mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
2e6784a89f
target. * defs.h (enum language): Add language_asm. * findvar.c (read_register_bytes read_register_gen write_register_bytes read_register read_register_pid write_register write_register_pid supply_register): Move multi- thread handling down into these routines. Create XXX_pid routines that allow register references to specify the pid. * findvar.c infcmd.c (read_pc read_pc_pid write_pc write_pc_pid read_sp write_sp read_fp write_fp): Move these routines from infcmd to findvar to centralize the whole mess. * i386-nlmstub.c: Portability fixes. * infptrace.c (child_resume): Conditionalize to allow other natives to override it. Remove PIDGET gubbish, it's no longer necessary. * infrun.c (wait_for_inferior): Put registers_changed() before target_wait() to speed up remote debugging. * Replace code that reads registers from other threads with much nicer looking new function calls (see changes to findvar.c). * Don't skip prologues if debugging assembly source. * lynx-nat.c (child_resume): Lynx now needs it's own version of child_resume to handle multi-thread debugging properly. * remote.c: Add O response to get console output from target. * (readchar): Add timeout parameter. Handle SERIAL_EOF and SERIAL_ERROR here to simplify callers. * Change static var timeout to remote_timeout. * (fromhex): Remove unnecessary return -1 at end of routine. * (remote_wait): Turn this into a big switch statement. Add support for O response. * (putpkt): Remove unnecessary handling of SERIAL_EOF/ERROR. * (getpkt): Split getpkt into two parts. read_frame deals with all formatting issues, run-length encoding, and framing. getpkt now handles error recovery, and frame detection. * ser-tcp.c (tcp_readchar): Handle EINTR from read(). * ser-unix.c (hardwire_raw): Set CLOCAL so that we ignore modem control. (hardwire_readchar): Handle EINTR from read(). * symfile.c (deduce_language_from_filename): Add support for .s files. * config/nm-lynx.h: Define CHILD_WAIT so that lynx-nat.c can override infptrace's child_wait. * config/rs6000/rs6000lynx.mh: Use xm-rs6000ly.h & nm-rs6000ly.h instead of XXXlynx.h. * config/rs6000/rs6000lynx.mt: Use tm-rs6000ly.h instead of tm-rs6000lynx.h. * nlm/gdbserve.c: Portability fixes.
1651 lines
47 KiB
C
1651 lines
47 KiB
C
/* Generic symbol file reading for the GNU debugger, GDB.
|
||
Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "gdbcore.h"
|
||
#include "frame.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "gdbcmd.h"
|
||
#include "breakpoint.h"
|
||
#include "language.h"
|
||
#include "complaints.h"
|
||
#include "demangle.h"
|
||
#include "inferior.h" /* for write_pc */
|
||
|
||
#include <obstack.h>
|
||
#include <assert.h>
|
||
|
||
#include <sys/types.h>
|
||
#include <fcntl.h>
|
||
#include <string.h>
|
||
#include <sys/stat.h>
|
||
#include <ctype.h>
|
||
|
||
#ifndef O_BINARY
|
||
#define O_BINARY 0
|
||
#endif
|
||
|
||
/* Global variables owned by this file */
|
||
int readnow_symbol_files; /* Read full symbols immediately */
|
||
|
||
struct complaint oldsyms_complaint = {
|
||
"Replacing old symbols for `%s'", 0, 0
|
||
};
|
||
|
||
struct complaint empty_symtab_complaint = {
|
||
"Empty symbol table found for `%s'", 0, 0
|
||
};
|
||
|
||
/* External variables and functions referenced. */
|
||
|
||
extern int info_verbose;
|
||
|
||
/* Functions this file defines */
|
||
|
||
static void
|
||
set_initial_language PARAMS ((void));
|
||
|
||
static void
|
||
load_command PARAMS ((char *, int));
|
||
|
||
static void
|
||
add_symbol_file_command PARAMS ((char *, int));
|
||
|
||
static void
|
||
cashier_psymtab PARAMS ((struct partial_symtab *));
|
||
|
||
static int
|
||
compare_psymbols PARAMS ((const void *, const void *));
|
||
|
||
static int
|
||
compare_symbols PARAMS ((const void *, const void *));
|
||
|
||
static bfd *
|
||
symfile_bfd_open PARAMS ((char *));
|
||
|
||
static void
|
||
find_sym_fns PARAMS ((struct objfile *));
|
||
|
||
/* List of all available sym_fns. On gdb startup, each object file reader
|
||
calls add_symtab_fns() to register information on each format it is
|
||
prepared to read. */
|
||
|
||
static struct sym_fns *symtab_fns = NULL;
|
||
|
||
/* Structures with which to manage partial symbol allocation. */
|
||
|
||
struct psymbol_allocation_list global_psymbols = {0}, static_psymbols = {0};
|
||
|
||
/* Flag for whether user will be reloading symbols multiple times.
|
||
Defaults to ON for VxWorks, otherwise OFF. */
|
||
|
||
#ifdef SYMBOL_RELOADING_DEFAULT
|
||
int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
|
||
#else
|
||
int symbol_reloading = 0;
|
||
#endif
|
||
|
||
|
||
/* Since this function is called from within qsort, in an ANSI environment
|
||
it must conform to the prototype for qsort, which specifies that the
|
||
comparison function takes two "void *" pointers. */
|
||
|
||
static int
|
||
compare_symbols (s1p, s2p)
|
||
const PTR s1p;
|
||
const PTR s2p;
|
||
{
|
||
register struct symbol **s1, **s2;
|
||
|
||
s1 = (struct symbol **) s1p;
|
||
s2 = (struct symbol **) s2p;
|
||
|
||
return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
compare_psymbols -- compare two partial symbols by name
|
||
|
||
DESCRIPTION
|
||
|
||
Given pointer to two partial symbol table entries, compare
|
||
them by name and return -N, 0, or +N (ala strcmp). Typically
|
||
used by sorting routines like qsort().
|
||
|
||
NOTES
|
||
|
||
Does direct compare of first two characters before punting
|
||
and passing to strcmp for longer compares. Note that the
|
||
original version had a bug whereby two null strings or two
|
||
identically named one character strings would return the
|
||
comparison of memory following the null byte.
|
||
|
||
*/
|
||
|
||
static int
|
||
compare_psymbols (s1p, s2p)
|
||
const PTR s1p;
|
||
const PTR s2p;
|
||
{
|
||
register char *st1 = SYMBOL_NAME ((struct partial_symbol *) s1p);
|
||
register char *st2 = SYMBOL_NAME ((struct partial_symbol *) s2p);
|
||
|
||
if ((st1[0] - st2[0]) || !st1[0])
|
||
{
|
||
return (st1[0] - st2[0]);
|
||
}
|
||
else if ((st1[1] - st2[1]) || !st1[1])
|
||
{
|
||
return (st1[1] - st2[1]);
|
||
}
|
||
else
|
||
{
|
||
return (STRCMP (st1 + 2, st2 + 2));
|
||
}
|
||
}
|
||
|
||
void
|
||
sort_pst_symbols (pst)
|
||
struct partial_symtab *pst;
|
||
{
|
||
/* Sort the global list; don't sort the static list */
|
||
|
||
qsort (pst -> objfile -> global_psymbols.list + pst -> globals_offset,
|
||
pst -> n_global_syms, sizeof (struct partial_symbol),
|
||
compare_psymbols);
|
||
}
|
||
|
||
/* Call sort_block_syms to sort alphabetically the symbols of one block. */
|
||
|
||
void
|
||
sort_block_syms (b)
|
||
register struct block *b;
|
||
{
|
||
qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
|
||
sizeof (struct symbol *), compare_symbols);
|
||
}
|
||
|
||
/* Call sort_symtab_syms to sort alphabetically
|
||
the symbols of each block of one symtab. */
|
||
|
||
void
|
||
sort_symtab_syms (s)
|
||
register struct symtab *s;
|
||
{
|
||
register struct blockvector *bv;
|
||
int nbl;
|
||
int i;
|
||
register struct block *b;
|
||
|
||
if (s == 0)
|
||
return;
|
||
bv = BLOCKVECTOR (s);
|
||
nbl = BLOCKVECTOR_NBLOCKS (bv);
|
||
for (i = 0; i < nbl; i++)
|
||
{
|
||
b = BLOCKVECTOR_BLOCK (bv, i);
|
||
if (BLOCK_SHOULD_SORT (b))
|
||
sort_block_syms (b);
|
||
}
|
||
}
|
||
|
||
/* Make a copy of the string at PTR with SIZE characters in the symbol obstack
|
||
(and add a null character at the end in the copy).
|
||
Returns the address of the copy. */
|
||
|
||
char *
|
||
obsavestring (ptr, size, obstackp)
|
||
char *ptr;
|
||
int size;
|
||
struct obstack *obstackp;
|
||
{
|
||
register char *p = (char *) obstack_alloc (obstackp, size + 1);
|
||
/* Open-coded memcpy--saves function call time.
|
||
These strings are usually short. */
|
||
{
|
||
register char *p1 = ptr;
|
||
register char *p2 = p;
|
||
char *end = ptr + size;
|
||
while (p1 != end)
|
||
*p2++ = *p1++;
|
||
}
|
||
p[size] = 0;
|
||
return p;
|
||
}
|
||
|
||
/* Concatenate strings S1, S2 and S3; return the new string.
|
||
Space is found in the symbol_obstack. */
|
||
|
||
char *
|
||
obconcat (obstackp, s1, s2, s3)
|
||
struct obstack *obstackp;
|
||
const char *s1, *s2, *s3;
|
||
{
|
||
register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
|
||
register char *val = (char *) obstack_alloc (obstackp, len);
|
||
strcpy (val, s1);
|
||
strcat (val, s2);
|
||
strcat (val, s3);
|
||
return val;
|
||
}
|
||
|
||
/* Get the symbol table that corresponds to a partial_symtab.
|
||
This is fast after the first time you do it. In fact, there
|
||
is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
|
||
case inline. */
|
||
|
||
struct symtab *
|
||
psymtab_to_symtab (pst)
|
||
register struct partial_symtab *pst;
|
||
{
|
||
/* If it's been looked up before, return it. */
|
||
if (pst->symtab)
|
||
return pst->symtab;
|
||
|
||
/* If it has not yet been read in, read it. */
|
||
if (!pst->readin)
|
||
{
|
||
(*pst->read_symtab) (pst);
|
||
}
|
||
|
||
return pst->symtab;
|
||
}
|
||
|
||
/* Initialize entry point information for this objfile. */
|
||
|
||
void
|
||
init_entry_point_info (objfile)
|
||
struct objfile *objfile;
|
||
{
|
||
/* Save startup file's range of PC addresses to help blockframe.c
|
||
decide where the bottom of the stack is. */
|
||
|
||
if (bfd_get_file_flags (objfile -> obfd) & EXEC_P)
|
||
{
|
||
/* Executable file -- record its entry point so we'll recognize
|
||
the startup file because it contains the entry point. */
|
||
objfile -> ei.entry_point = bfd_get_start_address (objfile -> obfd);
|
||
}
|
||
else
|
||
{
|
||
/* Examination of non-executable.o files. Short-circuit this stuff. */
|
||
/* ~0 will not be in any file, we hope. */
|
||
objfile -> ei.entry_point = ~0;
|
||
/* set the startup file to be an empty range. */
|
||
objfile -> ei.entry_file_lowpc = 0;
|
||
objfile -> ei.entry_file_highpc = 0;
|
||
}
|
||
}
|
||
|
||
/* Get current entry point address. */
|
||
|
||
CORE_ADDR
|
||
entry_point_address()
|
||
{
|
||
return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
|
||
}
|
||
|
||
/* Remember the lowest-addressed loadable section we've seen.
|
||
This function is called via bfd_map_over_sections. */
|
||
|
||
#if 0 /* Not used yet */
|
||
static void
|
||
find_lowest_section (abfd, sect, obj)
|
||
bfd *abfd;
|
||
asection *sect;
|
||
PTR obj;
|
||
{
|
||
asection **lowest = (asection **)obj;
|
||
|
||
if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
|
||
return;
|
||
if (!*lowest)
|
||
*lowest = sect; /* First loadable section */
|
||
else if (bfd_section_vma (abfd, *lowest) >= bfd_section_vma (abfd, sect))
|
||
*lowest = sect; /* A lower loadable section */
|
||
}
|
||
#endif
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file.
|
||
|
||
NAME is the file name (which will be tilde-expanded and made
|
||
absolute herein) (but we don't free or modify NAME itself).
|
||
FROM_TTY says how verbose to be. MAINLINE specifies whether this
|
||
is the main symbol file, or whether it's an extra symbol file such
|
||
as dynamically loaded code. If !mainline, ADDR is the address
|
||
where the text segment was loaded. If VERBO, the caller has printed
|
||
a verbose message about the symbol reading (and complaints can be
|
||
more terse about it). */
|
||
|
||
void
|
||
syms_from_objfile (objfile, addr, mainline, verbo)
|
||
struct objfile *objfile;
|
||
CORE_ADDR addr;
|
||
int mainline;
|
||
int verbo;
|
||
{
|
||
struct section_offsets *section_offsets;
|
||
asection *lowest_sect;
|
||
struct cleanup *old_chain;
|
||
|
||
init_entry_point_info (objfile);
|
||
find_sym_fns (objfile);
|
||
|
||
/* Make sure that partially constructed symbol tables will be cleaned up
|
||
if an error occurs during symbol reading. */
|
||
old_chain = make_cleanup (free_objfile, objfile);
|
||
|
||
if (mainline)
|
||
{
|
||
/* We will modify the main symbol table, make sure that all its users
|
||
will be cleaned up if an error occurs during symbol reading. */
|
||
make_cleanup (clear_symtab_users, 0);
|
||
|
||
/* Since no error yet, throw away the old symbol table. */
|
||
|
||
if (symfile_objfile != NULL)
|
||
{
|
||
free_objfile (symfile_objfile);
|
||
symfile_objfile = NULL;
|
||
}
|
||
|
||
/* Currently we keep symbols from the add-symbol-file command.
|
||
If the user wants to get rid of them, they should do "symbol-file"
|
||
without arguments first. Not sure this is the best behavior
|
||
(PR 2207). */
|
||
|
||
(*objfile -> sf -> sym_new_init) (objfile);
|
||
}
|
||
|
||
/* Convert addr into an offset rather than an absolute address.
|
||
We find the lowest address of a loaded segment in the objfile,
|
||
and assume that <addr> is where that got loaded. Due to historical
|
||
precedent, we warn if that doesn't happen to be the ".text"
|
||
segment. */
|
||
|
||
if (mainline)
|
||
{
|
||
addr = 0; /* No offset from objfile addresses. */
|
||
}
|
||
else
|
||
{
|
||
lowest_sect = bfd_get_section_by_name (objfile->obfd, ".text");
|
||
#if 0
|
||
lowest_sect = 0;
|
||
bfd_map_over_sections (objfile->obfd, find_lowest_section,
|
||
(PTR) &lowest_sect);
|
||
#endif
|
||
|
||
if (lowest_sect == 0)
|
||
warning ("no loadable sections found in added symbol-file %s",
|
||
objfile->name);
|
||
else if (0 == bfd_get_section_name (objfile->obfd, lowest_sect)
|
||
|| !STREQ (".text",
|
||
bfd_get_section_name (objfile->obfd, lowest_sect)))
|
||
/* FIXME-32x64--assumes bfd_vma fits in long. */
|
||
warning ("Lowest section in %s is %s at 0x%lx",
|
||
objfile->name,
|
||
bfd_section_name (objfile->obfd, lowest_sect),
|
||
(unsigned long) bfd_section_vma (objfile->obfd, lowest_sect));
|
||
|
||
if (lowest_sect)
|
||
addr -= bfd_section_vma (objfile->obfd, lowest_sect);
|
||
}
|
||
|
||
/* Initialize symbol reading routines for this objfile, allow complaints to
|
||
appear for this new file, and record how verbose to be, then do the
|
||
initial symbol reading for this file. */
|
||
|
||
(*objfile -> sf -> sym_init) (objfile);
|
||
clear_complaints (1, verbo);
|
||
|
||
section_offsets = (*objfile -> sf -> sym_offsets) (objfile, addr);
|
||
objfile->section_offsets = section_offsets;
|
||
|
||
#ifndef IBM6000_TARGET
|
||
/* This is a SVR4/SunOS specific hack, I think. In any event, it
|
||
screws RS/6000. sym_offsets should be doing this sort of thing,
|
||
because it knows the mapping between bfd sections and
|
||
section_offsets. */
|
||
/* This is a hack. As far as I can tell, section offsets are not
|
||
target dependent. They are all set to addr with a couple of
|
||
exceptions. The exceptions are sysvr4 shared libraries, whose
|
||
offsets are kept in solib structures anyway and rs6000 xcoff
|
||
which handles shared libraries in a completely unique way.
|
||
|
||
Section offsets are built similarly, except that they are built
|
||
by adding addr in all cases because there is no clear mapping
|
||
from section_offsets into actual sections. Note that solib.c
|
||
has a different algorythm for finding section offsets.
|
||
|
||
These should probably all be collapsed into some target
|
||
independent form of shared library support. FIXME. */
|
||
|
||
if (addr)
|
||
{
|
||
struct obj_section *s;
|
||
|
||
for (s = objfile->sections; s < objfile->sections_end; ++s)
|
||
{
|
||
s->addr -= s->offset;
|
||
s->addr += addr;
|
||
s->endaddr -= s->offset;
|
||
s->endaddr += addr;
|
||
s->offset += addr;
|
||
}
|
||
}
|
||
#endif /* not IBM6000_TARGET */
|
||
|
||
(*objfile -> sf -> sym_read) (objfile, section_offsets, mainline);
|
||
|
||
/* Don't allow char * to have a typename (else would get caddr_t).
|
||
Ditto void *. FIXME: Check whether this is now done by all the
|
||
symbol readers themselves (many of them now do), and if so remove
|
||
it from here. */
|
||
|
||
TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
|
||
TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
|
||
|
||
/* Mark the objfile has having had initial symbol read attempted. Note
|
||
that this does not mean we found any symbols... */
|
||
|
||
objfile -> flags |= OBJF_SYMS;
|
||
|
||
/* Discard cleanups as symbol reading was successful. */
|
||
|
||
discard_cleanups (old_chain);
|
||
}
|
||
|
||
/* Perform required actions after either reading in the initial
|
||
symbols for a new objfile, or mapping in the symbols from a reusable
|
||
objfile. */
|
||
|
||
void
|
||
new_symfile_objfile (objfile, mainline, verbo)
|
||
struct objfile *objfile;
|
||
int mainline;
|
||
int verbo;
|
||
{
|
||
|
||
/* If this is the main symbol file we have to clean up all users of the
|
||
old main symbol file. Otherwise it is sufficient to fixup all the
|
||
breakpoints that may have been redefined by this symbol file. */
|
||
if (mainline)
|
||
{
|
||
/* OK, make it the "real" symbol file. */
|
||
symfile_objfile = objfile;
|
||
|
||
clear_symtab_users ();
|
||
}
|
||
else
|
||
{
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* We're done reading the symbol file; finish off complaints. */
|
||
clear_complaints (0, verbo);
|
||
}
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file.
|
||
|
||
NAME is the file name (which will be tilde-expanded and made
|
||
absolute herein) (but we don't free or modify NAME itself).
|
||
FROM_TTY says how verbose to be. MAINLINE specifies whether this
|
||
is the main symbol file, or whether it's an extra symbol file such
|
||
as dynamically loaded code. If !mainline, ADDR is the address
|
||
where the text segment was loaded.
|
||
|
||
Upon success, returns a pointer to the objfile that was added.
|
||
Upon failure, jumps back to command level (never returns). */
|
||
|
||
struct objfile *
|
||
symbol_file_add (name, from_tty, addr, mainline, mapped, readnow)
|
||
char *name;
|
||
int from_tty;
|
||
CORE_ADDR addr;
|
||
int mainline;
|
||
int mapped;
|
||
int readnow;
|
||
{
|
||
struct objfile *objfile;
|
||
struct partial_symtab *psymtab;
|
||
bfd *abfd;
|
||
|
||
/* Open a bfd for the file, and give user a chance to burp if we'd be
|
||
interactively wiping out any existing symbols. */
|
||
|
||
abfd = symfile_bfd_open (name);
|
||
|
||
if ((have_full_symbols () || have_partial_symbols ())
|
||
&& mainline
|
||
&& from_tty
|
||
&& !query ("Load new symbol table from \"%s\"? ", name))
|
||
error ("Not confirmed.");
|
||
|
||
objfile = allocate_objfile (abfd, mapped);
|
||
|
||
/* If the objfile uses a mapped symbol file, and we have a psymtab for
|
||
it, then skip reading any symbols at this time. */
|
||
|
||
if ((objfile -> flags & OBJF_MAPPED) && (objfile -> flags & OBJF_SYMS))
|
||
{
|
||
/* We mapped in an existing symbol table file that already has had
|
||
initial symbol reading performed, so we can skip that part. Notify
|
||
the user that instead of reading the symbols, they have been mapped.
|
||
*/
|
||
if (from_tty || info_verbose)
|
||
{
|
||
printf_filtered ("Mapped symbols for %s...", name);
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
init_entry_point_info (objfile);
|
||
find_sym_fns (objfile);
|
||
}
|
||
else
|
||
{
|
||
/* We either created a new mapped symbol table, mapped an existing
|
||
symbol table file which has not had initial symbol reading
|
||
performed, or need to read an unmapped symbol table. */
|
||
if (from_tty || info_verbose)
|
||
{
|
||
printf_filtered ("Reading symbols from %s...", name);
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
syms_from_objfile (objfile, addr, mainline, from_tty);
|
||
}
|
||
|
||
/* We now have at least a partial symbol table. Check to see if the
|
||
user requested that all symbols be read on initial access via either
|
||
the gdb startup command line or on a per symbol file basis. Expand
|
||
all partial symbol tables for this objfile if so. */
|
||
|
||
if (readnow || readnow_symbol_files)
|
||
{
|
||
if (from_tty || info_verbose)
|
||
{
|
||
printf_filtered ("expanding to full symbols...");
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
for (psymtab = objfile -> psymtabs;
|
||
psymtab != NULL;
|
||
psymtab = psymtab -> next)
|
||
{
|
||
psymtab_to_symtab (psymtab);
|
||
}
|
||
}
|
||
|
||
if (from_tty || info_verbose)
|
||
{
|
||
printf_filtered ("done.\n");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
new_symfile_objfile (objfile, mainline, from_tty);
|
||
|
||
/* Getting new symbols may change our opinion about what is
|
||
frameless. */
|
||
|
||
reinit_frame_cache ();
|
||
|
||
return (objfile);
|
||
}
|
||
|
||
/* This is the symbol-file command. Read the file, analyze its
|
||
symbols, and add a struct symtab to a symtab list. The syntax of
|
||
the command is rather bizarre--(1) buildargv implements various
|
||
quoting conventions which are undocumented and have little or
|
||
nothing in common with the way things are quoted (or not quoted)
|
||
elsewhere in GDB, (2) options are used, which are not generally
|
||
used in GDB (perhaps "set mapped on", "set readnow on" would be
|
||
better), (3) the order of options matters, which is contrary to GNU
|
||
conventions (because it is confusing and inconvenient). */
|
||
|
||
void
|
||
symbol_file_command (args, from_tty)
|
||
char *args;
|
||
int from_tty;
|
||
{
|
||
char **argv;
|
||
char *name = NULL;
|
||
CORE_ADDR text_relocation = 0; /* text_relocation */
|
||
struct cleanup *cleanups;
|
||
int mapped = 0;
|
||
int readnow = 0;
|
||
|
||
dont_repeat ();
|
||
|
||
if (args == NULL)
|
||
{
|
||
if ((have_full_symbols () || have_partial_symbols ())
|
||
&& from_tty
|
||
&& !query ("Discard symbol table from `%s'? ",
|
||
symfile_objfile -> name))
|
||
error ("Not confirmed.");
|
||
free_all_objfiles ();
|
||
symfile_objfile = NULL;
|
||
if (from_tty)
|
||
{
|
||
printf_unfiltered ("No symbol file now.\n");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if ((argv = buildargv (args)) == NULL)
|
||
{
|
||
nomem (0);
|
||
}
|
||
cleanups = make_cleanup (freeargv, (char *) argv);
|
||
while (*argv != NULL)
|
||
{
|
||
if (STREQ (*argv, "-mapped"))
|
||
{
|
||
mapped = 1;
|
||
}
|
||
else if (STREQ (*argv, "-readnow"))
|
||
{
|
||
readnow = 1;
|
||
}
|
||
else if (**argv == '-')
|
||
{
|
||
error ("unknown option `%s'", *argv);
|
||
}
|
||
else
|
||
{
|
||
char *p;
|
||
|
||
name = *argv;
|
||
|
||
/* this is for rombug remote only, to get the text relocation by
|
||
using link command */
|
||
p = strrchr(name, '/');
|
||
if (p != NULL) p++;
|
||
else p = name;
|
||
|
||
target_link(p, &text_relocation);
|
||
|
||
if (text_relocation == (CORE_ADDR)0)
|
||
return;
|
||
else if (text_relocation == (CORE_ADDR)-1)
|
||
symbol_file_add (name, from_tty, (CORE_ADDR)0, 1, mapped,
|
||
readnow);
|
||
else
|
||
symbol_file_add (name, from_tty, (CORE_ADDR)text_relocation,
|
||
0, mapped, readnow);
|
||
set_initial_language ();
|
||
}
|
||
argv++;
|
||
}
|
||
|
||
if (name == NULL)
|
||
{
|
||
error ("no symbol file name was specified");
|
||
}
|
||
do_cleanups (cleanups);
|
||
}
|
||
}
|
||
|
||
/* Set the initial language.
|
||
|
||
A better solution would be to record the language in the psymtab when reading
|
||
partial symbols, and then use it (if known) to set the language. This would
|
||
be a win for formats that encode the language in an easily discoverable place,
|
||
such as DWARF. For stabs, we can jump through hoops looking for specially
|
||
named symbols or try to intuit the language from the specific type of stabs
|
||
we find, but we can't do that until later when we read in full symbols.
|
||
FIXME. */
|
||
|
||
static void
|
||
set_initial_language ()
|
||
{
|
||
struct partial_symtab *pst;
|
||
enum language lang = language_unknown;
|
||
|
||
pst = find_main_psymtab ();
|
||
if (pst != NULL)
|
||
{
|
||
if (pst -> filename != NULL)
|
||
{
|
||
lang = deduce_language_from_filename (pst -> filename);
|
||
}
|
||
if (lang == language_unknown)
|
||
{
|
||
/* Make C the default language */
|
||
lang = language_c;
|
||
}
|
||
set_language (lang);
|
||
expected_language = current_language; /* Don't warn the user */
|
||
}
|
||
}
|
||
|
||
/* Open file specified by NAME and hand it off to BFD for preliminary
|
||
analysis. Result is a newly initialized bfd *, which includes a newly
|
||
malloc'd` copy of NAME (tilde-expanded and made absolute).
|
||
In case of trouble, error() is called. */
|
||
|
||
static bfd *
|
||
symfile_bfd_open (name)
|
||
char *name;
|
||
{
|
||
bfd *sym_bfd;
|
||
int desc;
|
||
char *absolute_name;
|
||
|
||
name = tilde_expand (name); /* Returns 1st new malloc'd copy */
|
||
|
||
/* Look down path for it, allocate 2nd new malloc'd copy. */
|
||
desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
|
||
if (desc < 0)
|
||
{
|
||
make_cleanup (free, name);
|
||
perror_with_name (name);
|
||
}
|
||
free (name); /* Free 1st new malloc'd copy */
|
||
name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
|
||
/* It'll be freed in free_objfile(). */
|
||
|
||
sym_bfd = bfd_fdopenr (name, gnutarget, desc);
|
||
if (!sym_bfd)
|
||
{
|
||
close (desc);
|
||
make_cleanup (free, name);
|
||
error ("\"%s\": can't open to read symbols: %s.", name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
sym_bfd->cacheable = true;
|
||
|
||
if (!bfd_check_format (sym_bfd, bfd_object))
|
||
{
|
||
bfd_close (sym_bfd); /* This also closes desc */
|
||
make_cleanup (free, name);
|
||
error ("\"%s\": can't read symbols: %s.", name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
return (sym_bfd);
|
||
}
|
||
|
||
/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
|
||
startup by the _initialize routine in each object file format reader,
|
||
to register information about each format the the reader is prepared
|
||
to handle. */
|
||
|
||
void
|
||
add_symtab_fns (sf)
|
||
struct sym_fns *sf;
|
||
{
|
||
sf->next = symtab_fns;
|
||
symtab_fns = sf;
|
||
}
|
||
|
||
|
||
/* Initialize to read symbols from the symbol file sym_bfd. It either
|
||
returns or calls error(). The result is an initialized struct sym_fns
|
||
in the objfile structure, that contains cached information about the
|
||
symbol file. */
|
||
|
||
static void
|
||
find_sym_fns (objfile)
|
||
struct objfile *objfile;
|
||
{
|
||
struct sym_fns *sf;
|
||
enum bfd_flavour our_flavour = bfd_get_flavour (objfile -> obfd);
|
||
char *our_target = bfd_get_target (objfile -> obfd);
|
||
|
||
/* Special kludge for RS/6000. See xcoffread.c. */
|
||
if (STREQ (our_target, "aixcoff-rs6000"))
|
||
our_flavour = (enum bfd_flavour)-1;
|
||
|
||
/* Special kludge for apollo. See dstread.c. */
|
||
if (STREQN (our_target, "apollo", 6))
|
||
our_flavour = (enum bfd_flavour)-2;
|
||
|
||
for (sf = symtab_fns; sf != NULL; sf = sf -> next)
|
||
{
|
||
if (our_flavour == sf -> sym_flavour)
|
||
{
|
||
objfile -> sf = sf;
|
||
return;
|
||
}
|
||
}
|
||
error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
|
||
bfd_get_target (objfile -> obfd));
|
||
}
|
||
|
||
/* This function runs the load command of our current target. */
|
||
|
||
static void
|
||
load_command (arg, from_tty)
|
||
char *arg;
|
||
int from_tty;
|
||
{
|
||
target_load (arg, from_tty);
|
||
}
|
||
|
||
/* This version of "load" should be usable for any target. Currently
|
||
it is just used for remote targets, not inftarg.c or core files,
|
||
on the theory that only in that case is it useful.
|
||
|
||
Avoiding xmodem and the like seems like a win (a) because we don't have
|
||
to worry about finding it, and (b) On VMS, fork() is very slow and so
|
||
we don't want to run a subprocess. On the other hand, I'm not sure how
|
||
performance compares. */
|
||
void
|
||
generic_load (filename, from_tty)
|
||
char *filename;
|
||
int from_tty;
|
||
{
|
||
struct cleanup *old_cleanups;
|
||
asection *s;
|
||
bfd *loadfile_bfd;
|
||
|
||
if (filename == NULL)
|
||
filename = get_exec_file (1);
|
||
|
||
loadfile_bfd = bfd_openr (filename, gnutarget);
|
||
if (loadfile_bfd == NULL)
|
||
{
|
||
perror_with_name (filename);
|
||
return;
|
||
}
|
||
old_cleanups = make_cleanup (bfd_close, loadfile_bfd);
|
||
|
||
if (!bfd_check_format (loadfile_bfd, bfd_object))
|
||
{
|
||
error ("\"%s\" is not an object file: %s", filename,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
for (s = loadfile_bfd->sections; s; s = s->next)
|
||
{
|
||
if (s->flags & SEC_LOAD)
|
||
{
|
||
bfd_size_type size;
|
||
|
||
size = bfd_get_section_size_before_reloc (s);
|
||
if (size > 0)
|
||
{
|
||
char *buffer;
|
||
struct cleanup *old_chain;
|
||
bfd_vma vma;
|
||
|
||
buffer = xmalloc (size);
|
||
old_chain = make_cleanup (free, buffer);
|
||
|
||
vma = bfd_get_section_vma (loadfile_bfd, s);
|
||
|
||
/* Is this really necessary? I guess it gives the user something
|
||
to look at during a long download. */
|
||
printf_filtered ("Loading section %s, size 0x%lx vma ",
|
||
bfd_get_section_name (loadfile_bfd, s),
|
||
(unsigned long) size);
|
||
print_address_numeric (vma, 1, gdb_stdout);
|
||
printf_filtered ("\n");
|
||
|
||
bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
|
||
|
||
target_write_memory (vma, buffer, size);
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We were doing this in remote-mips.c, I suspect it is right
|
||
for other targets too. */
|
||
write_pc (loadfile_bfd->start_address);
|
||
|
||
/* FIXME: are we supposed to call symbol_file_add or not? According to
|
||
a comment from remote-mips.c (where a call to symbol_file_add was
|
||
commented out), making the call confuses GDB if more than one file is
|
||
loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
|
||
does. */
|
||
|
||
do_cleanups (old_cleanups);
|
||
}
|
||
|
||
/* This function allows the addition of incrementally linked object files.
|
||
It does not modify any state in the target, only in the debugger. */
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
add_symbol_file_command (args, from_tty)
|
||
char *args;
|
||
int from_tty;
|
||
{
|
||
char *name = NULL;
|
||
CORE_ADDR text_addr;
|
||
char *arg;
|
||
int readnow = 0;
|
||
int mapped = 0;
|
||
|
||
dont_repeat ();
|
||
|
||
if (args == NULL)
|
||
{
|
||
error ("add-symbol-file takes a file name and an address");
|
||
}
|
||
|
||
/* Make a copy of the string that we can safely write into. */
|
||
|
||
args = strdup (args);
|
||
make_cleanup (free, args);
|
||
|
||
/* Pick off any -option args and the file name. */
|
||
|
||
while ((*args != '\000') && (name == NULL))
|
||
{
|
||
while (isspace (*args)) {args++;}
|
||
arg = args;
|
||
while ((*args != '\000') && !isspace (*args)) {args++;}
|
||
if (*args != '\000')
|
||
{
|
||
*args++ = '\000';
|
||
}
|
||
if (*arg != '-')
|
||
{
|
||
name = arg;
|
||
}
|
||
else if (STREQ (arg, "-mapped"))
|
||
{
|
||
mapped = 1;
|
||
}
|
||
else if (STREQ (arg, "-readnow"))
|
||
{
|
||
readnow = 1;
|
||
}
|
||
else
|
||
{
|
||
error ("unknown option `%s'", arg);
|
||
}
|
||
}
|
||
|
||
/* After picking off any options and the file name, args should be
|
||
left pointing at the remainder of the command line, which should
|
||
be the address expression to evaluate. */
|
||
|
||
if (name == NULL)
|
||
{
|
||
error ("add-symbol-file takes a file name");
|
||
}
|
||
name = tilde_expand (name);
|
||
make_cleanup (free, name);
|
||
|
||
if (*args != '\000')
|
||
{
|
||
text_addr = parse_and_eval_address (args);
|
||
}
|
||
else
|
||
{
|
||
target_link(name, &text_addr);
|
||
if (text_addr == (CORE_ADDR)-1)
|
||
error("Don't know how to get text start location for this file");
|
||
}
|
||
|
||
/* FIXME-32x64: Assumes text_addr fits in a long. */
|
||
if (!query ("add symbol table from file \"%s\" at text_addr = %s?\n",
|
||
name, local_hex_string ((unsigned long)text_addr)))
|
||
error ("Not confirmed.");
|
||
|
||
symbol_file_add (name, 0, text_addr, 0, mapped, readnow);
|
||
}
|
||
|
||
/* Re-read symbols if a symbol-file has changed. */
|
||
void
|
||
reread_symbols ()
|
||
{
|
||
struct objfile *objfile;
|
||
long new_modtime;
|
||
int reread_one = 0;
|
||
struct stat new_statbuf;
|
||
int res;
|
||
|
||
/* With the addition of shared libraries, this should be modified,
|
||
the load time should be saved in the partial symbol tables, since
|
||
different tables may come from different source files. FIXME.
|
||
This routine should then walk down each partial symbol table
|
||
and see if the symbol table that it originates from has been changed */
|
||
|
||
for (objfile = object_files; objfile; objfile = objfile->next) {
|
||
if (objfile->obfd) {
|
||
#ifdef IBM6000_TARGET
|
||
/* If this object is from a shared library, then you should
|
||
stat on the library name, not member name. */
|
||
|
||
if (objfile->obfd->my_archive)
|
||
res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
|
||
else
|
||
#endif
|
||
res = stat (objfile->name, &new_statbuf);
|
||
if (res != 0) {
|
||
/* FIXME, should use print_sys_errmsg but it's not filtered. */
|
||
printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
|
||
objfile->name);
|
||
continue;
|
||
}
|
||
new_modtime = new_statbuf.st_mtime;
|
||
if (new_modtime != objfile->mtime)
|
||
{
|
||
struct cleanup *old_cleanups;
|
||
struct section_offsets *offsets;
|
||
int num_offsets;
|
||
int section_offsets_size;
|
||
|
||
printf_filtered ("`%s' has changed; re-reading symbols.\n",
|
||
objfile->name);
|
||
|
||
/* There are various functions like symbol_file_add,
|
||
symfile_bfd_open, syms_from_objfile, etc., which might
|
||
appear to do what we want. But they have various other
|
||
effects which we *don't* want. So we just do stuff
|
||
ourselves. We don't worry about mapped files (for one thing,
|
||
any mapped file will be out of date). */
|
||
|
||
/* If we get an error, blow away this objfile (not sure if
|
||
that is the correct response for things like shared
|
||
libraries). */
|
||
old_cleanups = make_cleanup (free_objfile, objfile);
|
||
/* We need to do this whenever any symbols go away. */
|
||
make_cleanup (clear_symtab_users, 0);
|
||
|
||
/* Clean up any state BFD has sitting around. We don't need
|
||
to close the descriptor but BFD lacks a way of closing the
|
||
BFD without closing the descriptor. */
|
||
if (!bfd_close (objfile->obfd))
|
||
error ("Can't close BFD for %s.", objfile->name);
|
||
objfile->obfd = bfd_openr (objfile->name, gnutarget);
|
||
if (objfile->obfd == NULL)
|
||
error ("Can't open %s to read symbols.", objfile->name);
|
||
/* bfd_openr sets cacheable to true, which is what we want. */
|
||
if (!bfd_check_format (objfile->obfd, bfd_object))
|
||
error ("Can't read symbols from %s: %s.", objfile->name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
|
||
/* Save the offsets, we will nuke them with the rest of the
|
||
psymbol_obstack. */
|
||
num_offsets = objfile->num_sections;
|
||
section_offsets_size =
|
||
sizeof (struct section_offsets)
|
||
+ sizeof (objfile->section_offsets->offsets) * num_offsets;
|
||
offsets = (struct section_offsets *) alloca (section_offsets_size);
|
||
memcpy (offsets, objfile->section_offsets, section_offsets_size);
|
||
|
||
/* Nuke all the state that we will re-read. Much of the following
|
||
code which sets things to NULL really is necessary to tell
|
||
other parts of GDB that there is nothing currently there. */
|
||
|
||
/* FIXME: Do we have to free a whole linked list, or is this
|
||
enough? */
|
||
if (objfile->global_psymbols.list)
|
||
mfree (objfile->md, objfile->global_psymbols.list);
|
||
objfile->global_psymbols.list = NULL;
|
||
objfile->global_psymbols.next = NULL;
|
||
objfile->global_psymbols.size = 0;
|
||
if (objfile->static_psymbols.list)
|
||
mfree (objfile->md, objfile->static_psymbols.list);
|
||
objfile->static_psymbols.list = NULL;
|
||
objfile->static_psymbols.next = NULL;
|
||
objfile->static_psymbols.size = 0;
|
||
|
||
/* Free the obstacks for non-reusable objfiles */
|
||
obstack_free (&objfile -> psymbol_obstack, 0);
|
||
obstack_free (&objfile -> symbol_obstack, 0);
|
||
obstack_free (&objfile -> type_obstack, 0);
|
||
objfile->sections = NULL;
|
||
objfile->symtabs = NULL;
|
||
objfile->psymtabs = NULL;
|
||
objfile->free_psymtabs = NULL;
|
||
objfile->msymbols = NULL;
|
||
objfile->minimal_symbol_count= 0;
|
||
objfile->fundamental_types = NULL;
|
||
if (objfile -> sf != NULL)
|
||
{
|
||
(*objfile -> sf -> sym_finish) (objfile);
|
||
}
|
||
|
||
/* We never make this a mapped file. */
|
||
objfile -> md = NULL;
|
||
/* obstack_specify_allocation also initializes the obstack so
|
||
it is empty. */
|
||
obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0,
|
||
xmalloc, free);
|
||
obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0,
|
||
xmalloc, free);
|
||
obstack_specify_allocation (&objfile -> type_obstack, 0, 0,
|
||
xmalloc, free);
|
||
if (build_objfile_section_table (objfile))
|
||
{
|
||
error ("Can't find the file sections in `%s': %s",
|
||
objfile -> name, bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
/* We use the same section offsets as from last time. I'm not
|
||
sure whether that is always correct for shared libraries. */
|
||
objfile->section_offsets = (struct section_offsets *)
|
||
obstack_alloc (&objfile -> psymbol_obstack, section_offsets_size);
|
||
memcpy (objfile->section_offsets, offsets, section_offsets_size);
|
||
objfile->num_sections = num_offsets;
|
||
|
||
/* What the hell is sym_new_init for, anyway? The concept of
|
||
distinguishing between the main file and additional files
|
||
in this way seems rather dubious. */
|
||
if (objfile == symfile_objfile)
|
||
(*objfile->sf->sym_new_init) (objfile);
|
||
|
||
(*objfile->sf->sym_init) (objfile);
|
||
clear_complaints (1, 1);
|
||
/* The "mainline" parameter is a hideous hack; I think leaving it
|
||
zero is OK since dbxread.c also does what it needs to do if
|
||
objfile->global_psymbols.size is 0. */
|
||
(*objfile->sf->sym_read) (objfile, objfile->section_offsets, 0);
|
||
objfile -> flags |= OBJF_SYMS;
|
||
|
||
/* We're done reading the symbol file; finish off complaints. */
|
||
clear_complaints (0, 1);
|
||
|
||
/* Getting new symbols may change our opinion about what is
|
||
frameless. */
|
||
|
||
reinit_frame_cache ();
|
||
|
||
/* Discard cleanups as symbol reading was successful. */
|
||
discard_cleanups (old_cleanups);
|
||
|
||
/* If the mtime has changed between the time we set new_modtime
|
||
and now, we *want* this to be out of date, so don't call stat
|
||
again now. */
|
||
objfile->mtime = new_modtime;
|
||
reread_one = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (reread_one)
|
||
clear_symtab_users ();
|
||
}
|
||
|
||
|
||
enum language
|
||
deduce_language_from_filename (filename)
|
||
char *filename;
|
||
{
|
||
char *c;
|
||
|
||
if (0 == filename)
|
||
; /* Get default */
|
||
else if (0 == (c = strrchr (filename, '.')))
|
||
; /* Get default. */
|
||
else if (STREQ(c,".mod"))
|
||
return language_m2;
|
||
else if (STREQ(c,".c"))
|
||
return language_c;
|
||
else if (STREQ(c,".s"))
|
||
return language_asm;
|
||
else if (STREQ (c,".cc") || STREQ (c,".C") || STREQ (c, ".cxx")
|
||
|| STREQ (c, ".cpp"))
|
||
return language_cplus;
|
||
else if (STREQ (c,".ch") || STREQ (c,".c186") || STREQ (c,".c286"))
|
||
return language_chill;
|
||
|
||
return language_unknown; /* default */
|
||
}
|
||
|
||
/* allocate_symtab:
|
||
|
||
Allocate and partly initialize a new symbol table. Return a pointer
|
||
to it. error() if no space.
|
||
|
||
Caller must set these fields:
|
||
LINETABLE(symtab)
|
||
symtab->blockvector
|
||
symtab->dirname
|
||
symtab->free_code
|
||
symtab->free_ptr
|
||
initialize any EXTRA_SYMTAB_INFO
|
||
possibly free_named_symtabs (symtab->filename);
|
||
*/
|
||
|
||
struct symtab *
|
||
allocate_symtab (filename, objfile)
|
||
char *filename;
|
||
struct objfile *objfile;
|
||
{
|
||
register struct symtab *symtab;
|
||
|
||
symtab = (struct symtab *)
|
||
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symtab));
|
||
memset (symtab, 0, sizeof (*symtab));
|
||
symtab -> filename = obsavestring (filename, strlen (filename),
|
||
&objfile -> symbol_obstack);
|
||
symtab -> fullname = NULL;
|
||
symtab -> language = deduce_language_from_filename (filename);
|
||
|
||
/* Hook it to the objfile it comes from */
|
||
|
||
symtab -> objfile = objfile;
|
||
symtab -> next = objfile -> symtabs;
|
||
objfile -> symtabs = symtab;
|
||
|
||
#ifdef INIT_EXTRA_SYMTAB_INFO
|
||
INIT_EXTRA_SYMTAB_INFO (symtab);
|
||
#endif
|
||
|
||
return (symtab);
|
||
}
|
||
|
||
struct partial_symtab *
|
||
allocate_psymtab (filename, objfile)
|
||
char *filename;
|
||
struct objfile *objfile;
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
if (objfile -> free_psymtabs)
|
||
{
|
||
psymtab = objfile -> free_psymtabs;
|
||
objfile -> free_psymtabs = psymtab -> next;
|
||
}
|
||
else
|
||
psymtab = (struct partial_symtab *)
|
||
obstack_alloc (&objfile -> psymbol_obstack,
|
||
sizeof (struct partial_symtab));
|
||
|
||
memset (psymtab, 0, sizeof (struct partial_symtab));
|
||
psymtab -> filename = obsavestring (filename, strlen (filename),
|
||
&objfile -> psymbol_obstack);
|
||
psymtab -> symtab = NULL;
|
||
|
||
/* Hook it to the objfile it comes from */
|
||
|
||
psymtab -> objfile = objfile;
|
||
psymtab -> next = objfile -> psymtabs;
|
||
objfile -> psymtabs = psymtab;
|
||
|
||
return (psymtab);
|
||
}
|
||
|
||
|
||
/* Reset all data structures in gdb which may contain references to symbol
|
||
table date. */
|
||
|
||
void
|
||
clear_symtab_users ()
|
||
{
|
||
/* Someday, we should do better than this, by only blowing away
|
||
the things that really need to be blown. */
|
||
clear_value_history ();
|
||
clear_displays ();
|
||
clear_internalvars ();
|
||
breakpoint_re_set ();
|
||
set_default_breakpoint (0, 0, 0, 0);
|
||
current_source_symtab = 0;
|
||
current_source_line = 0;
|
||
clear_pc_function_cache ();
|
||
}
|
||
|
||
/* clear_symtab_users_once:
|
||
|
||
This function is run after symbol reading, or from a cleanup.
|
||
If an old symbol table was obsoleted, the old symbol table
|
||
has been blown away, but the other GDB data structures that may
|
||
reference it have not yet been cleared or re-directed. (The old
|
||
symtab was zapped, and the cleanup queued, in free_named_symtab()
|
||
below.)
|
||
|
||
This function can be queued N times as a cleanup, or called
|
||
directly; it will do all the work the first time, and then will be a
|
||
no-op until the next time it is queued. This works by bumping a
|
||
counter at queueing time. Much later when the cleanup is run, or at
|
||
the end of symbol processing (in case the cleanup is discarded), if
|
||
the queued count is greater than the "done-count", we do the work
|
||
and set the done-count to the queued count. If the queued count is
|
||
less than or equal to the done-count, we just ignore the call. This
|
||
is needed because reading a single .o file will often replace many
|
||
symtabs (one per .h file, for example), and we don't want to reset
|
||
the breakpoints N times in the user's face.
|
||
|
||
The reason we both queue a cleanup, and call it directly after symbol
|
||
reading, is because the cleanup protects us in case of errors, but is
|
||
discarded if symbol reading is successful. */
|
||
|
||
#if 0
|
||
/* FIXME: As free_named_symtabs is currently a big noop this function
|
||
is no longer needed. */
|
||
static void
|
||
clear_symtab_users_once PARAMS ((void));
|
||
|
||
static int clear_symtab_users_queued;
|
||
static int clear_symtab_users_done;
|
||
|
||
static void
|
||
clear_symtab_users_once ()
|
||
{
|
||
/* Enforce once-per-`do_cleanups'-semantics */
|
||
if (clear_symtab_users_queued <= clear_symtab_users_done)
|
||
return;
|
||
clear_symtab_users_done = clear_symtab_users_queued;
|
||
|
||
clear_symtab_users ();
|
||
}
|
||
#endif
|
||
|
||
/* Delete the specified psymtab, and any others that reference it. */
|
||
|
||
static void
|
||
cashier_psymtab (pst)
|
||
struct partial_symtab *pst;
|
||
{
|
||
struct partial_symtab *ps, *pprev = NULL;
|
||
int i;
|
||
|
||
/* Find its previous psymtab in the chain */
|
||
for (ps = pst->objfile->psymtabs; ps; ps = ps->next) {
|
||
if (ps == pst)
|
||
break;
|
||
pprev = ps;
|
||
}
|
||
|
||
if (ps) {
|
||
/* Unhook it from the chain. */
|
||
if (ps == pst->objfile->psymtabs)
|
||
pst->objfile->psymtabs = ps->next;
|
||
else
|
||
pprev->next = ps->next;
|
||
|
||
/* FIXME, we can't conveniently deallocate the entries in the
|
||
partial_symbol lists (global_psymbols/static_psymbols) that
|
||
this psymtab points to. These just take up space until all
|
||
the psymtabs are reclaimed. Ditto the dependencies list and
|
||
filename, which are all in the psymbol_obstack. */
|
||
|
||
/* We need to cashier any psymtab that has this one as a dependency... */
|
||
again:
|
||
for (ps = pst->objfile->psymtabs; ps; ps = ps->next) {
|
||
for (i = 0; i < ps->number_of_dependencies; i++) {
|
||
if (ps->dependencies[i] == pst) {
|
||
cashier_psymtab (ps);
|
||
goto again; /* Must restart, chain has been munged. */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If a symtab or psymtab for filename NAME is found, free it along
|
||
with any dependent breakpoints, displays, etc.
|
||
Used when loading new versions of object modules with the "add-file"
|
||
command. This is only called on the top-level symtab or psymtab's name;
|
||
it is not called for subsidiary files such as .h files.
|
||
|
||
Return value is 1 if we blew away the environment, 0 if not.
|
||
FIXME. The return valu appears to never be used.
|
||
|
||
FIXME. I think this is not the best way to do this. We should
|
||
work on being gentler to the environment while still cleaning up
|
||
all stray pointers into the freed symtab. */
|
||
|
||
int
|
||
free_named_symtabs (name)
|
||
char *name;
|
||
{
|
||
#if 0
|
||
/* FIXME: With the new method of each objfile having it's own
|
||
psymtab list, this function needs serious rethinking. In particular,
|
||
why was it ever necessary to toss psymtabs with specific compilation
|
||
unit filenames, as opposed to all psymtabs from a particular symbol
|
||
file? -- fnf
|
||
Well, the answer is that some systems permit reloading of particular
|
||
compilation units. We want to blow away any old info about these
|
||
compilation units, regardless of which objfiles they arrived in. --gnu. */
|
||
|
||
register struct symtab *s;
|
||
register struct symtab *prev;
|
||
register struct partial_symtab *ps;
|
||
struct blockvector *bv;
|
||
int blewit = 0;
|
||
|
||
/* We only wack things if the symbol-reload switch is set. */
|
||
if (!symbol_reloading)
|
||
return 0;
|
||
|
||
/* Some symbol formats have trouble providing file names... */
|
||
if (name == 0 || *name == '\0')
|
||
return 0;
|
||
|
||
/* Look for a psymtab with the specified name. */
|
||
|
||
again2:
|
||
for (ps = partial_symtab_list; ps; ps = ps->next) {
|
||
if (STREQ (name, ps->filename)) {
|
||
cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
|
||
goto again2; /* Must restart, chain has been munged */
|
||
}
|
||
}
|
||
|
||
/* Look for a symtab with the specified name. */
|
||
|
||
for (s = symtab_list; s; s = s->next)
|
||
{
|
||
if (STREQ (name, s->filename))
|
||
break;
|
||
prev = s;
|
||
}
|
||
|
||
if (s)
|
||
{
|
||
if (s == symtab_list)
|
||
symtab_list = s->next;
|
||
else
|
||
prev->next = s->next;
|
||
|
||
/* For now, queue a delete for all breakpoints, displays, etc., whether
|
||
or not they depend on the symtab being freed. This should be
|
||
changed so that only those data structures affected are deleted. */
|
||
|
||
/* But don't delete anything if the symtab is empty.
|
||
This test is necessary due to a bug in "dbxread.c" that
|
||
causes empty symtabs to be created for N_SO symbols that
|
||
contain the pathname of the object file. (This problem
|
||
has been fixed in GDB 3.9x). */
|
||
|
||
bv = BLOCKVECTOR (s);
|
||
if (BLOCKVECTOR_NBLOCKS (bv) > 2
|
||
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
|
||
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
|
||
{
|
||
complain (&oldsyms_complaint, name);
|
||
|
||
clear_symtab_users_queued++;
|
||
make_cleanup (clear_symtab_users_once, 0);
|
||
blewit = 1;
|
||
} else {
|
||
complain (&empty_symtab_complaint, name);
|
||
}
|
||
|
||
free_symtab (s);
|
||
}
|
||
else
|
||
{
|
||
/* It is still possible that some breakpoints will be affected
|
||
even though no symtab was found, since the file might have
|
||
been compiled without debugging, and hence not be associated
|
||
with a symtab. In order to handle this correctly, we would need
|
||
to keep a list of text address ranges for undebuggable files.
|
||
For now, we do nothing, since this is a fairly obscure case. */
|
||
;
|
||
}
|
||
|
||
/* FIXME, what about the minimal symbol table? */
|
||
return blewit;
|
||
#else
|
||
return (0);
|
||
#endif
|
||
}
|
||
|
||
/* Allocate and partially fill a partial symtab. It will be
|
||
completely filled at the end of the symbol list.
|
||
|
||
SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
|
||
is the address relative to which its symbols are (incremental) or 0
|
||
(normal). */
|
||
|
||
|
||
struct partial_symtab *
|
||
start_psymtab_common (objfile, section_offsets,
|
||
filename, textlow, global_syms, static_syms)
|
||
struct objfile *objfile;
|
||
struct section_offsets *section_offsets;
|
||
char *filename;
|
||
CORE_ADDR textlow;
|
||
struct partial_symbol *global_syms;
|
||
struct partial_symbol *static_syms;
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
psymtab = allocate_psymtab (filename, objfile);
|
||
psymtab -> section_offsets = section_offsets;
|
||
psymtab -> textlow = textlow;
|
||
psymtab -> texthigh = psymtab -> textlow; /* default */
|
||
psymtab -> globals_offset = global_syms - objfile -> global_psymbols.list;
|
||
psymtab -> statics_offset = static_syms - objfile -> static_psymbols.list;
|
||
return (psymtab);
|
||
}
|
||
|
||
/* Debugging versions of functions that are usually inline macros
|
||
(see symfile.h). */
|
||
|
||
#if !INLINE_ADD_PSYMBOL
|
||
|
||
/* Add a symbol with a long value to a psymtab.
|
||
Since one arg is a struct, we pass in a ptr and deref it (sigh). */
|
||
|
||
void
|
||
add_psymbol_to_list (name, namelength, namespace, class, list, val, language,
|
||
objfile)
|
||
char *name;
|
||
int namelength;
|
||
enum namespace namespace;
|
||
enum address_class class;
|
||
struct psymbol_allocation_list *list;
|
||
long val;
|
||
enum language language;
|
||
struct objfile *objfile;
|
||
{
|
||
register struct partial_symbol *psym;
|
||
register char *demangled_name;
|
||
|
||
if (list->next >= list->list + list->size)
|
||
{
|
||
extend_psymbol_list (list,objfile);
|
||
}
|
||
psym = list->next++;
|
||
|
||
SYMBOL_NAME (psym) =
|
||
(char *) obstack_alloc (&objfile->psymbol_obstack, namelength + 1);
|
||
memcpy (SYMBOL_NAME (psym), name, namelength);
|
||
SYMBOL_NAME (psym)[namelength] = '\0';
|
||
SYMBOL_VALUE (psym) = val;
|
||
SYMBOL_LANGUAGE (psym) = language;
|
||
PSYMBOL_NAMESPACE (psym) = namespace;
|
||
PSYMBOL_CLASS (psym) = class;
|
||
SYMBOL_INIT_DEMANGLED_NAME (psym, &objfile->psymbol_obstack);
|
||
}
|
||
|
||
/* Add a symbol with a CORE_ADDR value to a psymtab. */
|
||
|
||
void
|
||
add_psymbol_addr_to_list (name, namelength, namespace, class, list, val,
|
||
language, objfile)
|
||
char *name;
|
||
int namelength;
|
||
enum namespace namespace;
|
||
enum address_class class;
|
||
struct psymbol_allocation_list *list;
|
||
CORE_ADDR val;
|
||
enum language language;
|
||
struct objfile *objfile;
|
||
{
|
||
register struct partial_symbol *psym;
|
||
register char *demangled_name;
|
||
|
||
if (list->next >= list->list + list->size)
|
||
{
|
||
extend_psymbol_list (list,objfile);
|
||
}
|
||
psym = list->next++;
|
||
|
||
SYMBOL_NAME (psym) =
|
||
(char *) obstack_alloc (&objfile->psymbol_obstack, namelength + 1);
|
||
memcpy (SYMBOL_NAME (psym), name, namelength);
|
||
SYMBOL_NAME (psym)[namelength] = '\0';
|
||
SYMBOL_VALUE_ADDRESS (psym) = val;
|
||
SYMBOL_LANGUAGE (psym) = language;
|
||
PSYMBOL_NAMESPACE (psym) = namespace;
|
||
PSYMBOL_CLASS (psym) = class;
|
||
SYMBOL_INIT_DEMANGLED_NAME (psym, &objfile->psymbol_obstack);
|
||
}
|
||
|
||
#endif /* !INLINE_ADD_PSYMBOL */
|
||
|
||
|
||
void
|
||
_initialize_symfile ()
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
c = add_cmd ("symbol-file", class_files, symbol_file_command,
|
||
"Load symbol table from executable file FILE.\n\
|
||
The `file' command can also load symbol tables, as well as setting the file\n\
|
||
to execute.", &cmdlist);
|
||
c->completer = filename_completer;
|
||
|
||
c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
|
||
"Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
|
||
The second argument provides the starting address of the file's text.",
|
||
&cmdlist);
|
||
c->completer = filename_completer;
|
||
|
||
c = add_cmd ("load", class_files, load_command,
|
||
"Dynamically load FILE into the running program, and record its symbols\n\
|
||
for access from GDB.", &cmdlist);
|
||
c->completer = filename_completer;
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("symbol-reloading", class_support, var_boolean,
|
||
(char *)&symbol_reloading,
|
||
"Set dynamic symbol table reloading multiple times in one run.",
|
||
&setlist),
|
||
&showlist);
|
||
|
||
}
|