mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
8e9db26e29
This patch fixes this on x86 Linux: (gdb) watch *buf@2 Hardware watchpoint 8: *buf@2 (gdb) si 0x00000000004005a7 34 for (i = 0; i < 100000; i++); /* stepi line */ (gdb) del Delete all breakpoints? (y or n) y (gdb) watch *(buf+1)@1 Hardware watchpoint 9: *(buf+1)@1 (gdb) si 0x00000000004005a7 in main () at ../../../src/gdb/testsuite/gdb.base/watchpoint-reuse-slot.c:34 34 for (i = 0; i < 100000; i++); /* stepi line */ Couldn't write debug register: Invalid argument. (gdb) In the example above the debug registers are being switched from this state: CONTROL (DR7): 0000000000050101 STATUS (DR6): 0000000000000000 DR0: addr=0x0000000000601040, ref.count=1 DR1: addr=0x0000000000000000, ref.count=0 DR2: addr=0x0000000000000000, ref.count=0 DR3: addr=0x0000000000000000, ref.count=0 to this: CONTROL (DR7): 0000000000010101 STATUS (DR6): 0000000000000000 DR0: addr=0x0000000000601041, ref.count=1 DR1: addr=0x0000000000000000, ref.count=0 DR2: addr=0x0000000000000000, ref.count=0 DR3: addr=0x0000000000000000, ref.count=0 That is, before, DR7 was setup for watching a 2 byte region starting at what's in DR0 (0x601040). And after, DR7 is setup for watching a 1 byte region starting at what's in DR0 (0x601041). We always write DR0..DR3 before DR7, because if we enable a slot's bits in DR7, you need to have already written the corresponding DR0..DR3 registers -- the kernel rejects the DR7 write with EINVAL otherwise. The error shown above is the opposite scenario. When we try to write 0x601041 to DR0, DR7's bits still indicate intent of watching a 2-byte region. That DR0/DR7 combination is invalid, because 0x601041 is unaligned. To watch two bytes, we'd have to use two slots. So the kernel errors out with EINVAL. Fix this by always first clearing DR7, then writing DR0..DR3, and then setting DR7's bits. A little optimization -- if we're disabling the last watchpoint, then we can clear DR7 just once. The changes to nat/i386-dregs.c make that easier to detect, and as bonus, they make it a little easier to make sense of DR7 in the debug logs, as we no longer need to remember we're seeing stale bits. Tested on x86_64 Fedora 20, native and GDBserver. This adds an exhaustive test that switches between many different combinations of watchpoint types and addresses and widths. gdb/ 2014-06-23 Pedro Alves <palves@redhat.com> * amd64-linux-nat.c (amd64_linux_prepare_to_resume): Clear DR_CONTROL before setting DR0..DR3. * i386-linux-nat.c (i386_linux_prepare_to_resume): Likewise. * nat/i386-dregs.c (i386_remove_aligned_watchpoint): Clear all bits of DR_CONTROL related to the debug register slot being disabled. If all slots are vacant, clear local slowdown as well, and assert DR_CONTROL is 0. gdb/gdbserver/ 2014-06-23 Pedro Alves <palves@redhat.com> * linux-x86-low.c (x86_linux_prepare_to_resume): Clear DR_CONTROL before setting DR0..DR3. gdb/testsuite/ 2014-06-23 Pedro Alves <palves@redhat.com> * gdb.base/watchpoint-reuse-slot.c: New file. * gdb.base/watchpoint-reuse-slot.exp: New file. |
||
---|---|---|
.. | ||
gdb_thread_db.h | ||
glibc_thread_db.h | ||
i386-cpuid.h | ||
i386-dregs.c | ||
i386-dregs.h | ||
i386-gcc-cpuid.h | ||
linux-btrace.c | ||
linux-btrace.h | ||
linux-nat.h | ||
linux-osdata.c | ||
linux-osdata.h | ||
linux-procfs.c | ||
linux-procfs.h | ||
linux-ptrace.c | ||
linux-ptrace.h | ||
linux-waitpid.c | ||
linux-waitpid.h | ||
mips-linux-watch.c | ||
mips-linux-watch.h |