
|
|
|
p 'S:method() const'::var
|
|
|
|
then the C-specific handling directly in the parser takes over (see
|
|
block/variable productions).
|
|
|
|
Also, if the whole function+var is quoted like this:
|
|
|
|
p 'S:method() const::var'
|
|
|
|
then the whole quoted expression is interpreted as a single symbol
|
|
name and we don't use OP_FUNC_STATIC_VAR either. In that case, the
|
|
C++-specific symbol lookup routines take care of the
|
|
function-local-static search. */
|
|
OP (OP_FUNC_STATIC_VAR)
|
|
|
|
/* OP_TYPE is for parsing types, and used with the "ptype" command
|
|
so we can look up types that are qualified by scope, either with
|
|
the GDB "::" operator, or the Modula-2 '.' operator. */
|
|
OP (OP_TYPE)
|
|
|
|
/* An Objective C Foundation Class NSString constant. */
|
|
OP (OP_OBJC_NSSTRING)
|
|
|
|
/* An array range operator (in Fortran 90, for "exp:exp", "exp:",
|
|
":exp" and ":"). */
|
|
OP (OP_RANGE)
|
|
|
|
/* OP_ADL_FUNC specifies that the function is to be looked up in an
|
|
Argument Dependent manner (Koenig lookup). */
|
|
OP (OP_ADL_FUNC)
|
|
|
|
/* The typeof operator. This has one expression argument, which is
|
|
evaluated solely for its type. */
|
|
OP (OP_TYPEOF)
|
|
|
|
/* The decltype operator. This has one expression argument, which is
|
|
evaluated solely for its type. This is similar to typeof, but has
|
|
slight different semantics. */
|
|
OP (OP_DECLTYPE)
|
|
|
|
/* The typeid operator. This has one expression argument. */
|
|
OP (OP_TYPEID)
|
|
|
|
/* This is used for the Rust [expr; N] form of array construction. It
|
|
takes two expression arguments. */
|
|
OP (OP_RUST_ARRAY)
|
|
|
|
/* ================ Ada operators ================ */
|
|
|
|
/* X IN A'RANGE(N). N is an immediate operand, surrounded by
|
|
BINOP_IN_BOUNDS before and after. A is an array, X an index
|
|
value. Evaluates to true iff X is within range of the Nth
|
|
dimension (1-based) of A. (A multi-dimensional array
|
|
type is represented as array of array of ...) */
|
|
OP (BINOP_IN_BOUNDS)
|
|
|
|
/* X IN L .. U. True iff L <= X <= U. */
|
|
OP (TERNOP_IN_RANGE)
|
|
|
|
/* Ada attributes ('Foo). */
|
|
OP (OP_ATR_FIRST)
|
|
OP (OP_ATR_LAST)
|
|
OP (OP_ATR_LENGTH)
|
|
OP (OP_ATR_POS)
|
|
OP (OP_ATR_SIZE)
|
|
OP (OP_ATR_TAG)
|
|
OP (OP_ATR_VAL)
|
|
|
|
/* Ada type qualification. It is encoded as for UNOP_CAST, above,
|
|
and denotes the TYPE'(EXPR) construct. */
|
|
OP (UNOP_QUAL)
|
|
|
|
/* X IN TYPE. The `TYPE' argument is immediate, with
|
|
UNOP_IN_RANGE before and after it. True iff X is a member of
|
|
type TYPE (typically a subrange). */
|
|
OP (UNOP_IN_RANGE)
|
|
|
|
/* An aggregate. A single immediate operand, N>0, gives
|
|
the number of component specifications that follow. The
|
|
immediate operand is followed by a second OP_AGGREGATE.
|
|
Next come N component specifications. A component
|
|
specification is either an OP_OTHERS (others=>...), an
|
|
OP_CHOICES (for named associations), or other expression (for
|
|
positional aggregates only). Aggregates currently
|
|
occur only as the right sides of assignments. */
|
|
OP (OP_AGGREGATE)
|
|
|
|
/* ================ Fortran operators ================ */
|
|
|
|
/* This is EXACTLY like OP_FUNCALL but is semantically different.
|
|
In F77, array subscript expressions, substring expressions and
|
|
function calls are all exactly the same syntactically. They
|
|
may only be disambiguated at runtime. Thus this operator,
|
|
which indicates that we have found something of the form
|
|
<name> ( <stuff> ). */
|
|
OP (OP_F77_UNDETERMINED_ARGLIST)
|
|
|
|
/* Single operand builtins. */
|
|
OP (UNOP_FORTRAN_KIND)
|
|
OP (UNOP_FORTRAN_FLOOR)
|
|
OP (UNOP_FORTRAN_CEILING)
|
|
OP (UNOP_FORTRAN_ALLOCATED)
|
|
OP (UNOP_FORTRAN_RANK)
|
|
OP (UNOP_FORTRAN_SHAPE)
|
|
OP (UNOP_FORTRAN_LOC)
|
|
|
|
/* Two operand builtins. */
|
|
OP (BINOP_FORTRAN_CMPLX)
|
|
OP (BINOP_FORTRAN_MODULO)
|
|
|
|
/* Builtins that take one or two operands. */
|
|
OP (FORTRAN_LBOUND)
|
|
OP (FORTRAN_UBOUND)
|
|
OP (FORTRAN_ASSOCIATED)
|
|
OP (FORTRAN_ARRAY_SIZE)
|