binutils-gdb/sim/common/sim-syscall.c
Andrew Burgess 1d506c26d9 Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions:

  - Running gdb/copyright.py to update all of the copyright headers to
    include 2024,

  - Manually updating a few files the copyright.py script told me to
    update, these files had copyright headers embedded within the
    file,

  - Regenerating gdbsupport/Makefile.in to refresh it's copyright
    date,

  - Using grep to find other files that still mentioned 2023.  If
    these files were updated last year from 2022 to 2023 then I've
    updated them this year to 2024.

I'm sure I've probably missed some dates.  Feel free to fix them up as
you spot them.
2024-01-12 15:49:57 +00:00

134 lines
3.7 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Simulator system call support.
Copyright 2002-2024 Free Software Foundation, Inc.
This file is part of simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This must come before any other includes. */
#include "defs.h"
#include <errno.h>
#include "ansidecl.h"
#include "sim-main.h"
#include "sim-syscall.h"
#include "sim/callback.h"
/* Read/write functions for system call interface. */
int
sim_syscall_read_mem (host_callback *cb ATTRIBUTE_UNUSED, struct cb_syscall *sc,
unsigned long taddr, char *buf, int bytes)
{
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
TRACE_MEMORY (cpu, "READ (syscall) %i bytes @ 0x%08lx", bytes, taddr);
return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
}
int
sim_syscall_write_mem (host_callback *cb ATTRIBUTE_UNUSED, struct cb_syscall *sc,
unsigned long taddr, const char *buf, int bytes)
{
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
TRACE_MEMORY (cpu, "WRITE (syscall) %i bytes @ 0x%08lx", bytes, taddr);
return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
}
/* Main syscall callback for simulators. */
void
sim_syscall_multi (SIM_CPU *cpu, int func, long arg1, long arg2, long arg3,
long arg4, long *result, long *result2, int *errcode)
{
SIM_DESC sd = CPU_STATE (cpu);
host_callback *cb = STATE_CALLBACK (sd);
CB_SYSCALL sc;
const char unknown_syscall[] = "<UNKNOWN SYSCALL>";
const char *syscall;
CB_SYSCALL_INIT (&sc);
sc.func = func;
sc.arg1 = arg1;
sc.arg2 = arg2;
sc.arg3 = arg3;
sc.arg4 = arg4;
sc.p1 = sd;
sc.p2 = cpu;
sc.read_mem = sim_syscall_read_mem;
sc.write_mem = sim_syscall_write_mem;
if (cb_syscall (cb, &sc) != CB_RC_OK)
{
/* The cb_syscall func never returns an error, so this is more of a
sanity check. */
sim_engine_abort (sd, cpu, sim_pc_get (cpu), "cb_syscall failed");
}
syscall = cb_target_str_syscall (cb, func);
if (!syscall)
syscall = unknown_syscall;
if (sc.result == -1)
TRACE_SYSCALL (cpu, "%s[%i](%#lx, %#lx, %#lx) = %li (error = %s[%i])",
syscall, func, arg1, arg2, arg3, sc.result,
cb_target_str_errno (cb, sc.errcode), sc.errcode);
else
TRACE_SYSCALL (cpu, "%s[%i](%#lx, %#lx, %#lx) = %li",
syscall, func, arg1, arg2, arg3, sc.result);
/* Handle syscalls that affect engine behavior. */
switch (cb_target_to_host_syscall (cb, func))
{
case CB_SYS_exit:
sim_engine_halt (sd, cpu, NULL, sim_pc_get (cpu), sim_exited, arg1);
break;
case CB_SYS_kill:
/* TODO: Need to translate target signal to sim signal, but the sim
doesn't yet have such a mapping layer. */
if (arg1 == (*cb->getpid) (cb))
sim_engine_halt (sd, cpu, NULL, sim_pc_get (cpu), sim_signalled, arg2);
break;
}
*result = sc.result;
*result2 = sc.result2;
*errcode = sc.errcode;
}
long
sim_syscall (SIM_CPU *cpu, int func, long arg1, long arg2, long arg3, long arg4)
{
long result, result2;
int errcode;
sim_syscall_multi (cpu, func, arg1, arg2, arg3, arg4, &result, &result2,
&errcode);
if (result == -1)
return -errcode;
else
return result;
}