binutils-gdb/opcodes/arc-dis.c

1222 lines
28 KiB
C

/* Instruction printing code for the ARC.
Copyright 1994, 1995, 1997, 1998, 2000, 2001
Free Software Foundation, Inc.
Contributed by Doug Evans (dje@cygnus.com).
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <ansidecl.h>
#include <libiberty.h>
#include "dis-asm.h"
#include "opcode/arc.h"
#include "elf-bfd.h"
#include "elf/arc.h"
#include <string.h>
#include "opintl.h"
#include <ctype.h>
#include <stdarg.h>
#include "arc-dis.h"
#include "arc-ext.h"
#ifndef dbg
#define dbg (0)
#endif
#define BIT(word,n) ((word) & (1 << n))
#define BITS(word,s,e) (((word) << (31 - e)) >> (s + (31 - e)))
#define OPCODE(word) (BITS ((word), 27, 31))
#define FIELDA(word) (BITS ((word), 21, 26))
#define FIELDB(word) (BITS ((word), 15, 20))
#define FIELDC(word) (BITS ((word), 9, 14))
/* FIELD D is signed in all of its uses, so we make sure argument is
treated as signed for bit shifting purposes: */
#define FIELDD(word) (BITS (((signed int)word), 0, 8))
#define PUT_NEXT_WORD_IN(a) \
do \
{ \
if (is_limm == 1 && !NEXT_WORD (1)) \
mwerror (state, _("Illegal limm reference in last instruction!\n")); \
a = state->words[1]; \
} \
while (0)
#define CHECK_FLAG_COND_NULLIFY() \
do \
{ \
if (is_shimm == 0) \
{ \
flag = BIT (state->words[0], 8); \
state->nullifyMode = BITS (state->words[0], 5, 6); \
cond = BITS (state->words[0], 0, 4); \
} \
} \
while (0)
#define CHECK_COND() \
do \
{ \
if (is_shimm == 0) \
cond = BITS (state->words[0], 0, 4); \
} \
while (0)
#define CHECK_FIELD(field) \
do \
{ \
if (field == 62) \
{ \
is_limm++; \
field##isReg = 0; \
PUT_NEXT_WORD_IN (field); \
limm_value = field; \
} \
else if (field > 60) \
{ \
field##isReg = 0; \
is_shimm++; \
flag = (field == 61); \
field = FIELDD (state->words[0]); \
} \
} \
while (0)
#define CHECK_FIELD_A() \
do \
{ \
fieldA = FIELDA(state->words[0]); \
if (fieldA > 60) \
{ \
fieldAisReg = 0; \
fieldA = 0; \
} \
} \
while (0)
#define CHECK_FIELD_B() \
do \
{ \
fieldB = FIELDB (state->words[0]); \
CHECK_FIELD (fieldB); \
} \
while (0)
#define CHECK_FIELD_C() \
do \
{ \
fieldC = FIELDC (state->words[0]); \
CHECK_FIELD (fieldC); \
} \
while (0)
#define IS_SMALL(x) (((field##x) < 256) && ((field##x) > -257))
#define IS_REG(x) (field##x##isReg)
#define WRITE_FORMAT_LB_Rx_RB(x) WRITE_FORMAT(x,"[","]","","")
#define WRITE_FORMAT_x_COMMA_LB(x) WRITE_FORMAT(x,"",",[","",",[")
#define WRITE_FORMAT_COMMA_x_RB(x) WRITE_FORMAT(x,",","]",",","]")
#define WRITE_FORMAT_x_RB(x) WRITE_FORMAT(x,"","]","","]")
#define WRITE_FORMAT_COMMA_x(x) WRITE_FORMAT(x,",","",",","")
#define WRITE_FORMAT_x_COMMA(x) WRITE_FORMAT(x,"",",","",",")
#define WRITE_FORMAT_x(x) WRITE_FORMAT(x,"","","","")
#define WRITE_FORMAT(x,cb1,ca1,cb,ca) strcat (formatString, \
(IS_REG (x) ? cb1"%r"ca1 : \
usesAuxReg ? cb"%a"ca : \
IS_SMALL (x) ? cb"%d"ca : cb"%h"ca))
#define WRITE_FORMAT_RB() strcat (formatString, "]")
#define WRITE_COMMENT(str) (state->comm[state->commNum++] = (str))
#define WRITE_NOP_COMMENT() if (!fieldAisReg && !flag) WRITE_COMMENT ("nop");
#define NEXT_WORD(x) (offset += 4, state->words[x])
#define add_target(x) (state->targets[state->tcnt++] = (x))
static char comment_prefix[] = "\t; ";
static const char *
core_reg_name (state, val)
struct arcDisState * state;
int val;
{
if (state->coreRegName)
return (*state->coreRegName)(state->_this, val);
return 0;
}
static const char *
aux_reg_name (state, val)
struct arcDisState * state;
int val;
{
if (state->auxRegName)
return (*state->auxRegName)(state->_this, val);
return 0;
}
static const char *
cond_code_name (state, val)
struct arcDisState * state;
int val;
{
if (state->condCodeName)
return (*state->condCodeName)(state->_this, val);
return 0;
}
static const char *
instruction_name (state, op1, op2, flags)
struct arcDisState * state;
int op1;
int op2;
int * flags;
{
if (state->instName)
return (*state->instName)(state->_this, op1, op2, flags);
return 0;
}
static void
mwerror (state, msg)
struct arcDisState * state;
const char * msg;
{
if (state->err != 0)
(*state->err)(state->_this, (msg));
}
static const char *
post_address (state, addr)
struct arcDisState * state;
int addr;
{
static char id[3 * ARRAY_SIZE (state->addresses)];
int j, i = state->acnt;
if (i < ((int) ARRAY_SIZE (state->addresses)))
{
state->addresses[i] = addr;
++state->acnt;
j = i*3;
id[j+0] = '@';
id[j+1] = '0'+i;
id[j+2] = 0;
return id + j;
}
return "";
}
static void
my_sprintf (
struct arcDisState * state,
char * buf,
const char * format,
...)
{
char *bp;
const char *p;
int size, leading_zero, regMap[2];
long auxNum;
va_list ap;
va_start (ap, format);
bp = buf;
*bp = 0;
p = format;
auxNum = -1;
regMap[0] = 0;
regMap[1] = 0;
while (1)
switch (*p++)
{
case 0:
goto DOCOMM; /* (return) */
default:
*bp++ = p[-1];
break;
case '%':
size = 0;
leading_zero = 0;
RETRY: ;
switch (*p++)
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
/* size. */
size = p[-1] - '0';
if (size == 0)
leading_zero = 1; /* e.g. %08x */
while (*p >= '0' && *p <= '9')
{
size = size * 10 + *p - '0';
p++;
}
goto RETRY;
}
#define inc_bp() bp = bp + strlen (bp)
case 'h':
{
unsigned u = va_arg (ap, int);
/* Hex. We can change the format to 0x%08x in
one place, here, if we wish.
We add underscores for easy reading. */
if (u > 65536)
sprintf (bp, "0x%x_%04x", u >> 16, u & 0xffff);
else
sprintf (bp, "0x%x", u);
inc_bp ();
}
break;
case 'X': case 'x':
{
int val = va_arg (ap, int);
if (size != 0)
if (leading_zero)
sprintf (bp, "%0*x", size, val);
else
sprintf (bp, "%*x", size, val);
else
sprintf (bp, "%x", val);
inc_bp ();
}
break;
case 'd':
{
int val = va_arg (ap, int);
if (size != 0)
sprintf (bp, "%*d", size, val);
else
sprintf (bp, "%d", val);
inc_bp ();
}
break;
case 'r':
{
/* Register. */
int val = va_arg (ap, int);
#define REG2NAME(num, name) case num: sprintf (bp, ""name); \
regMap[(num < 32) ? 0 : 1] |= 1 << (num - ((num < 32) ? 0 : 32)); break;
switch (val)
{
REG2NAME (26, "gp");
REG2NAME (27, "fp");
REG2NAME (28, "sp");
REG2NAME (29, "ilink1");
REG2NAME (30, "ilink2");
REG2NAME (31, "blink");
REG2NAME (60, "lp_count");
default:
{
const char * ext;
ext = core_reg_name (state, val);
if (ext)
sprintf (bp, "%s", ext);
else
sprintf (bp,"r%d",val);
}
break;
}
inc_bp ();
} break;
case 'a':
{
/* Aux Register. */
int val = va_arg (ap, int);
#define AUXREG2NAME(num, name) case num: sprintf (bp,name); break;
switch (val)
{
AUXREG2NAME (0x0, "status");
AUXREG2NAME (0x1, "semaphore");
AUXREG2NAME (0x2, "lp_start");
AUXREG2NAME (0x3, "lp_end");
AUXREG2NAME (0x4, "identity");
AUXREG2NAME (0x5, "debug");
default:
{
const char *ext;
ext = aux_reg_name (state, val);
if (ext)
sprintf (bp, "%s", ext);
else
my_sprintf (state, bp, "%h", val);
}
break;
}
inc_bp ();
}
break;
case 's':
{
sprintf (bp, "%s", va_arg (ap, char *));
inc_bp ();
}
break;
default:
fprintf (stderr, "?? format %c\n", p[-1]);
break;
}
}
DOCOMM: *bp = 0;
}
static void
write_comments_(state, shimm, is_limm, limm_value)
struct arcDisState * state;
int shimm;
int is_limm;
long limm_value;
{
if (state->commentBuffer != 0)
{
int i;
if (is_limm)
{
const char *name = post_address (state, limm_value + shimm);
if (*name != 0)
WRITE_COMMENT (name);
}
for (i = 0; i < state->commNum; i++)
{
if (i == 0)
strcpy (state->commentBuffer, comment_prefix);
else
strcat (state->commentBuffer, ", ");
strncat (state->commentBuffer, state->comm[i], sizeof (state->commentBuffer));
}
}
}
#define write_comments2(x) write_comments_(state, x, is_limm, limm_value)
#define write_comments() write_comments2(0)
static const char *condName[] = {
/* 0..15. */
"" , "z" , "nz" , "p" , "n" , "c" , "nc" , "v" ,
"nv" , "gt" , "ge" , "lt" , "le" , "hi" , "ls" , "pnz"
};
static void
write_instr_name_(state, instrName, cond, condCodeIsPartOfName, flag, signExtend, addrWriteBack, directMem)
struct arcDisState * state;
const char * instrName;
int cond;
int condCodeIsPartOfName;
int flag;
int signExtend;
int addrWriteBack;
int directMem;
{
strcpy (state->instrBuffer, instrName);
if (cond > 0)
{
const char *cc = 0;
if (!condCodeIsPartOfName)
strcat (state->instrBuffer, ".");
if (cond < 16)
cc = condName[cond];
else
cc = cond_code_name (state, cond);
if (!cc)
cc = "???";
strcat (state->instrBuffer, cc);
}
if (flag)
strcat (state->instrBuffer, ".f");
switch (state->nullifyMode)
{
case BR_exec_always:
strcat (state->instrBuffer, ".d");
break;
case BR_exec_when_jump:
strcat (state->instrBuffer, ".jd");
break;
}
if (signExtend)
strcat (state->instrBuffer, ".x");
if (addrWriteBack)
strcat (state->instrBuffer, ".a");
if (directMem)
strcat (state->instrBuffer, ".di");
}
#define write_instr_name() \
do \
{ \
write_instr_name_(state, instrName,cond, condCodeIsPartOfName, \
flag, signExtend, addrWriteBack, directMem); \
formatString[0] = '\0'; \
} \
while (0)
enum {
op_LD0 = 0, op_LD1 = 1, op_ST = 2, op_3 = 3,
op_BC = 4, op_BLC = 5, op_LPC = 6, op_JC = 7,
op_ADD = 8, op_ADC = 9, op_SUB = 10, op_SBC = 11,
op_AND = 12, op_OR = 13, op_BIC = 14, op_XOR = 15
};
extern disassemble_info tm_print_insn_info;
static int
dsmOneArcInst (addr, state)
bfd_vma addr;
struct arcDisState * state;
{
int condCodeIsPartOfName = 0;
int decodingClass;
const char * instrName;
int repeatsOp = 0;
int fieldAisReg = 1;
int fieldBisReg = 1;
int fieldCisReg = 1;
int fieldA;
int fieldB;
int fieldC = 0;
int flag = 0;
int cond = 0;
int is_shimm = 0;
int is_limm = 0;
long limm_value = 0;
int signExtend = 0;
int addrWriteBack = 0;
int directMem = 0;
int is_linked = 0;
int offset = 0;
int usesAuxReg = 0;
int flags;
int ignoreFirstOpd;
char formatString[60];
state->instructionLen = 4;
state->nullifyMode = BR_exec_when_no_jump;
state->opWidth = 12;
state->isBranch = 0;
state->_mem_load = 0;
state->_ea_present = 0;
state->_load_len = 0;
state->ea_reg1 = no_reg;
state->ea_reg2 = no_reg;
state->_offset = 0;
if (! NEXT_WORD (0))
return 0;
state->_opcode = OPCODE (state->words[0]);
instrName = 0;
decodingClass = 0; /* default! */
repeatsOp = 0;
condCodeIsPartOfName=0;
state->commNum = 0;
state->tcnt = 0;
state->acnt = 0;
state->flow = noflow;
ignoreFirstOpd = 0;
if (state->commentBuffer)
state->commentBuffer[0] = '\0';
switch (state->_opcode)
{
case op_LD0:
switch (BITS (state->words[0],1,2))
{
case 0:
instrName = "ld";
state->_load_len = 4;
break;
case 1:
instrName = "ldb";
state->_load_len = 1;
break;
case 2:
instrName = "ldw";
state->_load_len = 2;
break;
default:
instrName = "??? (0[3])";
state->flow = invalid_instr;
break;
}
decodingClass = 5;
break;
case op_LD1:
if (BIT (state->words[0],13))
{
instrName = "lr";
decodingClass = 10;
}
else
{
switch (BITS (state->words[0],10,11))
{
case 0:
instrName = "ld";
state->_load_len = 4;
break;
case 1:
instrName = "ldb";
state->_load_len = 1;
break;
case 2:
instrName = "ldw";
state->_load_len = 2;
break;
default:
instrName = "??? (1[3])";
state->flow = invalid_instr;
break;
}
decodingClass = 6;
}
break;
case op_ST:
if (BIT (state->words[0],25))
{
instrName = "sr";
decodingClass = 8;
}
else
{
switch (BITS (state->words[0],22,23))
{
case 0:
instrName = "st";
break;
case 1:
instrName = "stb";
break;
case 2:
instrName = "stw";
break;
default:
instrName = "??? (2[3])";
state->flow = invalid_instr;
break;
}
decodingClass = 7;
}
break;
case op_3:
decodingClass = 1; /* default for opcode 3... */
switch (FIELDC (state->words[0]))
{
case 0:
instrName = "flag";
decodingClass = 2;
break;
case 1:
instrName = "asr";
break;
case 2:
instrName = "lsr";
break;
case 3:
instrName = "ror";
break;
case 4:
instrName = "rrc";
break;
case 5:
instrName = "sexb";
break;
case 6:
instrName = "sexw";
break;
case 7:
instrName = "extb";
break;
case 8:
instrName = "extw";
break;
case 0x3f:
{
decodingClass = 9;
switch( FIELDD (state->words[0]) )
{
case 0:
instrName = "brk";
break;
case 1:
instrName = "sleep";
break;
case 2:
instrName = "swi";
break;
default:
instrName = "???";
state->flow=invalid_instr;
break;
}
}
break;
/* ARC Extension Library Instructions
NOTE: We assume that extension codes are these instrs. */
default:
instrName = instruction_name (state,
state->_opcode,
FIELDC (state->words[0]),
& flags);
if (!instrName)
{
instrName = "???";
state->flow = invalid_instr;
}
if (flags & IGNORE_FIRST_OPD)
ignoreFirstOpd = 1;
break;
}
break;
case op_BC:
instrName = "b";
case op_BLC:
if (!instrName)
instrName = "bl";
case op_LPC:
if (!instrName)
instrName = "lp";
case op_JC:
if (!instrName)
{
if (BITS (state->words[0],9,9))
{
instrName = "jl";
is_linked = 1;
}
else
{
instrName = "j";
is_linked = 0;
}
}
condCodeIsPartOfName = 1;
decodingClass = ((state->_opcode == op_JC) ? 4 : 3);
state->isBranch = 1;
break;
case op_ADD:
case op_ADC:
case op_AND:
repeatsOp = (FIELDC (state->words[0]) == FIELDB (state->words[0]));
decodingClass = 0;
switch (state->_opcode)
{
case op_ADD:
instrName = (repeatsOp ? "asl" : "add");
break;
case op_ADC:
instrName = (repeatsOp ? "rlc" : "adc");
break;
case op_AND:
instrName = (repeatsOp ? "mov" : "and");
break;
}
break;
case op_SUB: instrName = "sub";
break;
case op_SBC: instrName = "sbc";
break;
case op_OR: instrName = "or";
break;
case op_BIC: instrName = "bic";
break;
case op_XOR:
if (state->words[0] == 0x7fffffff)
{
/* nop encoded as xor -1, -1, -1 */
instrName = "nop";
decodingClass = 9;
}
else
instrName = "xor";
break;
default:
instrName = instruction_name (state,state->_opcode,0,&flags);
/* if (instrName) printf("FLAGS=0x%x\n", flags); */
if (!instrName)
{
instrName = "???";
state->flow=invalid_instr;
}
if (flags & IGNORE_FIRST_OPD)
ignoreFirstOpd = 1;
break;
}
fieldAisReg = fieldBisReg = fieldCisReg = 1; /* Assume regs for now. */
flag = cond = is_shimm = is_limm = 0;
state->nullifyMode = BR_exec_when_no_jump; /* 0 */
signExtend = addrWriteBack = directMem = 0;
usesAuxReg = 0;
switch (decodingClass)
{
case 0:
CHECK_FIELD_A ();
CHECK_FIELD_B ();
if (!repeatsOp)
CHECK_FIELD_C ();
CHECK_FLAG_COND_NULLIFY ();
write_instr_name ();
if (!ignoreFirstOpd)
{
WRITE_FORMAT_x (A);
WRITE_FORMAT_COMMA_x (B);
if (!repeatsOp)
WRITE_FORMAT_COMMA_x (C);
WRITE_NOP_COMMENT ();
my_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB, fieldC);
}
else
{
WRITE_FORMAT_x (B);
if (!repeatsOp)
WRITE_FORMAT_COMMA_x (C);
my_sprintf (state, state->operandBuffer, formatString, fieldB, fieldC);
}
write_comments ();
break;
case 1:
CHECK_FIELD_A ();
CHECK_FIELD_B ();
CHECK_FLAG_COND_NULLIFY ();
write_instr_name ();
if (!ignoreFirstOpd)
{
WRITE_FORMAT_x (A);
WRITE_FORMAT_COMMA_x (B);
WRITE_NOP_COMMENT ();
my_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB);
}
else
{
WRITE_FORMAT_x (B);
my_sprintf (state, state->operandBuffer, formatString, fieldB);
}
write_comments ();
break;
case 2:
CHECK_FIELD_B ();
CHECK_FLAG_COND_NULLIFY ();
flag = 0; /* this is the FLAG instruction -- it's redundant */
write_instr_name ();
WRITE_FORMAT_x (B);
my_sprintf (state, state->operandBuffer, formatString, fieldB);
write_comments ();
break;
case 3:
fieldA = BITS (state->words[0],7,26) << 2;
fieldA = (fieldA << 10) >> 10; /* make it signed */
fieldA += addr + 4;
CHECK_FLAG_COND_NULLIFY ();
flag = 0;
write_instr_name ();
/* This address could be a label we know. Convert it. */
if (state->_opcode != op_LPC /* LP */)
{
add_target (fieldA); /* For debugger. */
state->flow = state->_opcode == op_BLC /* BL */
? direct_call
: direct_jump;
/* indirect calls are achieved by "lr blink,[status];
lr dest<- func addr; j [dest]" */
}
strcat (formatString, "%s"); /* address/label name */
my_sprintf (state, state->operandBuffer, formatString, post_address (state, fieldA));
write_comments ();
break;
case 4:
/* For op_JC -- jump to address specified.
Also covers jump and link--bit 9 of the instr. word
selects whether linked, thus "is_linked" is set above. */
fieldA = 0;
CHECK_FIELD_B ();
CHECK_FLAG_COND_NULLIFY ();
if (!fieldBisReg)
{
fieldAisReg = 0;
fieldA = (fieldB >> 25) & 0x7F; /* flags */
fieldB = (fieldB & 0xFFFFFF) << 2;
state->flow = is_linked ? direct_call : direct_jump;
add_target (fieldB);
/* screwy JLcc requires .jd mode to execute correctly
* but we pretend it is .nd (no delay slot). */
if (is_linked && state->nullifyMode == BR_exec_when_jump)
state->nullifyMode = BR_exec_when_no_jump;
}
else
{
state->flow = is_linked ? indirect_call : indirect_jump;
/* We should also treat this as indirect call if NOT linked
* but the preceding instruction was a "lr blink,[status]"
* and we have a delay slot with "add blink,blink,2".
* For now we can't detect such. */
state->register_for_indirect_jump = fieldB;
}
write_instr_name ();
strcat (formatString,
IS_REG (B) ? "[%r]" : "%s"); /* address/label name */
if (fieldA != 0)
{
fieldAisReg = 0;
WRITE_FORMAT_COMMA_x (A);
}
if (IS_REG (B))
my_sprintf (state, state->operandBuffer, formatString, fieldB, fieldA);
else
my_sprintf (state, state->operandBuffer, formatString,
post_address (state, fieldB), fieldA);
write_comments ();
break;
case 5:
/* LD instruction.
B and C can be regs, or one (both?) can be limm. */
CHECK_FIELD_A ();
CHECK_FIELD_B ();
CHECK_FIELD_C ();
if (dbg)
printf ("5:b reg %d %d c reg %d %d \n",
fieldBisReg,fieldB,fieldCisReg,fieldC);
state->_offset = 0;
state->_ea_present = 1;
if (fieldBisReg)
state->ea_reg1 = fieldB;
else
state->_offset += fieldB;
if (fieldCisReg)
state->ea_reg2 = fieldC;
else
state->_offset += fieldC;
state->_mem_load = 1;
directMem = BIT (state->words[0],5);
addrWriteBack = BIT (state->words[0],3);
signExtend = BIT (state->words[0],0);
write_instr_name ();
WRITE_FORMAT_x_COMMA_LB(A);
if (fieldBisReg || fieldB != 0)
WRITE_FORMAT_x_COMMA (B);
else
fieldB = fieldC;
WRITE_FORMAT_x_RB (C);
my_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB, fieldC);
write_comments ();
break;
case 6:
/* LD instruction. */
CHECK_FIELD_B ();
CHECK_FIELD_A ();
fieldC = FIELDD (state->words[0]);
if (dbg)
printf ("6:b reg %d %d c 0x%x \n",
fieldBisReg, fieldB, fieldC);
state->_ea_present = 1;
state->_offset = fieldC;
state->_mem_load = 1;
if (fieldBisReg)
state->ea_reg1 = fieldB;
/* field B is either a shimm (same as fieldC) or limm (different!)
Say ea is not present, so only one of us will do the name lookup. */
else
state->_offset += fieldB, state->_ea_present = 0;
directMem = BIT (state->words[0],14);
addrWriteBack = BIT (state->words[0],12);
signExtend = BIT (state->words[0],9);
write_instr_name ();
WRITE_FORMAT_x_COMMA_LB (A);
if (!fieldBisReg)
{
fieldB = state->_offset;
WRITE_FORMAT_x_RB (B);
}
else
{
WRITE_FORMAT_x (B);
if (fieldC != 0 && !BIT (state->words[0],13))
{
fieldCisReg = 0;
WRITE_FORMAT_COMMA_x_RB (C);
}
else
WRITE_FORMAT_RB ();
}
my_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB, fieldC);
write_comments ();
break;
case 7:
/* ST instruction. */
CHECK_FIELD_B();
CHECK_FIELD_C();
fieldA = FIELDD(state->words[0]); /* shimm */
/* [B,A offset] */
if (dbg) printf("7:b reg %d %x off %x\n",
fieldBisReg,fieldB,fieldA);
state->_ea_present = 1;
state->_offset = fieldA;
if (fieldBisReg)
state->ea_reg1 = fieldB;
/* field B is either a shimm (same as fieldA) or limm (different!)
Say ea is not present, so only one of us will do the name lookup.
(for is_limm we do the name translation here). */
else
state->_offset += fieldB, state->_ea_present = 0;
directMem = BIT(state->words[0],26);
addrWriteBack = BIT(state->words[0],24);
write_instr_name();
WRITE_FORMAT_x_COMMA_LB(C);
if (!fieldBisReg)
{
fieldB = state->_offset;
WRITE_FORMAT_x_RB(B);
}
else
{
WRITE_FORMAT_x(B);
if (fieldBisReg && fieldA != 0)
{
fieldAisReg = 0;
WRITE_FORMAT_COMMA_x_RB(A);
}
else
WRITE_FORMAT_RB();
}
my_sprintf (state, state->operandBuffer, formatString, fieldC, fieldB, fieldA);
write_comments2(fieldA);
break;
case 8:
/* SR instruction */
CHECK_FIELD_B();
CHECK_FIELD_C();
write_instr_name();
WRITE_FORMAT_x_COMMA_LB(C);
/* Try to print B as an aux reg if it is not a core reg. */
usesAuxReg = 1;
WRITE_FORMAT_x(B);
WRITE_FORMAT_RB();
my_sprintf (state, state->operandBuffer, formatString, fieldC, fieldB);
write_comments();
break;
case 9:
write_instr_name();
state->operandBuffer[0] = '\0';
break;
case 10:
/* LR instruction */
CHECK_FIELD_A();
CHECK_FIELD_B();
write_instr_name();
WRITE_FORMAT_x_COMMA_LB(A);
/* Try to print B as an aux reg if it is not a core reg. */
usesAuxReg = 1;
WRITE_FORMAT_x(B);
WRITE_FORMAT_RB();
my_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB);
write_comments();
break;
case 11:
CHECK_COND();
write_instr_name();
state->operandBuffer[0] = '\0';
break;
default:
mwerror (state, "Bad decoding class in ARC disassembler");
break;
}
state->_cond = cond;
return state->instructionLen = offset;
}
/* Returns the name the user specified core extension register. */
static const char *
_coreRegName(arg, regval)
void * arg ATTRIBUTE_UNUSED;
int regval;
{
return arcExtMap_coreRegName (regval);
}
/* Returns the name the user specified AUX extension register. */
static const char *
_auxRegName(void *_this ATTRIBUTE_UNUSED, int regval)
{
return arcExtMap_auxRegName(regval);
}
/* Returns the name the user specified condition code name. */
static const char *
_condCodeName(void *_this ATTRIBUTE_UNUSED, int regval)
{
return arcExtMap_condCodeName(regval);
}
/* Returns the name the user specified extension instruction. */
static const char *
_instName (void *_this ATTRIBUTE_UNUSED, int majop, int minop, int *flags)
{
return arcExtMap_instName(majop, minop, flags);
}
/* Decode an instruction returning the size of the instruction
in bytes or zero if unrecognized. */
static int
decodeInstr (address, info)
bfd_vma address; /* Address of this instruction. */
disassemble_info * info;
{
int status;
bfd_byte buffer[4];
struct arcDisState s; /* ARC Disassembler state */
void *stream = info->stream; /* output stream */
fprintf_ftype func = info->fprintf_func;
int bytes;
memset (&s, 0, sizeof(struct arcDisState));
/* read first instruction */
status = (*info->read_memory_func) (address, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, address, info);
return 0;
}
if (info->endian == BFD_ENDIAN_LITTLE)
s.words[0] = bfd_getl32(buffer);
else
s.words[0] = bfd_getb32(buffer);
/* always read second word in case of limm */
/* we ignore the result since last insn may not have a limm */
status = (*info->read_memory_func) (address + 4, buffer, 4, info);
if (info->endian == BFD_ENDIAN_LITTLE)
s.words[1] = bfd_getl32(buffer);
else
s.words[1] = bfd_getb32(buffer);
s._this = &s;
s.coreRegName = _coreRegName;
s.auxRegName = _auxRegName;
s.condCodeName = _condCodeName;
s.instName = _instName;
/* disassemble */
bytes = dsmOneArcInst(address, (void *)&s);
/* display the disassembly instruction */
(*func) (stream, "%08x ", s.words[0]);
(*func) (stream, " ");
(*func) (stream, "%-10s ", s.instrBuffer);
if (__TRANSLATION_REQUIRED(s))
{
bfd_vma addr = s.addresses[s.operandBuffer[1] - '0'];
(*info->print_address_func) ((bfd_vma) addr, info);
(*func) (stream, "\n");
}
else
(*func) (stream, "%s",s.operandBuffer);
return s.instructionLen;
}
/* Return the print_insn function to use.
Side effect: load (possibly empty) extension section */
disassembler_ftype
arc_get_disassembler (void *ptr)
{
if (ptr)
build_ARC_extmap (ptr);
return decodeInstr;
}