mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
eb3ff9a551
This patch reworks the whole completion machinery, and prepares it for later enhancements. Adds a new "completion_tracker" class that is meant to hold everything about the state of the current completion operation. This class now has the responsibility of tracking the list of completion matches, and checking whether the max completions limit has been reached. You can look at this as this patch starting out by C++fying the existing "completion_tracker" in symtab.c (it's just an htab_t typedef currently), moving it to completer.h/c, and then making it a class/generalizing/enhancing it. Unlike with the current tracking, completion_tracker now checks whether the limit has been reached on each completion match list insertion. This both simplifies the max-completions handling code (maybe_add_completion_enum is gone, for example), and is a prerequisite for follow up patches. The current completion_tracker is only used for symbol completions, and the symbol code gets at the current instance via globals. This patch cleans that up by adding a completion_tracker reference to the signature of the completion functions, and passing the tracker around everywhere necessary. Then, the patch changes how the completion match list is handed over to readline. Currently, we're using the rl_completion_entry_function readline entry point, and the patch switches to rl_attempted_completion_function. A following patch will want to let GDB itself decide the common completion prefix between all matches (what readline calls the "lowest common denominator"), instead of having readline compute it, and that's not possible with the rl_completion_entry_function entry point. Also, rl_attempted_completion_function lets GDB hand over the match list to readline as an array in one go instead of passing down matches one by one, so from that angle it's a nicer entry point anyway. Lastly, the patch catches exceptions around the readline entry points, because we can't let C++ exceptions cross readline. We handle that in the readline input entry point, but the completion entry point isn't guarded, so GDB can abort if completion throws. E.g., in current master: (gdb) b -function "fun<tab> terminate called after throwing an instance of 'gdb_exception_RETURN_MASK_ERROR' Aborted (core dumped) This patch fixes that. This will be exercised in the new tests added later on in the series. gdb/ChangeLog: 2017-07-17 Pedro Alves <palves@redhat.com> * ada-lang.c (symbol_completion_match): Adjust comments. (symbol_completion_add): Replace vector parameter with completion_tracker parameter. Use it. (ada_make_symbol_completion_list): Rename to... (ada_collect_symbol_completion_matches): ... this. Add completion_tracker parameter and use it. (ada_language_defn): Adjust. * break-catch-syscall.c (catch_syscall_completer): Adjust prototype and work with completion_tracker instead of VEC. * breakpoint.c (condition_completer): Adjust prototype and work with completion_tracker instead of VEC. * c-lang.c (c_language_defn, cplus_language_defn) (asm_language_defn, minimal_language_defn): Adjust to renames. * cli/cli-cmds.c (complete_command): Rework using completion_tracker. Catch exceptions when completing. * cli/cli-decode.c (integer_unlimited_completer) (complete_on_cmdlist, complete_on_enum): Adjust prototype and work with completion_tracker instead of VEC. * command.h (struct completion_tracker): Forward declare. (completer_ftype, completer_handle_brkchars_ftype): Change types. (complete_on_cmdlist, complete_on_enum): Adjust. * completer.c: Include <algorithm>. (struct gdb_completer_state): New. (current_completion): New global. (readline_line_completion_function): Delete. (noop_completer, filename_completer) (filename_completer_handle_brkchars, complete_files_symbols) (linespec_location_completer): Adjust to work with a completion_tracker instead of a VEC. (string_or_empty): New. (collect_explicit_location_matches): Adjust to work with a completion_tracker instead of a VEC. (explicit_location_completer): Rename to ... (complete_explicit_location): ... this and adjust to work with a completion_tracker instead of a VEC. (location_completer): Adjust to work with a completion_tracker instead of a VEC. (add_struct_fields): Adjust to work with a completion_list instead of VEC. (expression_completer): Rename to ... (complete_expression): ... this and adjust to work with a completion_tracker instead of a VEC. Use complete_files_symbols. (expression_completer): Reimplement on top of complete_expression. (symbol_completer): Adjust to work with a completion_tracker instead of a VEC. (enum complete_line_internal_reason): Add describing comments. (complete_line_internal_normal_command): Adjust to work with a completion_tracker instead of a VEC. (complete_line_internal): Rename to ... (complete_line_internal_1): ... this and adjust to work with a completion_tracker instead of a VEC. Assert TEXT is NULL in the handle_brkchars phase. (new_completion_tracker): Delete. (complete_line_internal): Reimplement as TRY/CATCH wrapper around complete_line_internal_1. (free_completion_tracker): Delete. (INITIAL_COMPLETION_HTAB_SIZE): New. (completion_tracker::completion_tracker) (completion_tracker::~completion_tracker): New. (maybe_add_completion): Delete. (completion_tracker::maybe_add_completion) (completion_tracker::add_completion) (completion_tracker::add_completions): New. (throw_max_completions_reached_error): Delete. (complete_line): Adjust to work with a completion_tracker instead of a VEC. Don't create a completion_tracker_t or check for max completions here. (command_completer, command_completer_handle_brkchars) (signal_completer, reg_or_group_completer_1) (reg_or_group_completer, default_completer_handle_brkchars): Adjust to work with a completion_tracker. (gdb_completion_word_break_characters_throw): New. (gdb_completion_word_break_characters): Reimplement. (line_completion_function): Delete. (completion_tracker::recompute_lowest_common_denominator) (expand_preserving_ws) (completion_tracker::build_completion_result) (completion_result::completion_result) (completion_result::completion_result) (completion_result::~completion_result) (completion_result::completion_result) (completion_result::release_match_list, compare_cstrings) (completion_result::sort_match_list) (completion_result::reset_match_list) (gdb_rl_attempted_completion_function_throw) (gdb_rl_attempted_completion_function): New. * completer.h (completion_list, struct completion_result) (class completion_tracker): New. (complete_line): Add completion_tracker parameter. (readline_line_completion_function): Delete. (gdb_rl_attempted_completion_function): New. (noop_completer, filename_completer, expression_completer) (location_completer, symbol_completer, command_completer) (signal_completer, reg_or_group_completer): Update prototypes. (completion_tracker_t, new_completion_tracker) (make_cleanup_free_completion_tracker): Delete. (enum maybe_add_completion_enum): Delete. (maybe_add_completion): Delete. (throw_max_completions_reached_error): Delete. * corefile.c (complete_set_gnutarget): Adjust to work with a completion_tracker instead of a VEC. * cp-abi.c (cp_abi_completer): Adjust to work with a completion_tracker instead of a VEC. * d-lang.c (d_language_defn): Adjust. * disasm.c (disassembler_options_completer): Adjust to work with a completion_tracker instead of a VEC. * f-lang.c (f_make_symbol_completion_list): Rename to ... (f_collect_symbol_completion_matches): ... this. Adjust to work with a completion_tracker instead of a VEC. (f_language_defn): Adjust. * go-lang.c (go_language_defn): Adjust. * guile/scm-cmd.c (cmdscm_add_completion, cmdscm_completer): Adjust to work with a completion_tracker instead of a VEC. * infrun.c (handle_completer): Likewise. * interps.c (interpreter_completer): Likewise. * interps.h (interpreter_completer): Likewise. * language.c (unknown_language_defn, auto_language_defn) (local_language_defn): Adjust. * language.h (language_defn::la_make_symbol_completion_list): Rename to ... (language_defn::la_collect_symbol_completion_matches): ... this and adjust to work with a completion_tracker instead of a VEC. * m2-lang.c (m2_language_defn): Adjust. * objc-lang.c (objc_language_defn): Adjust. * opencl-lang.c (opencl_language_defn): Adjust. * p-lang.c (pascal_language_defn): Adjust. * python/py-cmd.c (cmdpy_completer_helper): Handle NULL word. (cmdpy_completer_handle_brkchars, cmdpy_completer): Adjust to work with a completion_tracker. * rust-lang.c (rust_language_defn): Adjust. * symtab.c (free_completion_list, do_free_completion_list) (return_val, completion_tracker): Delete. (completion_list_add_name, completion_list_add_symbol) (completion_list_add_msymbol, completion_list_objc_symbol) (completion_list_add_fields, add_symtab_completions): Add completion_tracker parameter and use it. (default_make_symbol_completion_list_break_on_1): Rename to... (default_collect_symbol_completion_matches_break_on): ... this. Add completion_tracker parameter and use it instead of allocating a completion tracker here. (default_make_symbol_completion_list_break_on): Delete old implementation. (default_make_symbol_completion_list): Delete. (default_collect_symbol_completion_matches): New. (make_symbol_completion_list): Delete. (collect_symbol_completion_matches): New. (make_symbol_completion_type): Rename to ... (collect_symbol_completion_matches_type): ... this. Add completion_tracker parameter and use it instead of VEC. (make_file_symbol_completion_list_1): Rename to... (collect_file_symbol_completion_matches): ... this. Add completion_tracker parameter and use it instead of VEC. (make_file_symbol_completion_list): Delete. (add_filename_to_list): Use completion_list instead of a VEC. (add_partial_filename_data::list): Now a completion_list. (make_source_files_completion_list): Work with a completion_list instead of a VEC. * symtab.h: Include "completer.h". (default_make_symbol_completion_list_break_on) (default_make_symbol_completion_list, make_symbol_completion_list) (make_symbol_completion_type, make_file_symbol_completion_list) (make_source_files_completion_list): Delete. (default_collect_symbol_completion_matches_break_on) (default_collect_symbol_completion_matches) (collect_symbol_completion_matches) (collect_symbol_completion_matches_type) (collect_file_symbol_completion_matches) (make_source_files_completion_list): New. * top.c (init_main): Don't install a rl_completion_entry_function hook. Install a rl_attempted_completion_function hook instead. * tui/tui-layout.c (layout_completer): Adjust to work with a completion_tracker. * tui/tui-regs.c (tui_reggroup_completer): * tui/tui-win.c (window_name_completer, focus_completer) (winheight_completer): Adjust to work with a completion_tracker. * value.c: Include "completer.h". (complete_internalvar): Adjust to work with a completion_tracker. * value.h (complete_internalvar): Likewise.
1075 lines
30 KiB
C
1075 lines
30 KiB
C
/* Disassemble support for GDB.
|
|
|
|
Copyright (C) 2000-2017 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "arch-utils.h"
|
|
#include "target.h"
|
|
#include "value.h"
|
|
#include "ui-out.h"
|
|
#include "disasm.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbcmd.h"
|
|
#include "dis-asm.h"
|
|
#include "source.h"
|
|
#include "safe-ctype.h"
|
|
#include <algorithm>
|
|
|
|
/* Disassemble functions.
|
|
FIXME: We should get rid of all the duplicate code in gdb that does
|
|
the same thing: disassemble_command() and the gdbtk variation. */
|
|
|
|
/* This variable is used to hold the prospective disassembler_options value
|
|
which is set by the "set disassembler_options" command. */
|
|
static char *prospective_options = NULL;
|
|
|
|
/* This structure is used to store line number information for the
|
|
deprecated /m option.
|
|
We need a different sort of line table from the normal one cuz we can't
|
|
depend upon implicit line-end pc's for lines to do the
|
|
reordering in this function. */
|
|
|
|
struct deprecated_dis_line_entry
|
|
{
|
|
int line;
|
|
CORE_ADDR start_pc;
|
|
CORE_ADDR end_pc;
|
|
};
|
|
|
|
/* This Structure is used to store line number information.
|
|
We need a different sort of line table from the normal one cuz we can't
|
|
depend upon implicit line-end pc's for lines to do the
|
|
reordering in this function. */
|
|
|
|
struct dis_line_entry
|
|
{
|
|
struct symtab *symtab;
|
|
int line;
|
|
};
|
|
|
|
/* Hash function for dis_line_entry. */
|
|
|
|
static hashval_t
|
|
hash_dis_line_entry (const void *item)
|
|
{
|
|
const struct dis_line_entry *dle = (const struct dis_line_entry *) item;
|
|
|
|
return htab_hash_pointer (dle->symtab) + dle->line;
|
|
}
|
|
|
|
/* Equal function for dis_line_entry. */
|
|
|
|
static int
|
|
eq_dis_line_entry (const void *item_lhs, const void *item_rhs)
|
|
{
|
|
const struct dis_line_entry *lhs = (const struct dis_line_entry *) item_lhs;
|
|
const struct dis_line_entry *rhs = (const struct dis_line_entry *) item_rhs;
|
|
|
|
return (lhs->symtab == rhs->symtab
|
|
&& lhs->line == rhs->line);
|
|
}
|
|
|
|
/* Create the table to manage lines for mixed source/disassembly. */
|
|
|
|
static htab_t
|
|
allocate_dis_line_table (void)
|
|
{
|
|
return htab_create_alloc (41,
|
|
hash_dis_line_entry, eq_dis_line_entry,
|
|
xfree, xcalloc, xfree);
|
|
}
|
|
|
|
/* Add a new dis_line_entry containing SYMTAB and LINE to TABLE. */
|
|
|
|
static void
|
|
add_dis_line_entry (htab_t table, struct symtab *symtab, int line)
|
|
{
|
|
void **slot;
|
|
struct dis_line_entry dle, *dlep;
|
|
|
|
dle.symtab = symtab;
|
|
dle.line = line;
|
|
slot = htab_find_slot (table, &dle, INSERT);
|
|
if (*slot == NULL)
|
|
{
|
|
dlep = XNEW (struct dis_line_entry);
|
|
dlep->symtab = symtab;
|
|
dlep->line = line;
|
|
*slot = dlep;
|
|
}
|
|
}
|
|
|
|
/* Return non-zero if SYMTAB, LINE are in TABLE. */
|
|
|
|
static int
|
|
line_has_code_p (htab_t table, struct symtab *symtab, int line)
|
|
{
|
|
struct dis_line_entry dle;
|
|
|
|
dle.symtab = symtab;
|
|
dle.line = line;
|
|
return htab_find (table, &dle) != NULL;
|
|
}
|
|
|
|
/* Wrapper of target_read_code. */
|
|
|
|
int
|
|
gdb_disassembler::dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr,
|
|
unsigned int len,
|
|
struct disassemble_info *info)
|
|
{
|
|
return target_read_code (memaddr, myaddr, len);
|
|
}
|
|
|
|
/* Wrapper of memory_error. */
|
|
|
|
void
|
|
gdb_disassembler::dis_asm_memory_error (int err, bfd_vma memaddr,
|
|
struct disassemble_info *info)
|
|
{
|
|
gdb_disassembler *self
|
|
= static_cast<gdb_disassembler *>(info->application_data);
|
|
|
|
self->m_err_memaddr = memaddr;
|
|
}
|
|
|
|
/* Wrapper of print_address. */
|
|
|
|
void
|
|
gdb_disassembler::dis_asm_print_address (bfd_vma addr,
|
|
struct disassemble_info *info)
|
|
{
|
|
gdb_disassembler *self
|
|
= static_cast<gdb_disassembler *>(info->application_data);
|
|
|
|
print_address (self->arch (), addr, self->stream ());
|
|
}
|
|
|
|
static int
|
|
compare_lines (const void *mle1p, const void *mle2p)
|
|
{
|
|
struct deprecated_dis_line_entry *mle1, *mle2;
|
|
int val;
|
|
|
|
mle1 = (struct deprecated_dis_line_entry *) mle1p;
|
|
mle2 = (struct deprecated_dis_line_entry *) mle2p;
|
|
|
|
/* End of sequence markers have a line number of 0 but don't want to
|
|
be sorted to the head of the list, instead sort by PC. */
|
|
if (mle1->line == 0 || mle2->line == 0)
|
|
{
|
|
val = mle1->start_pc - mle2->start_pc;
|
|
if (val == 0)
|
|
val = mle1->line - mle2->line;
|
|
}
|
|
else
|
|
{
|
|
val = mle1->line - mle2->line;
|
|
if (val == 0)
|
|
val = mle1->start_pc - mle2->start_pc;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* See disasm.h. */
|
|
|
|
int
|
|
gdb_pretty_print_disassembler::pretty_print_insn (struct ui_out *uiout,
|
|
const struct disasm_insn *insn,
|
|
int flags)
|
|
{
|
|
/* parts of the symbolic representation of the address */
|
|
int unmapped;
|
|
int offset;
|
|
int line;
|
|
int size;
|
|
struct cleanup *ui_out_chain;
|
|
char *filename = NULL;
|
|
char *name = NULL;
|
|
CORE_ADDR pc;
|
|
struct gdbarch *gdbarch = arch ();
|
|
|
|
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
|
|
pc = insn->addr;
|
|
|
|
if (insn->number != 0)
|
|
{
|
|
uiout->field_fmt ("insn-number", "%u", insn->number);
|
|
uiout->text ("\t");
|
|
}
|
|
|
|
if ((flags & DISASSEMBLY_SPECULATIVE) != 0)
|
|
{
|
|
if (insn->is_speculative)
|
|
{
|
|
uiout->field_string ("is-speculative", "?");
|
|
|
|
/* The speculative execution indication overwrites the first
|
|
character of the PC prefix.
|
|
We assume a PC prefix length of 3 characters. */
|
|
if ((flags & DISASSEMBLY_OMIT_PC) == 0)
|
|
uiout->text (pc_prefix (pc) + 1);
|
|
else
|
|
uiout->text (" ");
|
|
}
|
|
else if ((flags & DISASSEMBLY_OMIT_PC) == 0)
|
|
uiout->text (pc_prefix (pc));
|
|
else
|
|
uiout->text (" ");
|
|
}
|
|
else if ((flags & DISASSEMBLY_OMIT_PC) == 0)
|
|
uiout->text (pc_prefix (pc));
|
|
uiout->field_core_addr ("address", gdbarch, pc);
|
|
|
|
if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
|
|
&line, &unmapped))
|
|
{
|
|
/* We don't care now about line, filename and unmapped. But we might in
|
|
the future. */
|
|
uiout->text (" <");
|
|
if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
|
|
uiout->field_string ("func-name", name);
|
|
uiout->text ("+");
|
|
uiout->field_int ("offset", offset);
|
|
uiout->text (">:\t");
|
|
}
|
|
else
|
|
uiout->text (":\t");
|
|
|
|
if (filename != NULL)
|
|
xfree (filename);
|
|
if (name != NULL)
|
|
xfree (name);
|
|
|
|
m_insn_stb.clear ();
|
|
|
|
if (flags & DISASSEMBLY_RAW_INSN)
|
|
{
|
|
CORE_ADDR end_pc;
|
|
bfd_byte data;
|
|
int err;
|
|
const char *spacer = "";
|
|
|
|
/* Build the opcodes using a temporary stream so we can
|
|
write them out in a single go for the MI. */
|
|
m_opcode_stb.clear ();
|
|
|
|
size = m_di.print_insn (pc);
|
|
end_pc = pc + size;
|
|
|
|
for (;pc < end_pc; ++pc)
|
|
{
|
|
read_code (pc, &data, 1);
|
|
m_opcode_stb.printf ("%s%02x", spacer, (unsigned) data);
|
|
spacer = " ";
|
|
}
|
|
|
|
uiout->field_stream ("opcodes", m_opcode_stb);
|
|
uiout->text ("\t");
|
|
}
|
|
else
|
|
size = m_di.print_insn (pc);
|
|
|
|
uiout->field_stream ("inst", m_insn_stb);
|
|
do_cleanups (ui_out_chain);
|
|
uiout->text ("\n");
|
|
|
|
return size;
|
|
}
|
|
|
|
static int
|
|
dump_insns (struct gdbarch *gdbarch,
|
|
struct ui_out *uiout, CORE_ADDR low, CORE_ADDR high,
|
|
int how_many, int flags, CORE_ADDR *end_pc)
|
|
{
|
|
struct disasm_insn insn;
|
|
int num_displayed = 0;
|
|
|
|
memset (&insn, 0, sizeof (insn));
|
|
insn.addr = low;
|
|
|
|
gdb_pretty_print_disassembler disasm (gdbarch);
|
|
|
|
while (insn.addr < high && (how_many < 0 || num_displayed < how_many))
|
|
{
|
|
int size;
|
|
|
|
size = disasm.pretty_print_insn (uiout, &insn, flags);
|
|
if (size <= 0)
|
|
break;
|
|
|
|
++num_displayed;
|
|
insn.addr += size;
|
|
|
|
/* Allow user to bail out with ^C. */
|
|
QUIT;
|
|
}
|
|
|
|
if (end_pc != NULL)
|
|
*end_pc = insn.addr;
|
|
|
|
return num_displayed;
|
|
}
|
|
|
|
/* The idea here is to present a source-O-centric view of a
|
|
function to the user. This means that things are presented
|
|
in source order, with (possibly) out of order assembly
|
|
immediately following.
|
|
|
|
N.B. This view is deprecated. */
|
|
|
|
static void
|
|
do_mixed_source_and_assembly_deprecated
|
|
(struct gdbarch *gdbarch, struct ui_out *uiout,
|
|
struct symtab *symtab,
|
|
CORE_ADDR low, CORE_ADDR high,
|
|
int how_many, int flags)
|
|
{
|
|
int newlines = 0;
|
|
int nlines;
|
|
struct linetable_entry *le;
|
|
struct deprecated_dis_line_entry *mle;
|
|
struct symtab_and_line sal;
|
|
int i;
|
|
int out_of_order = 0;
|
|
int next_line = 0;
|
|
int num_displayed = 0;
|
|
print_source_lines_flags psl_flags = 0;
|
|
struct cleanup *ui_out_chain;
|
|
struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
|
|
struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
|
|
|
|
gdb_assert (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL);
|
|
|
|
nlines = SYMTAB_LINETABLE (symtab)->nitems;
|
|
le = SYMTAB_LINETABLE (symtab)->item;
|
|
|
|
if (flags & DISASSEMBLY_FILENAME)
|
|
psl_flags |= PRINT_SOURCE_LINES_FILENAME;
|
|
|
|
mle = (struct deprecated_dis_line_entry *)
|
|
alloca (nlines * sizeof (struct deprecated_dis_line_entry));
|
|
|
|
/* Copy linetable entries for this function into our data
|
|
structure, creating end_pc's and setting out_of_order as
|
|
appropriate. */
|
|
|
|
/* First, skip all the preceding functions. */
|
|
|
|
for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
|
|
|
|
/* Now, copy all entries before the end of this function. */
|
|
|
|
for (; i < nlines - 1 && le[i].pc < high; i++)
|
|
{
|
|
if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
|
|
continue; /* Ignore duplicates. */
|
|
|
|
/* Skip any end-of-function markers. */
|
|
if (le[i].line == 0)
|
|
continue;
|
|
|
|
mle[newlines].line = le[i].line;
|
|
if (le[i].line > le[i + 1].line)
|
|
out_of_order = 1;
|
|
mle[newlines].start_pc = le[i].pc;
|
|
mle[newlines].end_pc = le[i + 1].pc;
|
|
newlines++;
|
|
}
|
|
|
|
/* If we're on the last line, and it's part of the function,
|
|
then we need to get the end pc in a special way. */
|
|
|
|
if (i == nlines - 1 && le[i].pc < high)
|
|
{
|
|
mle[newlines].line = le[i].line;
|
|
mle[newlines].start_pc = le[i].pc;
|
|
sal = find_pc_line (le[i].pc, 0);
|
|
mle[newlines].end_pc = sal.end;
|
|
newlines++;
|
|
}
|
|
|
|
/* Now, sort mle by line #s (and, then by addresses within lines). */
|
|
|
|
if (out_of_order)
|
|
qsort (mle, newlines, sizeof (struct deprecated_dis_line_entry),
|
|
compare_lines);
|
|
|
|
/* Now, for each line entry, emit the specified lines (unless
|
|
they have been emitted before), followed by the assembly code
|
|
for that line. */
|
|
|
|
ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
|
|
|
|
for (i = 0; i < newlines; i++)
|
|
{
|
|
/* Print out everything from next_line to the current line. */
|
|
if (mle[i].line >= next_line)
|
|
{
|
|
if (next_line != 0)
|
|
{
|
|
/* Just one line to print. */
|
|
if (next_line == mle[i].line)
|
|
{
|
|
ui_out_tuple_chain
|
|
= make_cleanup_ui_out_tuple_begin_end (uiout,
|
|
"src_and_asm_line");
|
|
print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
|
|
}
|
|
else
|
|
{
|
|
/* Several source lines w/o asm instructions associated. */
|
|
for (; next_line < mle[i].line; next_line++)
|
|
{
|
|
struct cleanup *ui_out_list_chain_line;
|
|
|
|
ui_out_emit_tuple tuple_emitter (uiout,
|
|
"src_and_asm_line");
|
|
print_source_lines (symtab, next_line, next_line + 1,
|
|
psl_flags);
|
|
ui_out_list_chain_line
|
|
= make_cleanup_ui_out_list_begin_end (uiout,
|
|
"line_asm_insn");
|
|
do_cleanups (ui_out_list_chain_line);
|
|
}
|
|
/* Print the last line and leave list open for
|
|
asm instructions to be added. */
|
|
ui_out_tuple_chain
|
|
= make_cleanup_ui_out_tuple_begin_end (uiout,
|
|
"src_and_asm_line");
|
|
print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ui_out_tuple_chain
|
|
= make_cleanup_ui_out_tuple_begin_end (uiout,
|
|
"src_and_asm_line");
|
|
print_source_lines (symtab, mle[i].line, mle[i].line + 1, psl_flags);
|
|
}
|
|
|
|
next_line = mle[i].line + 1;
|
|
ui_out_list_chain
|
|
= make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
|
|
}
|
|
|
|
num_displayed += dump_insns (gdbarch, uiout,
|
|
mle[i].start_pc, mle[i].end_pc,
|
|
how_many, flags, NULL);
|
|
|
|
/* When we've reached the end of the mle array, or we've seen the last
|
|
assembly range for this source line, close out the list/tuple. */
|
|
if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
|
|
{
|
|
do_cleanups (ui_out_list_chain);
|
|
do_cleanups (ui_out_tuple_chain);
|
|
ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
|
|
ui_out_list_chain = make_cleanup (null_cleanup, 0);
|
|
uiout->text ("\n");
|
|
}
|
|
if (how_many >= 0 && num_displayed >= how_many)
|
|
break;
|
|
}
|
|
do_cleanups (ui_out_chain);
|
|
}
|
|
|
|
/* The idea here is to present a source-O-centric view of a
|
|
function to the user. This means that things are presented
|
|
in source order, with (possibly) out of order assembly
|
|
immediately following. */
|
|
|
|
static void
|
|
do_mixed_source_and_assembly (struct gdbarch *gdbarch,
|
|
struct ui_out *uiout,
|
|
struct symtab *main_symtab,
|
|
CORE_ADDR low, CORE_ADDR high,
|
|
int how_many, int flags)
|
|
{
|
|
const struct linetable_entry *le, *first_le;
|
|
int i, nlines;
|
|
int num_displayed = 0;
|
|
print_source_lines_flags psl_flags = 0;
|
|
struct cleanup *ui_out_chain;
|
|
struct cleanup *ui_out_tuple_chain;
|
|
struct cleanup *ui_out_list_chain;
|
|
CORE_ADDR pc;
|
|
struct symtab *last_symtab;
|
|
int last_line;
|
|
|
|
gdb_assert (main_symtab != NULL && SYMTAB_LINETABLE (main_symtab) != NULL);
|
|
|
|
/* First pass: collect the list of all source files and lines.
|
|
We do this so that we can only print lines containing code once.
|
|
We try to print the source text leading up to the next instruction,
|
|
but if that text is for code that will be disassembled later, then
|
|
we'll want to defer printing it until later with its associated code. */
|
|
|
|
htab_up dis_line_table (allocate_dis_line_table ());
|
|
|
|
pc = low;
|
|
|
|
/* The prologue may be empty, but there may still be a line number entry
|
|
for the opening brace which is distinct from the first line of code.
|
|
If the prologue has been eliminated find_pc_line may return the source
|
|
line after the opening brace. We still want to print this opening brace.
|
|
first_le is used to implement this. */
|
|
|
|
nlines = SYMTAB_LINETABLE (main_symtab)->nitems;
|
|
le = SYMTAB_LINETABLE (main_symtab)->item;
|
|
first_le = NULL;
|
|
|
|
/* Skip all the preceding functions. */
|
|
for (i = 0; i < nlines && le[i].pc < low; i++)
|
|
continue;
|
|
|
|
if (i < nlines && le[i].pc < high)
|
|
first_le = &le[i];
|
|
|
|
/* Add lines for every pc value. */
|
|
while (pc < high)
|
|
{
|
|
struct symtab_and_line sal;
|
|
int length;
|
|
|
|
sal = find_pc_line (pc, 0);
|
|
length = gdb_insn_length (gdbarch, pc);
|
|
pc += length;
|
|
|
|
if (sal.symtab != NULL)
|
|
add_dis_line_entry (dis_line_table.get (), sal.symtab, sal.line);
|
|
}
|
|
|
|
/* Second pass: print the disassembly.
|
|
|
|
Output format, from an MI perspective:
|
|
The result is a ui_out list, field name "asm_insns", where elements have
|
|
name "src_and_asm_line".
|
|
Each element is a tuple of source line specs (field names line, file,
|
|
fullname), and field "line_asm_insn" which contains the disassembly.
|
|
Field "line_asm_insn" is a list of tuples: address, func-name, offset,
|
|
opcodes, inst.
|
|
|
|
CLI output works on top of this because MI ignores ui_out_text output,
|
|
which is where we put file name and source line contents output.
|
|
|
|
Cleanup usage:
|
|
ui_out_chain
|
|
Handles the outer "asm_insns" list.
|
|
ui_out_tuple_chain
|
|
The tuples for each group of consecutive disassemblies.
|
|
ui_out_list_chain
|
|
List of consecutive source lines or disassembled insns. */
|
|
|
|
if (flags & DISASSEMBLY_FILENAME)
|
|
psl_flags |= PRINT_SOURCE_LINES_FILENAME;
|
|
|
|
ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
|
|
|
|
ui_out_tuple_chain = NULL;
|
|
ui_out_list_chain = NULL;
|
|
|
|
last_symtab = NULL;
|
|
last_line = 0;
|
|
pc = low;
|
|
|
|
while (pc < high)
|
|
{
|
|
struct symtab_and_line sal;
|
|
CORE_ADDR end_pc;
|
|
int start_preceding_line_to_display = 0;
|
|
int end_preceding_line_to_display = 0;
|
|
int new_source_line = 0;
|
|
|
|
sal = find_pc_line (pc, 0);
|
|
|
|
if (sal.symtab != last_symtab)
|
|
{
|
|
/* New source file. */
|
|
new_source_line = 1;
|
|
|
|
/* If this is the first line of output, check for any preceding
|
|
lines. */
|
|
if (last_line == 0
|
|
&& first_le != NULL
|
|
&& first_le->line < sal.line)
|
|
{
|
|
start_preceding_line_to_display = first_le->line;
|
|
end_preceding_line_to_display = sal.line;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Same source file as last time. */
|
|
if (sal.symtab != NULL)
|
|
{
|
|
if (sal.line > last_line + 1 && last_line != 0)
|
|
{
|
|
int l;
|
|
|
|
/* Several preceding source lines. Print the trailing ones
|
|
not associated with code that we'll print later. */
|
|
for (l = sal.line - 1; l > last_line; --l)
|
|
{
|
|
if (line_has_code_p (dis_line_table.get (),
|
|
sal.symtab, l))
|
|
break;
|
|
}
|
|
if (l < sal.line - 1)
|
|
{
|
|
start_preceding_line_to_display = l + 1;
|
|
end_preceding_line_to_display = sal.line;
|
|
}
|
|
}
|
|
if (sal.line != last_line)
|
|
new_source_line = 1;
|
|
else
|
|
{
|
|
/* Same source line as last time. This can happen, depending
|
|
on the debug info. */
|
|
}
|
|
}
|
|
}
|
|
|
|
if (new_source_line)
|
|
{
|
|
/* Skip the newline if this is the first instruction. */
|
|
if (pc > low)
|
|
uiout->text ("\n");
|
|
if (ui_out_tuple_chain != NULL)
|
|
{
|
|
gdb_assert (ui_out_list_chain != NULL);
|
|
do_cleanups (ui_out_list_chain);
|
|
do_cleanups (ui_out_tuple_chain);
|
|
}
|
|
if (sal.symtab != last_symtab
|
|
&& !(flags & DISASSEMBLY_FILENAME))
|
|
{
|
|
/* Remember MI ignores ui_out_text.
|
|
We don't have to do anything here for MI because MI
|
|
output includes the source specs for each line. */
|
|
if (sal.symtab != NULL)
|
|
{
|
|
uiout->text (symtab_to_filename_for_display (sal.symtab));
|
|
}
|
|
else
|
|
uiout->text ("unknown");
|
|
uiout->text (":\n");
|
|
}
|
|
if (start_preceding_line_to_display > 0)
|
|
{
|
|
/* Several source lines w/o asm instructions associated.
|
|
We need to preserve the structure of the output, so output
|
|
a bunch of line tuples with no asm entries. */
|
|
int l;
|
|
struct cleanup *ui_out_list_chain_line;
|
|
|
|
gdb_assert (sal.symtab != NULL);
|
|
for (l = start_preceding_line_to_display;
|
|
l < end_preceding_line_to_display;
|
|
++l)
|
|
{
|
|
ui_out_emit_tuple tuple_emitter (uiout, "src_and_asm_line");
|
|
print_source_lines (sal.symtab, l, l + 1, psl_flags);
|
|
ui_out_list_chain_line
|
|
= make_cleanup_ui_out_list_begin_end (uiout,
|
|
"line_asm_insn");
|
|
do_cleanups (ui_out_list_chain_line);
|
|
}
|
|
}
|
|
ui_out_tuple_chain
|
|
= make_cleanup_ui_out_tuple_begin_end (uiout, "src_and_asm_line");
|
|
if (sal.symtab != NULL)
|
|
print_source_lines (sal.symtab, sal.line, sal.line + 1, psl_flags);
|
|
else
|
|
uiout->text (_("--- no source info for this pc ---\n"));
|
|
ui_out_list_chain
|
|
= make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
|
|
}
|
|
else
|
|
{
|
|
/* Here we're appending instructions to an existing line.
|
|
By construction the very first insn will have a symtab
|
|
and follow the new_source_line path above. */
|
|
gdb_assert (ui_out_tuple_chain != NULL);
|
|
gdb_assert (ui_out_list_chain != NULL);
|
|
}
|
|
|
|
if (sal.end != 0)
|
|
end_pc = std::min (sal.end, high);
|
|
else
|
|
end_pc = pc + 1;
|
|
num_displayed += dump_insns (gdbarch, uiout, pc, end_pc,
|
|
how_many, flags, &end_pc);
|
|
pc = end_pc;
|
|
|
|
if (how_many >= 0 && num_displayed >= how_many)
|
|
break;
|
|
|
|
last_symtab = sal.symtab;
|
|
last_line = sal.line;
|
|
}
|
|
|
|
do_cleanups (ui_out_chain);
|
|
}
|
|
|
|
static void
|
|
do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout,
|
|
CORE_ADDR low, CORE_ADDR high,
|
|
int how_many, int flags)
|
|
{
|
|
ui_out_emit_list list_emitter (uiout, "asm_insns");
|
|
|
|
dump_insns (gdbarch, uiout, low, high, how_many, flags, NULL);
|
|
}
|
|
|
|
/* Initialize the disassemble info struct ready for the specified
|
|
stream. */
|
|
|
|
static int ATTRIBUTE_PRINTF (2, 3)
|
|
fprintf_disasm (void *stream, const char *format, ...)
|
|
{
|
|
va_list args;
|
|
|
|
va_start (args, format);
|
|
vfprintf_filtered ((struct ui_file *) stream, format, args);
|
|
va_end (args);
|
|
/* Something non -ve. */
|
|
return 0;
|
|
}
|
|
|
|
gdb_disassembler::gdb_disassembler (struct gdbarch *gdbarch,
|
|
struct ui_file *file,
|
|
di_read_memory_ftype read_memory_func)
|
|
: m_gdbarch (gdbarch),
|
|
m_err_memaddr (0)
|
|
{
|
|
init_disassemble_info (&m_di, file, fprintf_disasm);
|
|
m_di.flavour = bfd_target_unknown_flavour;
|
|
m_di.memory_error_func = dis_asm_memory_error;
|
|
m_di.print_address_func = dis_asm_print_address;
|
|
/* NOTE: cagney/2003-04-28: The original code, from the old Insight
|
|
disassembler had a local optomization here. By default it would
|
|
access the executable file, instead of the target memory (there
|
|
was a growing list of exceptions though). Unfortunately, the
|
|
heuristic was flawed. Commands like "disassemble &variable"
|
|
didn't work as they relied on the access going to the target.
|
|
Further, it has been supperseeded by trust-read-only-sections
|
|
(although that should be superseeded by target_trust..._p()). */
|
|
m_di.read_memory_func = read_memory_func;
|
|
m_di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
|
|
m_di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
|
|
m_di.endian = gdbarch_byte_order (gdbarch);
|
|
m_di.endian_code = gdbarch_byte_order_for_code (gdbarch);
|
|
m_di.application_data = this;
|
|
m_di.disassembler_options = get_disassembler_options (gdbarch);
|
|
disassemble_init_for_target (&m_di);
|
|
}
|
|
|
|
int
|
|
gdb_disassembler::print_insn (CORE_ADDR memaddr,
|
|
int *branch_delay_insns)
|
|
{
|
|
m_err_memaddr = 0;
|
|
|
|
int length = gdbarch_print_insn (arch (), memaddr, &m_di);
|
|
|
|
if (length < 0)
|
|
memory_error (TARGET_XFER_E_IO, m_err_memaddr);
|
|
|
|
if (branch_delay_insns != NULL)
|
|
{
|
|
if (m_di.insn_info_valid)
|
|
*branch_delay_insns = m_di.branch_delay_insns;
|
|
else
|
|
*branch_delay_insns = 0;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
void
|
|
gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
|
|
int flags, int how_many,
|
|
CORE_ADDR low, CORE_ADDR high)
|
|
{
|
|
struct symtab *symtab;
|
|
int nlines = -1;
|
|
|
|
/* Assume symtab is valid for whole PC range. */
|
|
symtab = find_pc_line_symtab (low);
|
|
|
|
if (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL)
|
|
nlines = SYMTAB_LINETABLE (symtab)->nitems;
|
|
|
|
if (!(flags & (DISASSEMBLY_SOURCE_DEPRECATED | DISASSEMBLY_SOURCE))
|
|
|| nlines <= 0)
|
|
do_assembly_only (gdbarch, uiout, low, high, how_many, flags);
|
|
|
|
else if (flags & DISASSEMBLY_SOURCE)
|
|
do_mixed_source_and_assembly (gdbarch, uiout, symtab, low, high,
|
|
how_many, flags);
|
|
|
|
else if (flags & DISASSEMBLY_SOURCE_DEPRECATED)
|
|
do_mixed_source_and_assembly_deprecated (gdbarch, uiout, symtab,
|
|
low, high, how_many, flags);
|
|
|
|
gdb_flush (gdb_stdout);
|
|
}
|
|
|
|
/* Print the instruction at address MEMADDR in debugged memory,
|
|
on STREAM. Returns the length of the instruction, in bytes,
|
|
and, if requested, the number of branch delay slot instructions. */
|
|
|
|
int
|
|
gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
|
|
struct ui_file *stream, int *branch_delay_insns)
|
|
{
|
|
|
|
gdb_disassembler di (gdbarch, stream);
|
|
|
|
return di.print_insn (memaddr, branch_delay_insns);
|
|
}
|
|
|
|
/* Return the length in bytes of the instruction at address MEMADDR in
|
|
debugged memory. */
|
|
|
|
int
|
|
gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
{
|
|
return gdb_print_insn (gdbarch, addr, &null_stream, NULL);
|
|
}
|
|
|
|
/* fprintf-function for gdb_buffered_insn_length. This function is a
|
|
nop, we don't want to print anything, we just want to compute the
|
|
length of the insn. */
|
|
|
|
static int ATTRIBUTE_PRINTF (2, 3)
|
|
gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize a struct disassemble_info for gdb_buffered_insn_length. */
|
|
|
|
static void
|
|
gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
|
|
struct disassemble_info *di,
|
|
const gdb_byte *insn, int max_len,
|
|
CORE_ADDR addr)
|
|
{
|
|
init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
|
|
|
|
/* init_disassemble_info installs buffer_read_memory, etc.
|
|
so we don't need to do that here.
|
|
The cast is necessary until disassemble_info is const-ified. */
|
|
di->buffer = (gdb_byte *) insn;
|
|
di->buffer_length = max_len;
|
|
di->buffer_vma = addr;
|
|
|
|
di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
|
|
di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
|
|
di->endian = gdbarch_byte_order (gdbarch);
|
|
di->endian_code = gdbarch_byte_order_for_code (gdbarch);
|
|
|
|
di->disassembler_options = get_disassembler_options (gdbarch);
|
|
disassemble_init_for_target (di);
|
|
}
|
|
|
|
/* Return the length in bytes of INSN. MAX_LEN is the size of the
|
|
buffer containing INSN. */
|
|
|
|
int
|
|
gdb_buffered_insn_length (struct gdbarch *gdbarch,
|
|
const gdb_byte *insn, int max_len, CORE_ADDR addr)
|
|
{
|
|
struct disassemble_info di;
|
|
|
|
gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
|
|
|
|
return gdbarch_print_insn (gdbarch, addr, &di);
|
|
}
|
|
|
|
char *
|
|
get_disassembler_options (struct gdbarch *gdbarch)
|
|
{
|
|
char **disassembler_options = gdbarch_disassembler_options (gdbarch);
|
|
if (disassembler_options == NULL)
|
|
return NULL;
|
|
return *disassembler_options;
|
|
}
|
|
|
|
void
|
|
set_disassembler_options (char *prospective_options)
|
|
{
|
|
struct gdbarch *gdbarch = get_current_arch ();
|
|
char **disassembler_options = gdbarch_disassembler_options (gdbarch);
|
|
const disasm_options_t *valid_options;
|
|
char *options = remove_whitespace_and_extra_commas (prospective_options);
|
|
const char *opt;
|
|
|
|
/* Allow all architectures, even ones that do not support 'set disassembler',
|
|
to reset their disassembler options to NULL. */
|
|
if (options == NULL)
|
|
{
|
|
if (disassembler_options != NULL)
|
|
{
|
|
free (*disassembler_options);
|
|
*disassembler_options = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
valid_options = gdbarch_valid_disassembler_options (gdbarch);
|
|
if (valid_options == NULL)
|
|
{
|
|
fprintf_filtered (gdb_stdlog, _("\
|
|
'set disassembler-options ...' is not supported on this architecture.\n"));
|
|
return;
|
|
}
|
|
|
|
/* Verify we have valid disassembler options. */
|
|
FOR_EACH_DISASSEMBLER_OPTION (opt, options)
|
|
{
|
|
size_t i;
|
|
for (i = 0; valid_options->name[i] != NULL; i++)
|
|
if (disassembler_options_cmp (opt, valid_options->name[i]) == 0)
|
|
break;
|
|
if (valid_options->name[i] == NULL)
|
|
{
|
|
fprintf_filtered (gdb_stdlog,
|
|
_("Invalid disassembler option value: '%s'.\n"),
|
|
opt);
|
|
return;
|
|
}
|
|
}
|
|
|
|
free (*disassembler_options);
|
|
*disassembler_options = xstrdup (options);
|
|
}
|
|
|
|
static void
|
|
set_disassembler_options_sfunc (char *args, int from_tty,
|
|
struct cmd_list_element *c)
|
|
{
|
|
set_disassembler_options (prospective_options);
|
|
}
|
|
|
|
static void
|
|
show_disassembler_options_sfunc (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
struct gdbarch *gdbarch = get_current_arch ();
|
|
const disasm_options_t *valid_options;
|
|
|
|
const char *options = get_disassembler_options (gdbarch);
|
|
if (options == NULL)
|
|
options = "";
|
|
|
|
fprintf_filtered (file, _("The current disassembler options are '%s'\n"),
|
|
options);
|
|
|
|
valid_options = gdbarch_valid_disassembler_options (gdbarch);
|
|
|
|
if (valid_options == NULL)
|
|
return;
|
|
|
|
fprintf_filtered (file, _("\n\
|
|
The following disassembler options are supported for use with the\n\
|
|
'set disassembler-options <option>[,<option>...]' command:\n"));
|
|
|
|
if (valid_options->description != NULL)
|
|
{
|
|
size_t i, max_len = 0;
|
|
|
|
/* Compute the length of the longest option name. */
|
|
for (i = 0; valid_options->name[i] != NULL; i++)
|
|
{
|
|
size_t len = strlen (valid_options->name[i]);
|
|
if (max_len < len)
|
|
max_len = len;
|
|
}
|
|
|
|
for (i = 0, max_len++; valid_options->name[i] != NULL; i++)
|
|
{
|
|
fprintf_filtered (file, " %s", valid_options->name[i]);
|
|
if (valid_options->description[i] != NULL)
|
|
fprintf_filtered (file, "%*c %s",
|
|
(int)(max_len - strlen (valid_options->name[i])), ' ',
|
|
valid_options->description[i]);
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
size_t i;
|
|
fprintf_filtered (file, " ");
|
|
for (i = 0; valid_options->name[i] != NULL; i++)
|
|
{
|
|
fprintf_filtered (file, "%s", valid_options->name[i]);
|
|
if (valid_options->name[i + 1] != NULL)
|
|
fprintf_filtered (file, ", ");
|
|
wrap_here (" ");
|
|
}
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
}
|
|
|
|
/* A completion function for "set disassembler". */
|
|
|
|
static void
|
|
disassembler_options_completer (struct cmd_list_element *ignore,
|
|
completion_tracker &tracker,
|
|
const char *text, const char *word)
|
|
{
|
|
struct gdbarch *gdbarch = get_current_arch ();
|
|
const disasm_options_t *opts = gdbarch_valid_disassembler_options (gdbarch);
|
|
|
|
if (opts != NULL)
|
|
{
|
|
/* Only attempt to complete on the last option text. */
|
|
const char *separator = strrchr (text, ',');
|
|
if (separator != NULL)
|
|
text = separator + 1;
|
|
text = skip_spaces_const (text);
|
|
complete_on_enum (tracker, opts->name, text, word);
|
|
}
|
|
}
|
|
|
|
|
|
/* Initialization code. */
|
|
|
|
/* -Wmissing-prototypes */
|
|
extern initialize_file_ftype _initialize_disasm;
|
|
|
|
void
|
|
_initialize_disasm (void)
|
|
{
|
|
struct cmd_list_element *cmd;
|
|
|
|
/* Add the command that controls the disassembler options. */
|
|
cmd = add_setshow_string_noescape_cmd ("disassembler-options", no_class,
|
|
&prospective_options, _("\
|
|
Set the disassembler options.\n\
|
|
Usage: set disassembler-options <option>[,<option>...]\n\n\
|
|
See: 'show disassembler-options' for valid option values.\n"), _("\
|
|
Show the disassembler options."), NULL,
|
|
set_disassembler_options_sfunc,
|
|
show_disassembler_options_sfunc,
|
|
&setlist, &showlist);
|
|
set_cmd_completer (cmd, disassembler_options_completer);
|
|
}
|