binutils-gdb/gdb/infptrace.c
Andrew Cagney ee21b650be 2004-09-29 Andrew Cagney <cagney@gnu.org>
* infptrace.c (ptrace_wait): Mention problem with HPUX.
	(kill_inferior): Inline ptrace_wait call.
	* linux-nat.c (kill_inferior): Inline ptrace_wait call.
	* inftarg.c (child_wait): Inline ptrace_wait call.
2004-09-29 15:55:55 +00:00

590 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Low level Unix child interface to ptrace, for GDB when running under Unix.
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1998, 1999, 2000, 2001, 2002, 2004
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "command.h"
#include "frame.h"
#include "gdbcore.h"
#include "inferior.h"
#include "regcache.h"
#include "target.h"
#include "gdb_assert.h"
#include "gdb_wait.h"
#include "gdb_string.h"
#include <sys/param.h>
#include "gdb_dirent.h"
#include <signal.h>
#include <sys/ioctl.h>
#include "gdb_ptrace.h"
#ifdef HAVE_SYS_FILE_H
#include <sys/file.h>
#endif
#if !defined (FETCH_INFERIOR_REGISTERS)
#include <sys/user.h> /* Probably need to poke the user structure */
#endif /* !FETCH_INFERIOR_REGISTERS */
#if !defined (CHILD_XFER_MEMORY)
static void udot_info (char *, int);
#endif
void _initialize_infptrace (void);
/* This function simply calls ptrace with the given arguments.
It exists so that all calls to ptrace are isolated in this
machine-dependent file. */
int
call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
{
int pt_status = 0;
#if 0
int saved_errno;
printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
request, pid, addr, data);
#endif
#if defined(PT_SETTRC)
/* If the parent can be told to attach to us, try to do it. */
if (request == PT_SETTRC)
{
errno = 0;
#ifndef PTRACE_TYPE_ARG5
pt_status = ptrace (PT_SETTRC, pid, addr, data);
#else
/* Deal with HPUX 8.0 braindamage. We never use the
calls which require the fifth argument. */
pt_status = ptrace (PT_SETTRC, pid, addr, data, 0);
#endif
if (errno)
perror_with_name ("ptrace");
#if 0
printf (" = %d\n", pt_status);
#endif
if (pt_status < 0)
return pt_status;
else
return parent_attach_all (pid, addr, data);
}
#endif
#if defined(PT_CONTIN1)
/* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
signals. If it's available, use it. */
if (request == PT_CONTINUE)
request = PT_CONTIN1;
#endif
#if defined(PT_SINGLE1)
/* On HPUX, PT_SINGLE1 is a form of step that preserves pending
signals. If it's available, use it. */
if (request == PT_STEP)
request = PT_SINGLE1;
#endif
#if 0
saved_errno = errno;
errno = 0;
#endif
#ifndef PTRACE_TYPE_ARG5
pt_status = ptrace (request, pid, addr, data);
#else
/* Deal with HPUX 8.0 braindamage. We never use the
calls which require the fifth argument. */
pt_status = ptrace (request, pid, addr, data, 0);
#endif
#if 0
if (errno)
printf (" [errno = %d]", errno);
errno = saved_errno;
printf (" = 0x%x\n", pt_status);
#endif
return pt_status;
}
#if defined (DEBUG_PTRACE) || defined (PTRACE_TYPE_ARG5)
/* For the rest of the file, use an extra level of indirection */
/* This lets us breakpoint usefully on call_ptrace. */
#define ptrace call_ptrace
#endif
/* Wait for a process to finish, possibly running a target-specific
hook before returning. */
/* NOTE: cagney: 2004-09-29: Dependant on the native configuration,
"hppah-nat.c" may either call this or infttrace.c's implementation
of ptrace_wait. See "hppahpux.mh". */
int
ptrace_wait (ptid_t ptid, int *status)
{
int wstate;
wstate = wait (status);
return wstate;
}
#ifndef DEPRECATED_KILL_INFERIOR
/* NOTE: cagney/2004-09-12: Instead of definining this macro, code
should call inf_ptrace_target to get a basic ptrace target and then
locally update any necessary methods. See ppcnbsd-nat.c. */
void
kill_inferior (void)
{
int status;
int pid = PIDGET (inferior_ptid);
if (pid == 0)
return;
/* This once used to call "kill" to kill the inferior just in case
the inferior was still running. As others have noted in the past
(kingdon) there shouldn't be any way to get here if the inferior
is still running -- else there's a major problem elsewere in gdb
and it needs to be fixed.
The kill call causes problems under hpux10, so it's been removed;
if this causes problems we'll deal with them as they arise. */
ptrace (PT_KILL, pid, (PTRACE_TYPE_ARG3) 0, 0);
wait (status);
target_mourn_inferior ();
}
#endif /* DEPRECATED_KILL_INFERIOR */
#ifndef DEPRECATED_CHILD_RESUME
/* NOTE: cagney/2004-09-12: Instead of definining this macro, code
should call inf_ptrace_target to get a basic ptrace target and then
locally update any necessary methods. See ppcnbsd-nat.c. */
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
child_resume (ptid_t ptid, int step, enum target_signal signal)
{
int request = PT_CONTINUE;
int pid = PIDGET (ptid);
if (pid == -1)
/* Resume all threads. */
/* I think this only gets used in the non-threaded case, where "resume
all threads" and "resume inferior_ptid" are the same. */
pid = PIDGET (inferior_ptid);
if (step)
{
/* If this system does not support PT_STEP, a higher level
function will have called single_step() to transmute the step
request into a continue request (by setting breakpoints on
all possible successor instructions), so we don't have to
worry about that here. */
gdb_assert (!SOFTWARE_SINGLE_STEP_P ());
request = PT_STEP;
}
/* An address of (PTRACE_TYPE_ARG3)1 tells ptrace to continue from
where it was. If GDB wanted it to start some other way, we have
already written a new PC value to the child. */
errno = 0;
ptrace (request, pid, (PTRACE_TYPE_ARG3)1, target_signal_to_host (signal));
if (errno != 0)
perror_with_name ("ptrace");
}
#endif /* DEPRECATED_CHILD_RESUME */
/* Start debugging the process whose number is PID. */
int
attach (int pid)
{
#ifdef PT_ATTACH
errno = 0;
ptrace (PT_ATTACH, pid, (PTRACE_TYPE_ARG3) 0, 0);
if (errno != 0)
perror_with_name ("ptrace");
attach_flag = 1;
return pid;
#else
error ("This system does not support attaching to a process");
#endif
}
/* Stop debugging the process whose number is PID and continue it with
signal number SIGNAL. SIGNAL = 0 means just continue it. */
void
detach (int signal)
{
#ifdef PT_DETACH
int pid = PIDGET (inferior_ptid);
errno = 0;
ptrace (PT_DETACH, pid, (PTRACE_TYPE_ARG3) 1, signal);
if (errno != 0)
perror_with_name ("ptrace");
attach_flag = 0;
#else
error ("This system does not support detaching from a process");
#endif
}
#ifndef FETCH_INFERIOR_REGISTERS
/* U_REGS_OFFSET is the offset of the registers within the u area. */
#ifndef U_REGS_OFFSET
#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
#endif
#define U_REGS_OFFSET \
ptrace (PT_READ_U, PIDGET (inferior_ptid), \
(PTRACE_TYPE_ARG3) (offsetof (struct user, u_ar0)), 0) \
- KERNEL_U_ADDR
#endif
/* Fetch register REGNUM from the inferior. */
static void
fetch_register (int regnum)
{
CORE_ADDR addr;
size_t size;
PTRACE_TYPE_RET *buf;
int tid, i;
if (CANNOT_FETCH_REGISTER (regnum))
{
regcache_raw_supply (current_regcache, regnum, NULL);
return;
}
/* GNU/Linux LWP ID's are process ID's. */
tid = TIDGET (inferior_ptid);
if (tid == 0)
tid = PIDGET (inferior_ptid); /* Not a threaded program. */
/* This isn't really an address. But ptrace thinks of it as one. */
addr = register_addr (regnum, U_REGS_OFFSET);
size = register_size (current_gdbarch, regnum);
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
buf = alloca (size);
/* Read the register contents from the inferior a chuck at the time. */
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
{
errno = 0;
buf[i] = ptrace (PT_READ_U, tid, (PTRACE_TYPE_ARG3) addr, 0);
if (errno != 0)
error ("Couldn't read register %s (#%d): %s.", REGISTER_NAME (regnum),
regnum, safe_strerror (errno));
addr += sizeof (PTRACE_TYPE_RET);
}
regcache_raw_supply (current_regcache, regnum, buf);
}
/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
for all registers. */
void
fetch_inferior_registers (int regnum)
{
if (regnum == -1)
for (regnum = 0; regnum < NUM_REGS; regnum++)
fetch_register (regnum);
else
fetch_register (regnum);
}
/* Store register REGNUM into the inferior. */
static void
store_register (int regnum)
{
CORE_ADDR addr;
size_t size;
PTRACE_TYPE_RET *buf;
int tid, i;
if (CANNOT_STORE_REGISTER (regnum))
return;
/* GNU/Linux LWP ID's are process ID's. */
tid = TIDGET (inferior_ptid);
if (tid == 0)
tid = PIDGET (inferior_ptid); /* Not a threaded program. */
/* This isn't really an address. But ptrace thinks of it as one. */
addr = register_addr (regnum, U_REGS_OFFSET);
size = register_size (current_gdbarch, regnum);
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
buf = alloca (size);
/* Write the register contents into the inferior a chunk at the time. */
regcache_raw_collect (current_regcache, regnum, buf);
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
{
errno = 0;
ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) addr, buf[i]);
if (errno != 0)
error ("Couldn't write register %s (#%d): %s.", REGISTER_NAME (regnum),
regnum, safe_strerror (errno));
addr += sizeof (PTRACE_TYPE_RET);
}
}
/* Store register REGNUM back into the inferior. If REGNUM is -1, do
this for all registers (including the floating point registers). */
void
store_inferior_registers (int regnum)
{
if (regnum == -1)
for (regnum = 0; regnum < NUM_REGS; regnum++)
store_register (regnum);
else
store_register (regnum);
}
#endif /* not FETCH_INFERIOR_REGISTERS. */
/* Set an upper limit on alloca. */
#ifndef GDB_MAX_ALLOCA
#define GDB_MAX_ALLOCA 0x1000
#endif
#if !defined (CHILD_XFER_MEMORY)
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
in the NEW_SUN_PTRACE case. It ought to be straightforward. But
it appears that writing did not write the data that I specified. I
cannot understand where it got the data that it actually did write. */
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR to
debugger memory starting at MYADDR. Copy to inferior if WRITE is
nonzero. TARGET is ignored.
Returns the length copied, which is either the LEN argument or
zero. This xfer function does not do partial moves, since
child_ops doesn't allow memory operations to cross below us in the
target stack anyway. */
int
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
struct mem_attrib *attrib, struct target_ops *target)
{
int i;
/* Round starting address down to longword boundary. */
CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
/* Round ending address up; get number of longwords that makes. */
int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
/ sizeof (PTRACE_TYPE_RET));
int alloc = count * sizeof (PTRACE_TYPE_RET);
PTRACE_TYPE_RET *buffer;
struct cleanup *old_chain = NULL;
#ifdef PT_IO
/* OpenBSD 3.1, NetBSD 1.6 and FreeBSD 5.0 have a new PT_IO request
that promises to be much more efficient in reading and writing
data in the traced process's address space. */
{
struct ptrace_io_desc piod;
/* NOTE: We assume that there are no distinct address spaces for
instruction and data. */
piod.piod_op = write ? PIOD_WRITE_D : PIOD_READ_D;
piod.piod_offs = (void *) memaddr;
piod.piod_addr = myaddr;
piod.piod_len = len;
if (ptrace (PT_IO, PIDGET (inferior_ptid), (caddr_t) &piod, 0) == -1)
{
/* If the PT_IO request is somehow not supported, fallback on
using PT_WRITE_D/PT_READ_D. Otherwise we will return zero
to indicate failure. */
if (errno != EINVAL)
return 0;
}
else
{
/* Return the actual number of bytes read or written. */
return piod.piod_len;
}
}
#endif
/* Allocate buffer of that many longwords. */
if (len < GDB_MAX_ALLOCA)
{
buffer = (PTRACE_TYPE_RET *) alloca (alloc);
}
else
{
buffer = (PTRACE_TYPE_RET *) xmalloc (alloc);
old_chain = make_cleanup (xfree, buffer);
}
if (write)
{
/* Fill start and end extra bytes of buffer with existing memory
data. */
if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
{
/* Need part of initial word -- fetch it. */
buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
(PTRACE_TYPE_ARG3) addr, 0);
}
if (count > 1) /* FIXME, avoid if even boundary. */
{
buffer[count - 1] =
ptrace (PT_READ_I, PIDGET (inferior_ptid),
((PTRACE_TYPE_ARG3)
(addr + (count - 1) * sizeof (PTRACE_TYPE_RET))), 0);
}
/* Copy data to be written over corresponding part of buffer. */
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
myaddr, len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
{
errno = 0;
ptrace (PT_WRITE_D, PIDGET (inferior_ptid),
(PTRACE_TYPE_ARG3) addr, buffer[i]);
if (errno)
{
/* Using the appropriate one (I or D) is necessary for
Gould NP1, at least. */
errno = 0;
ptrace (PT_WRITE_I, PIDGET (inferior_ptid),
(PTRACE_TYPE_ARG3) addr, buffer[i]);
}
if (errno)
return 0;
}
}
else
{
/* Read all the longwords. */
for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
{
errno = 0;
buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
(PTRACE_TYPE_ARG3) addr, 0);
if (errno)
return 0;
QUIT;
}
/* Copy appropriate bytes out of the buffer. */
memcpy (myaddr,
(char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
len);
}
if (old_chain != NULL)
do_cleanups (old_chain);
return len;
}
static void
udot_info (char *dummy1, int dummy2)
{
#if defined (KERNEL_U_SIZE)
long udot_off; /* Offset into user struct */
int udot_val; /* Value from user struct at udot_off */
char mess[128]; /* For messages */
#endif
if (!target_has_execution)
{
error ("The program is not being run.");
}
#if !defined (KERNEL_U_SIZE)
/* Adding support for this command is easy. Typically you just add a
routine, called "kernel_u_size" that returns the size of the user
struct, to the appropriate *-nat.c file and then add to the native
config file "#define KERNEL_U_SIZE kernel_u_size()" */
error ("Don't know how large ``struct user'' is in this version of gdb.");
#else
for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
{
if ((udot_off % 24) == 0)
{
if (udot_off > 0)
{
printf_filtered ("\n");
}
printf_filtered ("%s:", paddr (udot_off));
}
udot_val = ptrace (PT_READ_U, PIDGET (inferior_ptid), (PTRACE_TYPE_ARG3) udot_off, 0);
if (errno != 0)
{
sprintf (mess, "\nreading user struct at offset 0x%s",
paddr_nz (udot_off));
perror_with_name (mess);
}
/* Avoid using nonportable (?) "*" in print specs */
printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
}
printf_filtered ("\n");
#endif
}
#endif /* !defined (CHILD_XFER_MEMORY). */
void
_initialize_infptrace (void)
{
#if !defined (CHILD_XFER_MEMORY)
add_info ("udot", udot_info,
"Print contents of kernel ``struct user'' for current child.");
#endif
}