binutils-gdb/libctf/ctf-decl.c
Nick Alcock 139633c307 libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file".  Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago.  So the term "CTF file"
refers to something that is never a file!  This is at best confusing.

The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.

So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead.  Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.

Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).

binutils/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
	(dump_ctf_archive_member): Likewise.
	(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
	* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
	(dump_ctf_archive_member): Likewise.
	(dump_section_as_ctf): Likewise.  Use ctf_dict_close, not
	ctf_file_close.

gdb/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
	(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.

include/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-api.h (ctf_file_t): Rename to...
	(ctf_dict_t): ... this.  Keep ctf_file_t around for compatibility.
	(struct ctf_file): Likewise rename to...
	(struct ctf_dict): ... this.
	(ctf_file_close): Rename to...
	(ctf_dict_close): ... this, keeping compatibility function.
	(ctf_parent_file): Rename to...
	(ctf_parent_dict): ... this, keeping compatibility function.
	All callers adjusted.
	* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
	(struct ctf_archive) <ctfa_nfiles>: Rename to...
	<ctfa_ndicts>: ... this.

ld/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ldlang.c (ctf_output): This is a ctf_dict_t now.
	(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
	(ldlang_open_ctf): Adjust comment.
	(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
	* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
	ctf_dict_t.  Change opaque declaration accordingly.
	* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
	* ldemul.h (examine_strtab_for_ctf): Likewise.
	(ldemul_examine_strtab_for_ctf): Likewise.
	* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.

libctf/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
	adjusted.
	(ctf_fileops): Rename to...
	(ctf_dictops): ... this.
	(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
	<cd_id_to_dict_t>: ... this.
	(ctf_file_t): Fix outdated comment.
	<ctf_fileops>: Rename to...
	<ctf_dictops>: ... this.
	(struct ctf_archive_internal) <ctfi_file>: Rename to...
	<ctfi_dict>: ... this.
	* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
	Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
	Rename ctf_file_close to ctf_dict_close.  All users adjusted.
	* ctf-create.c: Likewise.  Refer to CTF dicts, not CTF containers.
	(ctf_bundle_t) <ctb_file>: Rename to...
	<ctb_dict): ... this.
	* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
	* ctf-dedup.c: Likewise.  Rename ctf_file_close to
	ctf_dict_close. Refer to CTF dicts, not CTF containers.
	* ctf-dump.c: Likewise.
	* ctf-error.c: Likewise.
	* ctf-hash.c: Likewise.
	* ctf-inlines.h: Likewise.
	* ctf-labels.c: Likewise.
	* ctf-link.c: Likewise.
	* ctf-lookup.c: Likewise.
	* ctf-open-bfd.c: Likewise.
	* ctf-string.c: Likewise.
	* ctf-subr.c: Likewise.
	* ctf-types.c: Likewise.
	* ctf-util.c: Likewise.
	* ctf-open.c: Likewise.
	(ctf_file_close): Rename to...
	(ctf_dict_close): ...this.
	(ctf_file_close): New trivial wrapper around ctf_dict_close, for
	compatibility.
	(ctf_parent_file): Rename to...
	(ctf_parent_dict): ... this.
	(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
	compatibility.
	* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 13:34:04 +00:00

203 lines
5.2 KiB
C

/* C declarator syntax glue.
Copyright (C) 2019-2020 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
/* CTF Declaration Stack
In order to implement ctf_type_name(), we must convert a type graph back
into a C type declaration. Unfortunately, a type graph represents a storage
class ordering of the type whereas a type declaration must obey the C rules
for operator precedence, and the two orderings are frequently in conflict.
For example, consider these CTF type graphs and their C declarations:
CTF_K_POINTER -> CTF_K_FUNCTION -> CTF_K_INTEGER : int (*)()
CTF_K_POINTER -> CTF_K_ARRAY -> CTF_K_INTEGER : int (*)[]
In each case, parentheses are used to raise operator * to higher lexical
precedence, so the string form of the C declaration cannot be constructed by
walking the type graph links and forming the string from left to right.
The functions in this file build a set of stacks from the type graph nodes
corresponding to the C operator precedence levels in the appropriate order.
The code in ctf_type_name() can then iterate over the levels and nodes in
lexical precedence order and construct the final C declaration string. */
#include <ctf-impl.h>
#include <string.h>
void
ctf_decl_init (ctf_decl_t *cd)
{
int i;
memset (cd, 0, sizeof (ctf_decl_t));
for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++)
cd->cd_order[i] = CTF_PREC_BASE - 1;
cd->cd_qualp = CTF_PREC_BASE;
cd->cd_ordp = CTF_PREC_BASE;
}
void
ctf_decl_fini (ctf_decl_t *cd)
{
ctf_decl_node_t *cdp, *ndp;
int i;
for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++)
{
for (cdp = ctf_list_next (&cd->cd_nodes[i]); cdp != NULL; cdp = ndp)
{
ndp = ctf_list_next (cdp);
free (cdp);
}
}
free (cd->cd_buf);
}
void
ctf_decl_push (ctf_decl_t *cd, ctf_dict_t *fp, ctf_id_t type)
{
ctf_decl_node_t *cdp;
ctf_decl_prec_t prec;
uint32_t kind, n = 1;
int is_qual = 0;
const ctf_type_t *tp;
ctf_arinfo_t ar;
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
{
cd->cd_err = fp->ctf_errno;
return;
}
switch (kind = LCTF_INFO_KIND (fp, tp->ctt_info))
{
case CTF_K_ARRAY:
(void) ctf_array_info (fp, type, &ar);
ctf_decl_push (cd, fp, ar.ctr_contents);
n = ar.ctr_nelems;
prec = CTF_PREC_ARRAY;
break;
case CTF_K_TYPEDEF:
if (ctf_strptr (fp, tp->ctt_name)[0] == '\0')
{
ctf_decl_push (cd, fp, tp->ctt_type);
return;
}
prec = CTF_PREC_BASE;
break;
case CTF_K_FUNCTION:
ctf_decl_push (cd, fp, tp->ctt_type);
prec = CTF_PREC_FUNCTION;
break;
case CTF_K_POINTER:
ctf_decl_push (cd, fp, tp->ctt_type);
prec = CTF_PREC_POINTER;
break;
case CTF_K_SLICE:
ctf_decl_push (cd, fp, ctf_type_reference (fp, type));
prec = CTF_PREC_BASE;
break;
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
ctf_decl_push (cd, fp, tp->ctt_type);
prec = cd->cd_qualp;
is_qual++;
break;
default:
prec = CTF_PREC_BASE;
}
if ((cdp = malloc (sizeof (ctf_decl_node_t))) == NULL)
{
cd->cd_err = EAGAIN;
return;
}
cdp->cd_type = type;
cdp->cd_kind = kind;
cdp->cd_n = n;
if (ctf_list_next (&cd->cd_nodes[prec]) == NULL)
cd->cd_order[prec] = cd->cd_ordp++;
/* Reset cd_qualp to the highest precedence level that we've seen so
far that can be qualified (CTF_PREC_BASE or CTF_PREC_POINTER). */
if (prec > cd->cd_qualp && prec < CTF_PREC_ARRAY)
cd->cd_qualp = prec;
/* C array declarators are ordered inside out so prepend them. Also by
convention qualifiers of base types precede the type specifier (e.g.
const int vs. int const) even though the two forms are equivalent. */
if (kind == CTF_K_ARRAY || (is_qual && prec == CTF_PREC_BASE))
ctf_list_prepend (&cd->cd_nodes[prec], cdp);
else
ctf_list_append (&cd->cd_nodes[prec], cdp);
}
_libctf_printflike_ (2, 3)
void ctf_decl_sprintf (ctf_decl_t *cd, const char *format, ...)
{
va_list ap;
char *str;
int n;
if (cd->cd_enomem)
return;
va_start (ap, format);
n = vasprintf (&str, format, ap);
va_end (ap);
if (n > 0)
{
char *newbuf;
if ((newbuf = ctf_str_append (cd->cd_buf, str)) != NULL)
cd->cd_buf = newbuf;
}
/* Sticky error condition. */
if (n < 0 || cd->cd_buf == NULL)
{
free (cd->cd_buf);
cd->cd_buf = NULL;
cd->cd_enomem = 1;
}
free (str);
}
char *ctf_decl_buf (ctf_decl_t *cd)
{
char *buf = cd->cd_buf;
cd->cd_buf = NULL;
return buf;
}