mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
5203 lines
163 KiB
C
5203 lines
163 KiB
C
/* 32-bit ELF support for C-SKY.
|
|
Copyright (C) 1998-2019 Free Software Foundation, Inc.
|
|
Contributed by C-SKY Microsystems and Mentor Graphics.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
#include "bfdlink.h"
|
|
#include "libbfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf/csky.h"
|
|
#include "opcode/csky.h"
|
|
#include <assert.h>
|
|
#include "libiberty.h"
|
|
|
|
/* Data structures used for merging different arch variants.
|
|
V1 (510/610) and V2 (8xx) processors are incompatible, but
|
|
we can merge wthin each family. */
|
|
|
|
enum merge_class
|
|
{
|
|
CSKY_V1,
|
|
CSKY_V2
|
|
};
|
|
|
|
typedef struct csky_arch_for_merge
|
|
{
|
|
const char *name;
|
|
const unsigned long arch_eflag;
|
|
/* The files can merge only if they are in same class. */
|
|
enum merge_class class;
|
|
/* When input files have different levels,
|
|
the target sets arch_eflag to the largest level file's arch_eflag. */
|
|
unsigned int class_level;
|
|
/* Control whether to print warning when merging with different arch. */
|
|
unsigned int do_warning;
|
|
} csky_arch_for_merge;
|
|
|
|
static struct csky_arch_for_merge csky_archs[] =
|
|
{
|
|
/* 510 and 610 merge to 610 without warning. */
|
|
{ "510", CSKY_ARCH_510, CSKY_V1, 0, 0},
|
|
{ "610", CSKY_ARCH_610, CSKY_V1, 1, 0},
|
|
/* 801, 802, 803, 807, 810 merge to largest one. */
|
|
{ "801", CSKY_ARCH_801, CSKY_V2, 0, 1},
|
|
{ "802", CSKY_ARCH_802, CSKY_V2, 1, 1},
|
|
{ "803", CSKY_ARCH_803, CSKY_V2, 2, 1},
|
|
{ "807", CSKY_ARCH_807, CSKY_V2, 3, 1},
|
|
{ "810", CSKY_ARCH_810, CSKY_V2, 4, 1},
|
|
{ NULL, 0, 0, 0, 0}
|
|
};
|
|
|
|
/* Return the ARCH bits out of ABFD. */
|
|
#define bfd_csky_arch(abfd) \
|
|
(elf_elfheader (abfd)->e_flags & CSKY_ARCH_MASK)
|
|
|
|
/* Return the ABI bits out of ABFD. */
|
|
#define bfd_csky_abi(abfd) \
|
|
(elf_elfheader (abfd)->e_flags & CSKY_ABI_MASK)
|
|
|
|
|
|
/* The index of a howto-item is implicitly equal to
|
|
the corresponding Relocation Type Encoding. */
|
|
static reloc_howto_type csky_elf_howto_table[] =
|
|
{
|
|
/* 0 */
|
|
HOWTO (R_CKCORE_NONE, /* type */
|
|
0, /* rightshift */
|
|
0, /* size */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_NONE", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 1. */
|
|
HOWTO (R_CKCORE_ADDR32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_ADDR32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 2: Only for csky v1. */
|
|
HOWTO (R_CKCORE_PCREL_IMM8BY4, /* type */
|
|
2, /* rightshift */
|
|
1, /* size */
|
|
8, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_PCREL_IMM8BY4", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xff, /* src_mask */
|
|
0xff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 3: Only for csky v1. */
|
|
HOWTO (R_CKCORE_PCREL_IMM11BY2, /* type */
|
|
1, /* rightshift */
|
|
1, /* size */
|
|
11, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PCREL_IMM11BY2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x7ff, /* src_mask */
|
|
0x7ff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 4: DELETED. */
|
|
HOWTO (R_CKCORE_PCREL_IMM4BY2,0,0,0,0,0,0,0,"R_CKCORE_PCREL_IMM4BY2",0,0,0,0),
|
|
|
|
/* 5. */
|
|
HOWTO (R_CKCORE_PCREL32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PCREL32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 6: Only for csky v1. */
|
|
HOWTO (R_CKCORE_PCREL_JSR_IMM11BY2, /* type */
|
|
1, /* rightshift */
|
|
1, /* size */
|
|
11, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PCREL_JSR_IMM11BY2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x7ff, /* src_mask */
|
|
0x7ff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 7: GNU extension to record C++ vtable member usage. */
|
|
HOWTO (R_CKCORE_GNU_VTENTRY, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
|
|
"R_CKCORE_GNU_VTENTRY", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 8: GNU extension to record C++ vtable hierarchy. */
|
|
HOWTO (R_CKCORE_GNU_VTINHERIT, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_GNU_VTINHERIT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 9. */
|
|
HOWTO (R_CKCORE_RELATIVE, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_RELATIVE", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 10: None. */
|
|
/* FIXME: It is a bug that copy relocations are not implemented. */
|
|
HOWTO (R_CKCORE_COPY, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_COPY", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 11: None. */
|
|
HOWTO (R_CKCORE_GLOB_DAT,0,0,0,0,0,0,0,"R_CKCORE_GLOB_DAT",0,0,0,0),
|
|
|
|
/* 12: None. */
|
|
HOWTO (R_CKCORE_JUMP_SLOT,0,0,0,0,0,0,0,"R_CKCORE_JUMP_SLOT",0,0,0,0),
|
|
|
|
/* 13. */
|
|
HOWTO (R_CKCORE_GOTOFF, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOTOFF", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffffl, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 14. */
|
|
HOWTO (R_CKCORE_GOTPC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOTPC", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 15. */
|
|
HOWTO (R_CKCORE_GOT32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOT32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 16. */
|
|
HOWTO (R_CKCORE_PLT32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PLT32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 17: None. */
|
|
HOWTO (R_CKCORE_ADDRGOT,0,0,0,0,0,0,0,"R_CKCORE_ADDRGOT",0,0,0,0),
|
|
|
|
/* 18: None. */
|
|
HOWTO (R_CKCORE_ADDRPLT,0,0,0,0,0,0,0,"R_CKCORE_ADDRPLT",0,0,0,0),
|
|
|
|
/* 19: Only for csky v2. */
|
|
HOWTO (R_CKCORE_PCREL_IMM26BY2, /* type */
|
|
1, /* rightshift */
|
|
2, /* size */
|
|
26, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PCREL_IMM26BY2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x3ffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 20: Only for csky v2. */
|
|
HOWTO (R_CKCORE_PCREL_IMM16BY2, /* type */
|
|
1, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_PCREL_IMM16BY2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 21: Only for csky v2. */
|
|
HOWTO (R_CKCORE_PCREL_IMM16BY4, /* type */
|
|
2, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_PCREL_IMM16BY4", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffff0000, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 22: Only for csky v2. */
|
|
HOWTO (R_CKCORE_PCREL_IMM10BY2, /* type */
|
|
1, /* rightshift */
|
|
1, /* size */
|
|
10, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PCREL_IMM10BY2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x3ff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 23: Only for csky v2. */
|
|
HOWTO (R_CKCORE_PCREL_IMM10BY4, /* type */
|
|
2, /* rightshift */
|
|
2, /* size */
|
|
10, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_PCREL_IMM10BY4", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x3ff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 24: Only for csky v2. */
|
|
HOWTO (R_CKCORE_ADDR_HI16, /* type */
|
|
16, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_ADDR_HI16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 25. */
|
|
HOWTO (R_CKCORE_ADDR_LO16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_ADDR_LO16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 26. */
|
|
HOWTO (R_CKCORE_GOTPC_HI16, /* type */
|
|
16, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOTPC_HI16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 27. */
|
|
HOWTO (R_CKCORE_GOTPC_LO16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOTPC_LO16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 28. */
|
|
HOWTO (R_CKCORE_GOTOFF_HI16, /* type */
|
|
16, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOTOFF_HI16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 29. */
|
|
HOWTO (R_CKCORE_GOTOFF_LO16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOTOFF_LO16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 30. */
|
|
HOWTO (R_CKCORE_GOT12, /* type */
|
|
2, /* rightshift */
|
|
2, /* size */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOT12", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xfff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 31. */
|
|
HOWTO (R_CKCORE_GOT_HI16, /* type */
|
|
16, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOT_HI16", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 32. */
|
|
HOWTO (R_CKCORE_GOT_LO16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOT_LO16", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 33. */
|
|
HOWTO (R_CKCORE_PLT12, /* type */
|
|
2, /* rightshift */
|
|
2, /* size */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PLT12", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xfff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 34. */
|
|
HOWTO (R_CKCORE_PLT_HI16, /* type */
|
|
16, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PLT_HI16", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 35. */
|
|
HOWTO (R_CKCORE_PLT_LO16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PLT_LO16", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 36: None. */
|
|
HOWTO (R_CKCORE_ADDRGOT_HI16,0,0,0,0,0,0,0,"R_CKCORE_",0,0,0,0),
|
|
|
|
/* 37: None. */
|
|
HOWTO (R_CKCORE_ADDRGOT_LO16,0,0,0,0,0,0,0,"R_CKCORE_",0,0,0,0),
|
|
|
|
/* 38: None. */
|
|
HOWTO (R_CKCORE_ADDRPLT_HI16,0,0,0,0,0,0,0,"R_CKCORE_",0,0,0,0),
|
|
|
|
/* 39: None. */
|
|
HOWTO (R_CKCORE_ADDRPLT_LO16,0,0,0,0,0,0,0,"R_CKCORE_",0,0,0,0),
|
|
|
|
/* 40. */
|
|
HOWTO (R_CKCORE_PCREL_JSR_IMM26BY2, /* type */
|
|
1, /* rightshift */
|
|
2, /* size */
|
|
26, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PCREL_JSR_IMM26BY2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x3ffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 41. */
|
|
HOWTO (R_CKCORE_TOFFSET_LO16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_unsigned, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_TOFFSET_LO16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 42. */
|
|
HOWTO (R_CKCORE_DOFFSET_LO16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_unsigned, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_DOFFSET_LO16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 43. */
|
|
HOWTO (R_CKCORE_PCREL_IMM18BY2, /* type */
|
|
1, /* rightshift */
|
|
2, /* size */
|
|
18, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_PCREL_IMM18BY2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x3ffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 44. */
|
|
HOWTO (R_CKCORE_DOFFSET_IMM18, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
18, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_unsigned, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_DOFFSET_IMM18", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x3ffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 45. */
|
|
HOWTO (R_CKCORE_DOFFSET_IMM18BY2, /* type */
|
|
1, /* rightshift */
|
|
2, /* size */
|
|
18, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_unsigned, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_DOFFSET_IMM18BY2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x3ffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 46. */
|
|
HOWTO (R_CKCORE_DOFFSET_IMM18BY4, /* type */
|
|
2, /* rightshift */
|
|
2, /* size */
|
|
18, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_unsigned, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_DOFFSET_IMM18BY4", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x3ffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 47. */
|
|
HOWTO (R_CKCORE_GOTOFF_IMM18, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
18, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOTOFF_IMM18", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xfffc, /* src_mask */
|
|
0x3ffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 48. */
|
|
HOWTO (R_CKCORE_GOT_IMM18BY4, /* type */
|
|
2, /* rightshift */
|
|
2, /* size */
|
|
18, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_GOT_IMM18BY4", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xfffc, /* src_mask */
|
|
0x3ffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 49. */
|
|
HOWTO (R_CKCORE_PLT_IMM18BY4, /* type */
|
|
2, /* rightshift */
|
|
2, /* size */
|
|
18, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PLT_IMM18BY4", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xfffc, /* src_mask */
|
|
0x3ffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 50: for lrw16. */
|
|
HOWTO (R_CKCORE_PCREL_IMM7BY4, /* type */
|
|
2, /* rightshift */
|
|
1, /* size */
|
|
7, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PCREL_IMM7BY4", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xec1f, /* src_mask */
|
|
0x31f, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 51: for static nptl. */
|
|
HOWTO (R_CKCORE_TLS_LE32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_TLS_LE32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 52: for static nptl. */
|
|
HOWTO (R_CKCORE_TLS_IE32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_TLS_IE32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 53: for pic nptl. */
|
|
HOWTO (R_CKCORE_TLS_GD32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_TLS_GD32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 54: for pic nptl. */
|
|
HOWTO (R_CKCORE_TLS_LDM32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_TLS_LDM32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 55: for pic nptl. */
|
|
HOWTO (R_CKCORE_TLS_LDO32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_TLS_LDO32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 56: for linker. */
|
|
HOWTO (R_CKCORE_TLS_DTPMOD32,0,0,0,0,0,0,0,"R_CKCORE_TLS_DTPMOD32",0,0,0,0),
|
|
|
|
/* 57: for linker. */
|
|
HOWTO (R_CKCORE_TLS_DTPOFF32,0,0,0,0,0,0,0,"R_CKCORE_TLS_DTPOFF32",0,0,0,0),
|
|
|
|
/* 58: for linker. */
|
|
HOWTO (R_CKCORE_TLS_TPOFF32,0,0,0,0,0,0,0,"R_CKCORE_TLS_TPOFF32",0,0,0,0),
|
|
|
|
/* 59: for ck807f. */
|
|
HOWTO (R_CKCORE_PCREL_FLRW_IMM8BY4, /* type */
|
|
2, /* rightshift */
|
|
2, /* size */
|
|
8, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_PCREL_FLRW_IMM8BY4", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xfe1fff0f, /* src_mask */
|
|
0x1e000f0, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 60: for 810 not to generate jsri. */
|
|
HOWTO (R_CKCORE_NOJSRI, /* type */
|
|
0, /* rightshift */
|
|
2, /* size */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_NOJSRI", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffff, /* src_mask */
|
|
0xffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 61: for callgraph. */
|
|
HOWTO (R_CKCORE_CALLGRAPH, /* type */
|
|
0, /* rightshift */
|
|
0, /* size */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_CKCORE_CALLGRAPH", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0x0, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 62: IRELATIVE*/
|
|
HOWTO (R_CKCORE_IRELATIVE,0,0,0,0,0,0,0,"R_CKCORE_IRELATIVE",0,0,0,0),
|
|
|
|
/* 63: for bloop instruction */
|
|
HOWTO (R_CKCORE_PCREL_BLOOP_IMM4BY4, /* type */
|
|
1, /* rightshift */
|
|
2, /* size */
|
|
4, /* bitsize */
|
|
1, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PCREL_BLOOP_IMM4BY4", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xf, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
/* 64: for bloop instruction */
|
|
HOWTO (R_CKCORE_PCREL_BLOOP_IMM12BY4, /* type */
|
|
1, /* rightshift */
|
|
2, /* size */
|
|
12, /* bitsize */
|
|
1, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_CKCORE_PCREL_BLOOP_IMM12BY4", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0, /* src_mask */
|
|
0xfff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
|
|
};
|
|
|
|
|
|
/* Whether GOT overflow checking is needed. */
|
|
static int check_got_overflow = 0;
|
|
|
|
/* Whether the target 32 bits is forced so that the high
|
|
16 bits is at the low address. */
|
|
static int need_reverse_bits;
|
|
|
|
/* Used for relaxation. See csky_relocate_contents. */
|
|
static bfd_vma read_content_substitute;
|
|
|
|
/* NOTICE!
|
|
The way the following two look-up functions work demands
|
|
that BFD_RELOC_CKCORE_xxx are defined contiguously. */
|
|
|
|
static reloc_howto_type *
|
|
csky_elf_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
|
|
bfd_reloc_code_real_type code)
|
|
{
|
|
int csky_code = code - BFD_RELOC_CKCORE_NONE;
|
|
|
|
if (csky_code < 0 || csky_code >= R_CKCORE_MAX)
|
|
{
|
|
switch (code)
|
|
{
|
|
case BFD_RELOC_NONE:
|
|
csky_code = R_CKCORE_NONE;
|
|
break;
|
|
case BFD_RELOC_32:
|
|
csky_code = R_CKCORE_ADDR32;
|
|
break;
|
|
case BFD_RELOC_32_PCREL:
|
|
csky_code = R_CKCORE_PCREL32;
|
|
break;
|
|
case BFD_RELOC_VTABLE_INHERIT:
|
|
csky_code = R_CKCORE_GNU_VTINHERIT;
|
|
break;
|
|
case BFD_RELOC_VTABLE_ENTRY:
|
|
csky_code = R_CKCORE_GNU_VTENTRY;
|
|
break;
|
|
case BFD_RELOC_RVA:
|
|
csky_code = R_CKCORE_RELATIVE;
|
|
break;
|
|
default:
|
|
return (reloc_howto_type *)NULL;
|
|
}
|
|
}
|
|
/* Note: when adding csky bfd reloc types in bfd-in2.h
|
|
and csky elf reloc types in elf/csky.h,
|
|
the order of the two reloc type tables should be consistent. */
|
|
return &csky_elf_howto_table[csky_code];
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
csky_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
const char *r_name)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < R_CKCORE_MAX; i++)
|
|
if (strcasecmp (csky_elf_howto_table[i].name, r_name) == 0)
|
|
return &csky_elf_howto_table[i];
|
|
return NULL;
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
elf32_csky_howto_from_type (unsigned int r_type)
|
|
{
|
|
if (r_type < R_CKCORE_MAX)
|
|
return &csky_elf_howto_table[r_type];
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static bfd_boolean
|
|
csky_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
|
|
arelent *cache_ptr,
|
|
Elf_Internal_Rela *dst)
|
|
{
|
|
unsigned int r_type;
|
|
|
|
r_type = ELF32_R_TYPE (dst->r_info);
|
|
cache_ptr->howto = elf32_csky_howto_from_type (r_type);
|
|
if (cache_ptr->howto == NULL)
|
|
{
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
|
|
abfd, r_type);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* The Global Offset Table max size. */
|
|
#define GOT_MAX_SIZE 0xFFFF8
|
|
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
|
section. */
|
|
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
|
|
|
|
/* The size in bytes of an entry in the procedure linkage table. */
|
|
#define PLT_ENTRY_SIZE 12
|
|
#define PLT_ENTRY_SIZE_P 16
|
|
|
|
/* The first entry in a procedure linkage table looks like
|
|
this. It is set up so that any shared library function that is
|
|
called before the relocation has been set up calls the dynamic
|
|
linker first. */
|
|
static const bfd_vma csky_elf_plt_entry_v2[PLT_ENTRY_SIZE / 4] =
|
|
{
|
|
0xd99c2002, /* ldw r12, (gb, 8) */
|
|
0xea0d0000, /* movi r13,offset */
|
|
0xe8cc0000 /* jmp r12 */
|
|
};
|
|
|
|
static const bfd_vma csky_elf_plt_entry_v1[PLT_ENTRY_SIZE / 2 ] =
|
|
{
|
|
0x25f0, /* subi r0, 32 */
|
|
0x9200, /* stw r2, (r0, 0) */
|
|
0x9310, /* stw r3, (r0, 4) */
|
|
0x822e, /* ldw r2, (gb, 8) */
|
|
0x7301, /* lrw r3, #offset */
|
|
0x00c2, /* jmp r2 */
|
|
};
|
|
|
|
/* Branch stub support. */
|
|
|
|
enum stub_insn_type
|
|
{
|
|
INSN16,
|
|
INSN32,
|
|
DATA_TYPE
|
|
};
|
|
|
|
bfd_boolean use_branch_stub = TRUE;
|
|
typedef struct
|
|
{
|
|
bfd_vma data;
|
|
enum stub_insn_type type;
|
|
unsigned int r_type;
|
|
int reloc_addend;
|
|
} insn_sequence;
|
|
|
|
static const insn_sequence elf32_csky_stub_long_branch[] =
|
|
{
|
|
{0xea8d0002, INSN32, R_CKCORE_NONE, 0x0}, /* lrw t1,[pc+8] */
|
|
{0x7834, INSN16, R_CKCORE_NONE, 0x0}, /* jmp t1 */
|
|
{0x6c03, INSN16, R_CKCORE_NONE, 0x0}, /* nop */
|
|
{0x0, DATA_TYPE, R_CKCORE_ADDR32, 0x0} /* .long addr */
|
|
};
|
|
|
|
static const insn_sequence elf32_csky_stub_long_branch_jmpi[] =
|
|
{
|
|
{0xeac00001, INSN32, R_CKCORE_NONE, 0x0}, /* jmpi [pc+4] */
|
|
{0x0, DATA_TYPE, R_CKCORE_ADDR32, 0x0} /* .long addr */
|
|
};
|
|
|
|
/* The bsr instruction offset limit. */
|
|
#define BSR_MAX_FWD_BRANCH_OFFSET (((1 << 25) - 1) << 1)
|
|
#define BSR_MAX_BWD_BRANCH_OFFSET (-(1 << 26))
|
|
|
|
#define STUB_SUFFIX ".stub"
|
|
#define STUB_ENTRY_NAME "__%s_veneer"
|
|
|
|
/* One entry per long/short branch stub defined above. */
|
|
#define DEF_STUBS \
|
|
DEF_STUB(long_branch) \
|
|
DEF_STUB(long_branch_jmpi)
|
|
|
|
#define DEF_STUB(x) csky_stub_##x,
|
|
enum elf32_csky_stub_type
|
|
{
|
|
csky_stub_none,
|
|
DEF_STUBS
|
|
};
|
|
#undef DEF_STUB
|
|
|
|
typedef struct
|
|
{
|
|
const insn_sequence* template_sequence;
|
|
int template_size;
|
|
} stub_def;
|
|
|
|
#define DEF_STUB(x) {elf32_csky_stub_##x, ARRAY_SIZE(elf32_csky_stub_##x)},
|
|
static const stub_def stub_definitions[] = {
|
|
{NULL, 0},
|
|
DEF_STUBS
|
|
};
|
|
|
|
/* The size of the thread control block. */
|
|
#define TCB_SIZE 8
|
|
|
|
struct csky_elf_obj_tdata
|
|
{
|
|
struct elf_obj_tdata root;
|
|
|
|
/* tls_type for each local got entry. */
|
|
char *local_got_tls_type;
|
|
};
|
|
|
|
#define csky_elf_local_got_tls_type(bfd) \
|
|
(csky_elf_tdata (bfd)->local_got_tls_type)
|
|
|
|
#define csky_elf_tdata(bfd) \
|
|
((struct csky_elf_obj_tdata *) (bfd)->tdata.any)
|
|
|
|
struct elf32_csky_stub_hash_entry
|
|
{
|
|
/* Base hash table entry structure. */
|
|
struct bfd_hash_entry root;
|
|
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
|
bfd_vma stub_offset;
|
|
|
|
/* Given the symbol's value and its section we can determine its final
|
|
value when building the stubs (so the stub knows where to jump). */
|
|
bfd_vma target_value;
|
|
asection *target_section;
|
|
|
|
/* Offset to apply to relocation referencing target_value. */
|
|
bfd_vma target_addend;
|
|
|
|
/* The stub type. */
|
|
enum elf32_csky_stub_type stub_type;
|
|
/* Its encoding size in bytes. */
|
|
int stub_size;
|
|
/* Its template. */
|
|
const insn_sequence *stub_template;
|
|
/* The size of the template (number of entries). */
|
|
int stub_template_size;
|
|
|
|
/* The symbol table entry, if any, that this was derived from. */
|
|
struct csky_elf_link_hash_entry *h;
|
|
|
|
/* Destination symbol type. */
|
|
unsigned char st_type;
|
|
|
|
/* Where this stub is being called from, or, in the case of combined
|
|
stub sections, the first input section in the group. */
|
|
asection *id_sec;
|
|
|
|
/* The name for the local symbol at the start of this stub. The
|
|
stub name in the hash table has to be unique; this does not, so
|
|
it can be friendlier. */
|
|
char *output_name;
|
|
};
|
|
|
|
#define csky_stub_hash_lookup(table, string, create, copy) \
|
|
((struct elf32_csky_stub_hash_entry *) \
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
|
|
|
/* C-SKY ELF linker hash entry. */
|
|
struct csky_elf_link_hash_entry
|
|
{
|
|
struct elf_link_hash_entry elf;
|
|
int plt_refcount;
|
|
/* For sub jsri2bsr relocs count. */
|
|
int jsri2bsr_refcount;
|
|
/* Track dynamic relocs copied for this symbol. */
|
|
struct elf_dyn_relocs *dyn_relocs;
|
|
|
|
#define GOT_UNKNOWN 0
|
|
#define GOT_NORMAL 1
|
|
#define GOT_TLS_GD 2
|
|
#define GOT_TLS_IE 4
|
|
|
|
unsigned char tls_type;
|
|
|
|
/* A pointer to the most recently used stub hash entry against this
|
|
symbol. */
|
|
struct elf32_csky_stub_hash_entry *stub_cache;
|
|
};
|
|
|
|
/* Traverse an C-SKY ELF linker hash table. */
|
|
#define csky_elf_link_hash_traverse(table, func, info) \
|
|
(elf_link_hash_traverse \
|
|
(&(table)->root, \
|
|
(bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
|
|
(info)))
|
|
|
|
/* Get the C-SKY ELF linker hash table from a link_info structure. */
|
|
#define csky_elf_hash_table(info) \
|
|
((elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
|
|
== CSKY_ELF_DATA) \
|
|
? ((struct csky_elf_link_hash_table *) ((info)->hash)) \
|
|
: NULL)
|
|
|
|
#define csky_elf_hash_entry(ent) ((struct csky_elf_link_hash_entry*)(ent))
|
|
|
|
/* Array to keep track of which stub sections have been created, and
|
|
information on stub grouping. */
|
|
struct map_stub
|
|
{
|
|
/* This is the section to which stubs in the group will be
|
|
attached. */
|
|
asection *link_sec;
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
};
|
|
|
|
/* C-SKY ELF linker hash table. */
|
|
struct csky_elf_link_hash_table
|
|
{
|
|
struct elf_link_hash_table elf;
|
|
|
|
/* Small local sym cache. */
|
|
struct sym_cache sym_cache;
|
|
|
|
/* Data for R_CKCORE_TLS_LDM32 relocations. */
|
|
union
|
|
{
|
|
bfd_signed_vma refcount;
|
|
bfd_vma offset;
|
|
} tls_ldm_got;
|
|
|
|
/* The stub hash table. */
|
|
struct bfd_hash_table stub_hash_table;
|
|
|
|
/* Linker stub bfd. */
|
|
bfd *stub_bfd;
|
|
|
|
/* Linker call-backs. */
|
|
asection * (*add_stub_section) (const char *, asection *);
|
|
void (*layout_sections_again) (void);
|
|
|
|
/* Array to keep track of which stub sections have been created, and
|
|
* information on stub grouping. */
|
|
struct map_stub *stub_group;
|
|
|
|
/* Number of elements in stub_group. */
|
|
unsigned int top_id;
|
|
|
|
/* Assorted information used by elf32_csky_size_stubs. */
|
|
unsigned int bfd_count;
|
|
unsigned int top_index;
|
|
asection **input_list;
|
|
};
|
|
|
|
/* We can't change vectors in the bfd target which will apply to
|
|
data sections, however we only do this to the text sections. */
|
|
|
|
static bfd_vma
|
|
csky_get_insn_32 (bfd *input_bfd,
|
|
bfd_byte *location)
|
|
{
|
|
if (bfd_big_endian (input_bfd))
|
|
return bfd_get_32 (input_bfd, location);
|
|
else
|
|
return (bfd_get_16 (input_bfd, location) << 16
|
|
| bfd_get_16 (input_bfd, location + 2));
|
|
}
|
|
|
|
static void
|
|
csky_put_insn_32 (bfd *input_bfd,
|
|
bfd_vma x,
|
|
bfd_byte *location)
|
|
{
|
|
if (bfd_big_endian (input_bfd))
|
|
bfd_put_32 (input_bfd, x, location);
|
|
else
|
|
{
|
|
bfd_put_16 (input_bfd, x >> 16, location);
|
|
bfd_put_16 (input_bfd, x & 0xffff, location + 2);
|
|
}
|
|
}
|
|
|
|
/* Find or create a stub section. Returns a pointer to the stub section, and
|
|
the section to which the stub section will be attached (in *LINK_SEC_P).
|
|
LINK_SEC_P may be NULL. */
|
|
|
|
static asection *
|
|
elf32_csky_create_or_find_stub_sec (asection **link_sec_p, asection *section,
|
|
struct csky_elf_link_hash_table *htab)
|
|
{
|
|
asection *link_sec;
|
|
asection *stub_sec;
|
|
|
|
link_sec = htab->stub_group[section->id].link_sec;
|
|
stub_sec = htab->stub_group[section->id].stub_sec;
|
|
if (stub_sec == NULL)
|
|
{
|
|
stub_sec = htab->stub_group[link_sec->id].stub_sec;
|
|
if (stub_sec == NULL)
|
|
{
|
|
size_t namelen;
|
|
bfd_size_type len;
|
|
char *s_name;
|
|
|
|
namelen = strlen (link_sec->name);
|
|
len = namelen + sizeof (STUB_SUFFIX);
|
|
s_name = bfd_alloc (htab->stub_bfd, len);
|
|
if (s_name == NULL)
|
|
return NULL;
|
|
|
|
memcpy (s_name, link_sec->name, namelen);
|
|
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
|
|
stub_sec = (*htab->add_stub_section) (s_name, link_sec);
|
|
if (stub_sec == NULL)
|
|
return NULL;
|
|
htab->stub_group[link_sec->id].stub_sec = stub_sec;
|
|
}
|
|
htab->stub_group[section->id].stub_sec = stub_sec;
|
|
}
|
|
|
|
if (link_sec_p)
|
|
*link_sec_p = link_sec;
|
|
|
|
return stub_sec;
|
|
}
|
|
|
|
/* Build a name for an entry in the stub hash table. */
|
|
|
|
static char *
|
|
elf32_csky_stub_name (const asection *input_section,
|
|
const asection *sym_sec,
|
|
const struct csky_elf_link_hash_entry *hash,
|
|
const Elf_Internal_Rela *rel)
|
|
{
|
|
char *stub_name;
|
|
bfd_size_type len;
|
|
|
|
if (hash)
|
|
{
|
|
len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
sprintf (stub_name, "%08x_%s+%x",
|
|
input_section->id & 0xffffffff,
|
|
hash->elf.root.root.string,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
}
|
|
else
|
|
{
|
|
len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
sprintf (stub_name, "%08x_%x:%x+%x",
|
|
input_section->id & 0xffffffff,
|
|
sym_sec->id & 0xffffffff,
|
|
(int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
}
|
|
|
|
return stub_name;
|
|
}
|
|
|
|
/* Determine the type of stub needed, if any, for a call. */
|
|
|
|
static enum elf32_csky_stub_type
|
|
csky_type_of_stub (struct bfd_link_info *info,
|
|
asection *input_sec,
|
|
const Elf_Internal_Rela *rel,
|
|
unsigned char st_type,
|
|
struct csky_elf_link_hash_entry *hash,
|
|
bfd_vma destination,
|
|
asection *sym_sec ATTRIBUTE_UNUSED,
|
|
bfd *input_bfd ATTRIBUTE_UNUSED,
|
|
const char *name ATTRIBUTE_UNUSED)
|
|
{
|
|
bfd_vma location;
|
|
bfd_signed_vma branch_offset;
|
|
unsigned int r_type;
|
|
enum elf32_csky_stub_type stub_type = csky_stub_none;
|
|
struct elf_link_hash_entry * h = &hash->elf;
|
|
|
|
/* We don't know the actual type of destination in case it is of
|
|
type STT_SECTION: give up. */
|
|
if (st_type == STT_SECTION)
|
|
return stub_type;
|
|
|
|
location = (input_sec->output_offset
|
|
+ input_sec->output_section->vma
|
|
+ rel->r_offset);
|
|
|
|
branch_offset = (bfd_signed_vma)(destination - location);
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
if (r_type == R_CKCORE_PCREL_IMM26BY2
|
|
&& ((h != NULL
|
|
&& ((h->def_dynamic && !h->def_regular)
|
|
|| (bfd_link_pic (info)
|
|
&& h->root.type == bfd_link_hash_defweak)))
|
|
|| branch_offset > BSR_MAX_FWD_BRANCH_OFFSET
|
|
|| branch_offset < BSR_MAX_BWD_BRANCH_OFFSET))
|
|
{
|
|
if (bfd_csky_arch (info->output_bfd) == CSKY_ARCH_810
|
|
|| bfd_csky_arch (info->output_bfd) == CSKY_ARCH_807)
|
|
stub_type = csky_stub_long_branch_jmpi;
|
|
else
|
|
stub_type = csky_stub_long_branch;
|
|
}
|
|
|
|
return stub_type;
|
|
}
|
|
|
|
/* Create an entry in an C-SKY ELF linker hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
csky_elf_link_hash_newfunc (struct bfd_hash_entry * entry,
|
|
struct bfd_hash_table * table,
|
|
const char * string)
|
|
{
|
|
struct csky_elf_link_hash_entry * ret =
|
|
(struct csky_elf_link_hash_entry *) entry;
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (ret == NULL)
|
|
{
|
|
ret = (struct csky_elf_link_hash_entry *)
|
|
bfd_hash_allocate (table,
|
|
sizeof (struct csky_elf_link_hash_entry));
|
|
if (ret == NULL)
|
|
return (struct bfd_hash_entry *) ret;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
ret = ((struct csky_elf_link_hash_entry *)
|
|
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *)ret,
|
|
table, string));
|
|
if (ret != NULL)
|
|
{
|
|
struct csky_elf_link_hash_entry *eh;
|
|
|
|
eh = (struct csky_elf_link_hash_entry *) ret;
|
|
eh->dyn_relocs = NULL;
|
|
eh->plt_refcount = 0;
|
|
eh->jsri2bsr_refcount = 0;
|
|
eh->tls_type = GOT_NORMAL;
|
|
ret->stub_cache = NULL;
|
|
}
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
}
|
|
|
|
/* Initialize an entry in the stub hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = ((struct bfd_hash_entry *)
|
|
bfd_hash_allocate (table,
|
|
sizeof (struct elf32_csky_stub_hash_entry)));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf32_csky_stub_hash_entry *eh;
|
|
|
|
/* Initialize the local fields. */
|
|
eh = (struct elf32_csky_stub_hash_entry *) entry;
|
|
eh->stub_sec = NULL;
|
|
eh->stub_offset = 0;
|
|
eh->target_value = 0;
|
|
eh->target_section = NULL;
|
|
eh->target_addend = 0;
|
|
eh->stub_type = csky_stub_none;
|
|
eh->stub_size = 0;
|
|
eh->stub_template = NULL;
|
|
eh->stub_template_size = -1;
|
|
eh->h = NULL;
|
|
eh->id_sec = NULL;
|
|
eh->output_name = NULL;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Free the derived linker hash table. */
|
|
|
|
static void
|
|
csky_elf_link_hash_table_free (bfd *obfd)
|
|
{
|
|
struct csky_elf_link_hash_table *ret
|
|
= (struct csky_elf_link_hash_table *) obfd->link.hash;
|
|
|
|
bfd_hash_table_free (&ret->stub_hash_table);
|
|
_bfd_elf_link_hash_table_free (obfd);
|
|
}
|
|
|
|
/* Create an CSKY elf linker hash table. */
|
|
|
|
static struct bfd_link_hash_table *
|
|
csky_elf_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct csky_elf_link_hash_table *ret;
|
|
bfd_size_type amt = sizeof (struct csky_elf_link_hash_table);
|
|
|
|
ret = (struct csky_elf_link_hash_table*) bfd_zmalloc (amt);
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
|
|
csky_elf_link_hash_newfunc,
|
|
sizeof (struct csky_elf_link_hash_entry),
|
|
CSKY_ELF_DATA))
|
|
{
|
|
free (ret);
|
|
return NULL;
|
|
}
|
|
|
|
if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
|
|
sizeof (struct elf32_csky_stub_hash_entry)))
|
|
{
|
|
free (ret);
|
|
return NULL;
|
|
}
|
|
ret->elf.root.hash_table_free = csky_elf_link_hash_table_free;
|
|
return &ret->elf.root;
|
|
}
|
|
|
|
static bfd_boolean
|
|
csky_elf_mkobject (bfd *abfd)
|
|
{
|
|
return bfd_elf_allocate_object (abfd, sizeof (struct csky_elf_obj_tdata),
|
|
CSKY_ELF_DATA);
|
|
}
|
|
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
|
|
static bfd_boolean
|
|
csky_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h)
|
|
{
|
|
struct csky_elf_link_hash_entry *eh;
|
|
struct csky_elf_link_hash_table *htab;
|
|
asection *srel;
|
|
asection *s;
|
|
eh = (struct csky_elf_link_hash_entry *)h;
|
|
if (eh == NULL)
|
|
return FALSE;
|
|
|
|
htab = csky_elf_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
/* Clear jsri2bsr_refcount, if creating shared library files. */
|
|
if (bfd_link_pic (info) && eh->jsri2bsr_refcount > 0)
|
|
eh->jsri2bsr_refcount = 0;
|
|
|
|
/* If there is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later. */
|
|
if (h->needs_plt)
|
|
{
|
|
/* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
|
|
symbol binds locally. */
|
|
if (h->plt.refcount <= 0
|
|
|| (h->type != STT_GNU_IFUNC
|
|
&& (SYMBOL_CALLS_LOCAL (info, h)
|
|
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
&& h->root.type == bfd_link_hash_undefweak))))
|
|
|
|
{
|
|
/* This case can occur if we saw a PLT32 reloc in an input
|
|
file, but the symbol was never referred to by a dynamic
|
|
object, or if all references were garbage collected. In
|
|
such a case, we don't actually need to build a procedure
|
|
linkage table, and we can just do a PC32 reloc instead. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
if (h->got.refcount == 0)
|
|
h->got.refcount += 1;
|
|
}
|
|
else if (h->got.refcount != 0)
|
|
{
|
|
h->got.refcount -= eh->plt_refcount;
|
|
eh->plt_refcount = 0;
|
|
}
|
|
return TRUE;
|
|
}
|
|
else
|
|
/* It's possible that we incorrectly decided a .plt reloc was
|
|
needed for an R_CKCORE_PC32 or similar reloc to a non-function
|
|
sym in check_relocs. We can't decide accurately between function
|
|
and non-function syms in check_relocs; objects loaded later in
|
|
the link may change h->type. So fix it now. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (h->is_weakalias)
|
|
{
|
|
struct elf_link_hash_entry *def = weakdef (h);
|
|
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
|
|
h->root.u.def.section = def->root.u.def.section;
|
|
h->root.u.def.value = def->root.u.def.value;
|
|
return TRUE;
|
|
}
|
|
|
|
/* If there are no non-GOT references, we do not need a copy
|
|
relocation. */
|
|
if (!h->non_got_ref)
|
|
return TRUE;
|
|
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
|
is not a function. */
|
|
|
|
/* If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. */
|
|
if (bfd_link_pic (info) || htab->elf.is_relocatable_executable)
|
|
return TRUE;
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
/* We must generate a R_CKCORE_COPY reloc to tell the dynamic linker to
|
|
copy the initial value out of the dynamic object and into the
|
|
runtime process image. We need to remember the offset into the
|
|
.rela.bss section we are going to use. */
|
|
if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
|
|
{
|
|
s = htab->elf.sdynrelro;
|
|
srel = htab->elf.sreldynrelro;
|
|
}
|
|
else
|
|
{
|
|
s = htab->elf.sdynbss;
|
|
srel = htab->elf.srelbss;
|
|
}
|
|
if (info->nocopyreloc == 0
|
|
&& (h->root.u.def.section->flags & SEC_ALLOC) != 0
|
|
&& h->size != 0
|
|
&& srel != NULL
|
|
&& s != NULL)
|
|
{
|
|
srel->size += sizeof (Elf32_External_Rela);
|
|
h->needs_copy = 1;
|
|
return _bfd_elf_adjust_dynamic_copy (info, h, s);
|
|
}
|
|
|
|
h->non_got_ref = 0;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
dynamic relocs. */
|
|
|
|
static bfd_boolean
|
|
csky_allocate_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct csky_elf_link_hash_table *htab;
|
|
struct csky_elf_link_hash_entry *eh;
|
|
struct elf_dyn_relocs *p;
|
|
|
|
/* For indirect case, such as _ZdlPv to _ZdlPv@@GLIBCXX_3.4. */
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
htab = csky_elf_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
/*TODO: how to deal with weak symbol relocs. */
|
|
if ((htab->elf.dynamic_sections_created || h->type == STT_GNU_IFUNC)
|
|
&& h->plt.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1 && !h->forced_local
|
|
&& h->root.type == bfd_link_hash_undefweak
|
|
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
|
|
{
|
|
asection *splt = htab->elf.splt;
|
|
|
|
/* If this is the first .plt entry, make room for the special
|
|
first entry. */
|
|
if (splt->size == 0)
|
|
{
|
|
if (bfd_csky_abi (info->output_bfd) == CSKY_ABI_V1)
|
|
splt->size += PLT_ENTRY_SIZE_P;
|
|
else
|
|
splt->size += PLT_ENTRY_SIZE;
|
|
}
|
|
h->plt.offset = splt->size;
|
|
|
|
/* If this symbol is not defined in a regular file, and we are
|
|
not generating a shared library, then set the symbol to this
|
|
location in the .plt. This is required to make function
|
|
pointers compare as equal between the normal executable and
|
|
the shared library. */
|
|
if (!bfd_link_pic (info) && !h->def_regular)
|
|
{
|
|
h->root.u.def.section = splt;
|
|
h->root.u.def.value = h->plt.offset;
|
|
}
|
|
|
|
/* Make room for this entry. */
|
|
if (bfd_csky_abi (info->output_bfd) == CSKY_ABI_V1)
|
|
splt->size += PLT_ENTRY_SIZE_P;
|
|
else
|
|
splt->size += PLT_ENTRY_SIZE;
|
|
/* We also need to make an entry in the .rela.plt section. */
|
|
htab->elf.srelplt->size += sizeof (Elf32_External_Rela);
|
|
|
|
/* We also need to make an entry in the .got.plt section, which
|
|
will be placed in the .got section by the linker script. */
|
|
htab->elf.sgotplt->size += 4;
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
if (h->got.refcount > 0)
|
|
{
|
|
asection *sgot;
|
|
bfd_boolean dyn;
|
|
int indx;
|
|
|
|
int tls_type = csky_elf_hash_entry (h)->tls_type;
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1 && !h->forced_local
|
|
&& h->root.type == bfd_link_hash_undefweak
|
|
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
|
|
sgot = htab->elf.sgot;
|
|
h->got.offset = sgot->size;
|
|
BFD_ASSERT (tls_type != GOT_UNKNOWN);
|
|
if (tls_type == GOT_NORMAL)
|
|
/* Non-TLS symbols need one GOT slot. */
|
|
sgot->size += 4;
|
|
else
|
|
{
|
|
if (tls_type & GOT_TLS_GD)
|
|
/* R_CKCORE_TLS_GD32 needs 2 consecutive GOT slots. */
|
|
sgot->size += 8;
|
|
if (tls_type & GOT_TLS_IE)
|
|
/* R_CKCORE_TLS_IE32 needs one GOT slot. */
|
|
sgot->size += 4;
|
|
}
|
|
dyn = htab->elf.dynamic_sections_created;
|
|
indx = 0;
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
|
|
&& (! bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
|
|
indx = h->dynindx;
|
|
|
|
if (tls_type != GOT_NORMAL
|
|
&& (bfd_link_pic (info) || indx != 0)
|
|
&& ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
&& !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
|
{
|
|
if (tls_type & GOT_TLS_IE)
|
|
htab->elf.srelgot->size += sizeof (Elf32_External_Rela);
|
|
if (tls_type & GOT_TLS_GD)
|
|
htab->elf.srelgot->size += sizeof (Elf32_External_Rela);
|
|
if ((tls_type & GOT_TLS_GD) && indx != 0)
|
|
htab->elf.srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else if (((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
&& !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
|
|
|| h->root.type != bfd_link_hash_undefweak)
|
|
&& (bfd_link_pic (info)
|
|
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)
|
|
|| h->plt.offset == (bfd_vma) -1))
|
|
htab->elf.srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
h->got.offset = (bfd_vma) -1;
|
|
|
|
eh = (struct csky_elf_link_hash_entry *) h;
|
|
if (eh->dyn_relocs == NULL)
|
|
return TRUE;
|
|
|
|
/* In the shared -Bsymbolic case, discard space allocated for
|
|
dynamic pc-relative relocs against symbols which turn out to be
|
|
defined in regular objects. For the normal shared case, discard
|
|
space for pc-relative relocs that have become local due to symbol
|
|
visibility changes. */
|
|
|
|
if (bfd_link_pic (info))
|
|
{
|
|
if (SYMBOL_CALLS_LOCAL (info, h))
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
|
|
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
p->count -= p->pc_count;
|
|
p->pc_count = 0;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
|
|
if (eh->jsri2bsr_refcount
|
|
&& h->root.type == bfd_link_hash_defined
|
|
&& eh->dyn_relocs != NULL)
|
|
eh->dyn_relocs->count -= eh->jsri2bsr_refcount;
|
|
|
|
/* Also discard relocs on undefined weak syms with non-default
|
|
visibility. */
|
|
if (eh->dyn_relocs != NULL
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
|
|
eh->dyn_relocs = NULL;
|
|
|
|
/* Make sure undefined weak symbols are output as a dynamic
|
|
symbol in PIEs. */
|
|
else if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* For the non-shared case, discard space for relocs against
|
|
symbols which turn out to need copy relocs or are not
|
|
dynamic. */
|
|
|
|
if (!h->non_got_ref
|
|
&& ((h->def_dynamic && !h->def_regular)
|
|
|| (htab->elf.dynamic_sections_created
|
|
&& (h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_undefined))))
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1 && !h->forced_local
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
}
|
|
|
|
/* If that succeeded, we know we'll be keeping all the
|
|
relocs. */
|
|
if (h->dynindx != -1)
|
|
goto keep;
|
|
}
|
|
|
|
eh->dyn_relocs = NULL;
|
|
|
|
keep: ;
|
|
}
|
|
|
|
/* Finally, allocate space. */
|
|
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *srelgot = htab->elf.srelgot;
|
|
srelgot->size += p->count * sizeof (Elf32_External_Rela);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static asection *
|
|
readonly_dynrelocs (struct elf_link_hash_entry *h)
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
|
|
for (p = csky_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *s = p->sec->output_section;
|
|
|
|
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
|
return p->sec;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Set DF_TEXTREL if we find any dynamic relocs that apply to
|
|
read-only sections. */
|
|
|
|
static bfd_boolean
|
|
maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
|
|
{
|
|
asection *sec;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
sec = readonly_dynrelocs (h);
|
|
if (sec != NULL)
|
|
{
|
|
struct bfd_link_info *info = (struct bfd_link_info *) info_p;
|
|
|
|
info->flags |= DF_TEXTREL;
|
|
info->callbacks->minfo
|
|
(_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
|
|
sec->owner, h->root.root.string, sec);
|
|
|
|
/* Not an error, just cut short the traversal. */
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Set the sizes of the dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
csky_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct csky_elf_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
asection *s;
|
|
bfd_boolean relocs;
|
|
bfd *ibfd;
|
|
|
|
htab = csky_elf_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
dynobj = htab->elf.dynobj;
|
|
if (dynobj == NULL)
|
|
return FALSE;
|
|
|
|
if (htab->elf.dynamic_sections_created)
|
|
{
|
|
/* Set the contents of the .interp section to the interpreter. */
|
|
if (!bfd_link_pic (info) && !info->nointerp)
|
|
{
|
|
s = bfd_get_section_by_name (dynobj, ".interp");
|
|
BFD_ASSERT (s != NULL);
|
|
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
|
}
|
|
}
|
|
|
|
/* Set up .got offsets for local syms, and space for local dynamic
|
|
relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
|
|
{
|
|
bfd_signed_vma *local_got_refcounts;
|
|
bfd_signed_vma *end_local_got;
|
|
bfd_size_type locsymcount;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srelgot, *sgot;
|
|
char *local_tls_type;
|
|
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
|
|
continue;
|
|
|
|
sgot = htab->elf.sgot;
|
|
srelgot = htab->elf.srelgot;
|
|
|
|
for (s = ibfd->sections; s != NULL; s = s->next)
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
|
|
for (p = *((struct elf_dyn_relocs **)
|
|
&elf_section_data (s)->local_dynrel);
|
|
p != NULL;
|
|
p = p->next)
|
|
{
|
|
if (!bfd_is_abs_section (p->sec)
|
|
&& bfd_is_abs_section (p->sec->output_section))
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
;
|
|
else if (p->count != 0)
|
|
{
|
|
srelgot->size += p->count * sizeof (Elf32_External_Rela);
|
|
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
}
|
|
|
|
local_got_refcounts = elf_local_got_refcounts (ibfd);
|
|
if (!local_got_refcounts)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
locsymcount = symtab_hdr->sh_info;
|
|
end_local_got = local_got_refcounts + locsymcount;
|
|
local_tls_type = csky_elf_local_got_tls_type (ibfd);
|
|
|
|
for (; local_got_refcounts < end_local_got;
|
|
++local_got_refcounts, ++local_tls_type)
|
|
{
|
|
if (*local_got_refcounts > 0)
|
|
{
|
|
/* GOT_TLS_GD and GOT_TLS_IE type for TLS, GOT_NORMAL type
|
|
for GOT. If output file is shared library, we should output
|
|
GOT_TLS_GD type relocation in .rel.got. */
|
|
*local_got_refcounts = sgot->size;
|
|
if (*local_tls_type & GOT_TLS_GD)
|
|
/* TLS_GD relocs need an 8-byte structure in the GOT. */
|
|
sgot->size += 8;
|
|
if (*local_tls_type & GOT_TLS_IE)
|
|
sgot->size += 4;
|
|
if (*local_tls_type == GOT_NORMAL)
|
|
sgot->size += 4;
|
|
if (bfd_link_pic (info) || *local_tls_type == GOT_TLS_GD)
|
|
srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
*local_got_refcounts = (bfd_vma) -1;
|
|
}
|
|
}
|
|
|
|
if (htab->tls_ldm_got.refcount > 0)
|
|
{
|
|
/* Allocate two GOT entries and one dynamic relocation (if necessary)
|
|
for R_CSKY_TLS_LDM32 relocations. */
|
|
htab->tls_ldm_got.offset = htab->elf.sgot->size;
|
|
htab->elf.sgot->size += 8;
|
|
if (bfd_link_pic (info))
|
|
htab->elf.srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
htab->tls_ldm_got.offset = -1;
|
|
|
|
/* Allocate global sym .plt and .got entries, and space for global
|
|
sym dynamic relocs. */
|
|
elf_link_hash_traverse (&htab->elf, csky_allocate_dynrelocs, (PTR) info);
|
|
|
|
/* Check for GOT overflow. */
|
|
if (check_got_overflow == 1
|
|
&& htab->elf.sgot->size + htab->elf.sgotplt->size > GOT_MAX_SIZE)
|
|
{
|
|
_bfd_error_handler (_("GOT table size out of range")); /* */
|
|
return FALSE;
|
|
}
|
|
|
|
/* We now have determined the sizes of the various dynamic sections.
|
|
Allocate memory for them. */
|
|
relocs = FALSE;
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
|
{
|
|
bfd_boolean strip_section = TRUE;
|
|
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
if (s == htab->elf.splt
|
|
|| s == htab->elf.sgot
|
|
|| s == htab->elf.sgotplt
|
|
|| s == htab->elf.sdynrelro
|
|
|| s == htab->elf.sreldynrelro)
|
|
{
|
|
/* Strip this section if we don't need it;
|
|
see the comment below. */
|
|
/* We'd like to strip these sections if they aren't needed, but if
|
|
we've exported dynamic symbols from them we must leave them.
|
|
It's too late to tell BFD to get rid of the symbols. */
|
|
|
|
if (htab->elf.hplt != NULL)
|
|
strip_section = FALSE;
|
|
}
|
|
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rel") )
|
|
{
|
|
if (s->size != 0 )
|
|
relocs = TRUE;
|
|
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
s->reloc_count = 0;
|
|
}
|
|
else
|
|
/* It's not one of our sections, so don't allocate space. */
|
|
continue;
|
|
|
|
/* Strip this section if we don't need it; see the
|
|
comment below. */
|
|
if (s->size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rel.bss and
|
|
.rel.plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
if (strip_section)
|
|
s->flags |= SEC_EXCLUDE;
|
|
continue;
|
|
}
|
|
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
|
continue;
|
|
|
|
/* Allocate memory for the section contents. We use bfd_zalloc
|
|
here in case unused entries are not reclaimed before the
|
|
section's contents are written out. This should not happen,
|
|
but this way if it does, we get a R_CKCORE_NONE reloc instead
|
|
of garbage. */
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
|
if (s->contents == NULL)
|
|
return FALSE;
|
|
}
|
|
|
|
if (htab->elf.dynamic_sections_created)
|
|
{
|
|
/* Add some entries to the .dynamic section. We fill in the
|
|
values later, in csky_elf_finish_dynamic_sections, but we
|
|
must add the entries now so that we get the correct size for
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
|
dynamic linker and used by the debugger. */
|
|
#define add_dynamic_entry(TAG, VAL) \
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
|
|
|
if (bfd_link_executable (info) && !add_dynamic_entry (DT_DEBUG, 0))
|
|
return FALSE;
|
|
|
|
if (htab->elf.sgot->size != 0 || htab->elf.splt->size)
|
|
{
|
|
if (!add_dynamic_entry (DT_PLTGOT, 0)
|
|
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
|
return FALSE;
|
|
}
|
|
|
|
if (relocs)
|
|
{
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
|
|| !add_dynamic_entry (DT_RELAENT,
|
|
sizeof (Elf32_External_Rela)))
|
|
return FALSE;
|
|
|
|
/* If any dynamic relocs apply to a read-only section,
|
|
then we need a DT_TEXTREL entry. */
|
|
if ((info->flags & DF_TEXTREL) == 0)
|
|
elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
|
|
|
|
if ((info->flags & DF_TEXTREL) != 0
|
|
&& !add_dynamic_entry (DT_TEXTREL, 0))
|
|
return FALSE;
|
|
}
|
|
}
|
|
#undef add_dynamic_entry
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
|
dynamic sections here. */
|
|
|
|
static bfd_boolean
|
|
csky_elf_finish_dynamic_symbol (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
struct csky_elf_link_hash_table *htab;
|
|
|
|
htab = csky_elf_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
/* Sanity check to make sure no unexpected symbol reaches here.
|
|
This matches the test in csky_elf_relocate_section handling
|
|
of GOT/PLT entries. */
|
|
BFD_ASSERT (! (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& h->root.type != bfd_link_hash_undefweak
|
|
&& bfd_link_pic (info)));
|
|
|
|
if (h->plt.offset != (bfd_vma) -1)
|
|
{
|
|
bfd_vma plt_index;
|
|
bfd_vma got_offset;
|
|
Elf_Internal_Rela rel;
|
|
bfd_byte *loc;
|
|
asection *plt, *relplt, *gotplt;
|
|
|
|
plt = htab->elf.splt;
|
|
relplt = htab->elf.srelplt;
|
|
gotplt = htab->elf.sgotplt;
|
|
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
|
it up. */
|
|
BFD_ASSERT (h->dynindx != -1
|
|
|| ((h->forced_local || bfd_link_executable (info))
|
|
&& h->def_regular));
|
|
BFD_ASSERT (plt != NULL && gotplt != NULL && relplt != NULL);
|
|
if (bfd_csky_abi (output_bfd) == CSKY_ABI_V2)
|
|
plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
|
|
else
|
|
plt_index = h->plt.offset / PLT_ENTRY_SIZE_P - 1;
|
|
got_offset = (plt_index + 3) * 4;
|
|
|
|
/* Fill in the entry in the procedure linkage table. */
|
|
if (bfd_csky_abi (output_bfd) == CSKY_ABI_V2)
|
|
{
|
|
csky_put_insn_32 (output_bfd, csky_elf_plt_entry_v2[0],
|
|
plt->contents + h->plt.offset);
|
|
csky_put_insn_32 (output_bfd,
|
|
(csky_elf_plt_entry_v2[1] | plt_index),
|
|
plt->contents + h->plt.offset + 4);
|
|
csky_put_insn_32 (output_bfd, csky_elf_plt_entry_v2[2],
|
|
plt->contents + h->plt.offset + 8);
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
for (i = 0; i < 6; i++)
|
|
bfd_put_16 (output_bfd, csky_elf_plt_entry_v1[i],
|
|
plt->contents + h->plt.offset + i * 2);
|
|
bfd_put_32 (output_bfd, plt_index,
|
|
plt->contents + h->plt.offset + i * 2);
|
|
}
|
|
|
|
/* Fill in the entry in the .rel.plt section. */
|
|
rel.r_offset = (htab->elf.sgotplt->output_section->vma
|
|
+ htab->elf.sgotplt->output_offset
|
|
+ got_offset);
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_CKCORE_JUMP_SLOT);
|
|
rel.r_addend = (plt->output_section->vma
|
|
+ plt->output_offset
|
|
+ h->plt.offset);
|
|
loc = (htab->elf.srelplt->contents
|
|
+ plt_index * sizeof (Elf32_External_Rela));
|
|
|
|
if (loc != NULL)
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
|
if (! h->def_regular)
|
|
{
|
|
/* Mark the symbol as undefined, rather than as defined in
|
|
the .plt section. Leave the value alone. */
|
|
sym->st_shndx = SHN_UNDEF;
|
|
/* If the symbol is weak, we do need to clear the value.
|
|
Otherwise, the PLT entry would provide a definition for
|
|
the symbol even if the symbol wasn't defined anywhere,
|
|
and so the symbol would never be NULL. Leave the value if
|
|
there were any relocations where pointer equality matters
|
|
(this is a clue for the dynamic linker, to make function
|
|
pointer comparisons work between an application and shared
|
|
library). */
|
|
if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
|
|
sym->st_value = 0;
|
|
}
|
|
}
|
|
|
|
/* Fill in the entry in the .got section. */
|
|
if (h->got.offset != (bfd_vma) -1
|
|
&& ((csky_elf_hash_entry (h)->tls_type & GOT_TLS_GD) == 0)
|
|
&& ((csky_elf_hash_entry (h)->tls_type & GOT_TLS_IE) == 0))
|
|
{
|
|
Elf_Internal_Rela rel;
|
|
bfd_byte *loc;
|
|
|
|
/* This symbol has an entry in the global offset table.
|
|
Set it up. */
|
|
BFD_ASSERT (htab->elf.sgot != NULL && htab->elf.srelgot != NULL);
|
|
|
|
rel.r_offset = (htab->elf.sgot->output_section->vma
|
|
+ htab->elf.sgot->output_offset
|
|
+ (h->got.offset & ~(bfd_vma) 1));
|
|
|
|
/* If this is a static link, or it is a -Bsymbolic link and the
|
|
symbol is defined locally or was forced to be local because
|
|
of a version file, we just want to emit a RELATIVE reloc.
|
|
The entry in the global offset table will already have been
|
|
initialized in the relocate_section function. */
|
|
if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
|
|
{
|
|
BFD_ASSERT ((h->got.offset & 1) != 0);
|
|
rel.r_info = ELF32_R_INFO (0, R_CKCORE_RELATIVE);
|
|
rel.r_addend = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_offset
|
|
+ h->root.u.def.section->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT ((h->got.offset & 1) == 0);
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0,
|
|
htab->elf.sgot->contents + h->got.offset);
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_CKCORE_GLOB_DAT);
|
|
rel.r_addend = 0;
|
|
}
|
|
|
|
loc = htab->elf.srelgot->contents;
|
|
loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
|
|
if (loc != NULL)
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
|
}
|
|
|
|
if (h->needs_copy)
|
|
{
|
|
asection *s;
|
|
Elf_Internal_Rela rela;
|
|
bfd_byte *loc;
|
|
|
|
/* This symbol needs a copy reloc. Set it up. */
|
|
BFD_ASSERT (h->dynindx != -1
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak));
|
|
|
|
rela.r_offset = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_section->vma
|
|
+ h->root.u.def.section->output_offset);
|
|
rela.r_info = ELF32_R_INFO (h->dynindx, R_CKCORE_COPY);
|
|
rela.r_addend = 0;
|
|
if (h->root.u.def.section == htab->elf.sdynrelro)
|
|
s = htab->elf.sreldynrelro;
|
|
else
|
|
s = htab->elf.srelbss;
|
|
BFD_ASSERT (s != NULL);
|
|
loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
|
}
|
|
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
|
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
|
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
|
|
sym->st_shndx = SHN_ABS;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Finish up the dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
csky_elf_finish_dynamic_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct csky_elf_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
asection *sdyn;
|
|
asection *got_sec;
|
|
|
|
htab = csky_elf_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
dynobj = htab->elf.dynobj;
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
|
|
|
if (htab->elf.dynamic_sections_created)
|
|
{
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
|
|
|
BFD_ASSERT (sdyn != NULL && htab->elf.sgot != NULL);
|
|
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
|
for (; dyncon < dynconend; dyncon++)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
bfd_boolean size = FALSE;
|
|
const char *name = NULL;
|
|
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
|
switch (dyn.d_tag)
|
|
{
|
|
default:
|
|
continue;
|
|
case DT_RELA:
|
|
name = ".rela.dyn";
|
|
size = FALSE;
|
|
break;
|
|
case DT_RELASZ:
|
|
name = ".rela.dyn";
|
|
size = TRUE;
|
|
break;
|
|
case DT_PLTRELSZ:
|
|
name = ".rela.plt";
|
|
size = TRUE;
|
|
break;
|
|
case DT_PLTGOT:
|
|
dyn.d_un.d_ptr = htab->elf.sgot->output_section->vma;
|
|
break;
|
|
case DT_JMPREL:
|
|
dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma
|
|
+ htab->elf.srelplt->output_offset;
|
|
break;
|
|
}
|
|
|
|
if (name != NULL)
|
|
{
|
|
asection *s = bfd_get_section_by_name (output_bfd, name);
|
|
|
|
if (s == NULL)
|
|
dyn.d_un.d_val = 0;
|
|
else if (!size)
|
|
dyn.d_un.d_ptr = s->vma;
|
|
else
|
|
dyn.d_un.d_val = s->size;
|
|
}
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
}
|
|
}
|
|
|
|
/* Fill in the first three entries in the global offset table. */
|
|
if (htab->elf.sgotplt)
|
|
got_sec = htab->elf.sgotplt;
|
|
else
|
|
got_sec = htab->elf.sgot;
|
|
if (got_sec != NULL)
|
|
{
|
|
if (got_sec->size > 0)
|
|
{
|
|
bfd_put_32 (output_bfd,
|
|
(sdyn == NULL ? (bfd_vma) 0
|
|
: sdyn->output_section->vma + sdyn->output_offset),
|
|
got_sec->contents);
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, got_sec->contents + 4);
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, got_sec->contents + 8);
|
|
}
|
|
elf_section_data (got_sec->output_section)->this_hdr.sh_entsize = 4;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
|
|
|
static void
|
|
csky_elf_copy_indirect_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *dir,
|
|
struct elf_link_hash_entry *ind)
|
|
{
|
|
struct csky_elf_link_hash_entry *edir, *eind;
|
|
|
|
edir = (struct csky_elf_link_hash_entry *) dir;
|
|
eind = (struct csky_elf_link_hash_entry *) ind;
|
|
|
|
if (eind->dyn_relocs != NULL)
|
|
{
|
|
if (edir->dyn_relocs != NULL)
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
struct elf_dyn_relocs *p;
|
|
|
|
/* Add reloc counts against the indirect sym to the direct sym
|
|
list. Merge any entries against the same section. */
|
|
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
struct elf_dyn_relocs *q;
|
|
|
|
for (q = edir->dyn_relocs; q != NULL; q = q->next)
|
|
if (q->sec == p->sec)
|
|
{
|
|
q->pc_count += p->pc_count;
|
|
q->count += p->count;
|
|
*pp = p->next;
|
|
break;
|
|
}
|
|
if (q == NULL)
|
|
pp = &p->next;
|
|
}
|
|
*pp = edir->dyn_relocs;
|
|
}
|
|
edir->dyn_relocs = eind->dyn_relocs;
|
|
eind->dyn_relocs = NULL;
|
|
}
|
|
if (ind->root.type == bfd_link_hash_indirect
|
|
&& dir->got.refcount <= 0)
|
|
{
|
|
edir->tls_type = eind->tls_type;
|
|
eind->tls_type = GOT_UNKNOWN;
|
|
}
|
|
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
|
}
|
|
|
|
/* Used to decide how to sort relocs in an optimal manner for the
|
|
dynamic linker, before writing them out. */
|
|
|
|
static enum elf_reloc_type_class
|
|
csky_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
const asection *rel_sec ATTRIBUTE_UNUSED,
|
|
const Elf_Internal_Rela *rela)
|
|
{
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
|
{
|
|
case R_CKCORE_RELATIVE:
|
|
return reloc_class_relative;
|
|
case R_CKCORE_JUMP_SLOT:
|
|
return reloc_class_plt;
|
|
case R_CKCORE_COPY:
|
|
return reloc_class_copy;
|
|
case R_CKCORE_IRELATIVE:
|
|
return reloc_class_ifunc;
|
|
default:
|
|
return reloc_class_normal;
|
|
}
|
|
}
|
|
|
|
/* Return the section that should be marked against GC for a given
|
|
relocation. */
|
|
|
|
static asection *
|
|
csky_elf_gc_mark_hook (asection *sec,
|
|
struct bfd_link_info *info,
|
|
Elf_Internal_Rela *rel,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
if (h != NULL)
|
|
{
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_CKCORE_GNU_VTINHERIT:
|
|
case R_CKCORE_GNU_VTENTRY:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
|
}
|
|
|
|
/* Look through the relocs for a section during the first phase.
|
|
Since we don't do .gots or .plts, we just need to consider the
|
|
virtual table relocs for gc. */
|
|
|
|
static bfd_boolean
|
|
csky_elf_check_relocs (bfd * abfd,
|
|
struct bfd_link_info * info,
|
|
asection * sec,
|
|
const Elf_Internal_Rela * relocs)
|
|
{
|
|
Elf_Internal_Shdr * symtab_hdr;
|
|
struct elf_link_hash_entry ** sym_hashes;
|
|
const Elf_Internal_Rela * rel;
|
|
const Elf_Internal_Rela * rel_end;
|
|
struct csky_elf_link_hash_table *htab;
|
|
asection *sreloc;
|
|
|
|
/* if output type is relocatable, return. */
|
|
if (bfd_link_relocatable (info))
|
|
return TRUE;
|
|
|
|
htab = csky_elf_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
|
|
rel_end = relocs + sec->reloc_count;
|
|
sreloc = NULL;
|
|
for (rel = relocs; rel < rel_end; rel++)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
unsigned long r_symndx;
|
|
Elf_Internal_Sym *isym;
|
|
int r_type;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* A local symbol. */
|
|
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return FALSE;
|
|
h = NULL;
|
|
}
|
|
else
|
|
{
|
|
isym = NULL;
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_CKCORE_PCREL_IMM26BY2:
|
|
case R_CKCORE_PCREL_IMM11BY2:
|
|
case R_CKCORE_PCREL_JSR_IMM11BY2:
|
|
case R_CKCORE_PCREL_JSR_IMM26BY2:
|
|
/* If the symbol is '*UND*', means this reloc is used for
|
|
* callgraph, don't need to leave to shared object. */
|
|
if (r_symndx == 0)
|
|
break;
|
|
/* Else fall through. */
|
|
case R_CKCORE_ADDR32:
|
|
case R_CKCORE_ADDR_HI16:
|
|
case R_CKCORE_ADDR_LO16:
|
|
if (h != NULL
|
|
&& bfd_link_executable (info)
|
|
&& r_type == R_CKCORE_ADDR32
|
|
&& h->type == STT_OBJECT
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& (sec->flags & SEC_READONLY))
|
|
/* If this reloc is in a read-only section, we might
|
|
need a copy reloc. We can't check reliably at this
|
|
stage whether the section is read-only, as input
|
|
sections have not yet been mapped to output sections.
|
|
Tentatively set the flag for now, and correct in
|
|
adjust_dynamic_symbol. */
|
|
h->non_got_ref = 1;
|
|
|
|
/* If we are creating a shared library or relocatable executable,
|
|
and this is a reloc against a global symbol, then we need to
|
|
copy the reloc into the shared library. However, if we are
|
|
linking with -Bsymbolic, we do not need to copy a reloc
|
|
against a global symbol which is defined in an object we are
|
|
including in the link (i.e., DEF_REGULAR is set). At
|
|
this point we have not seen all the input files, so it is
|
|
possible that DEF_REGULAR is not set now but will be set
|
|
later (it is never cleared). We account for that possibility
|
|
below by storing information in the relocs_copied field of
|
|
the hash table entry. */
|
|
if ((bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
|
|
|| (!bfd_link_pic (info)
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& h != NULL
|
|
&& (h->root.type == bfd_link_hash_defweak
|
|
|| !h->def_regular)))
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
struct elf_dyn_relocs **head;
|
|
/* We must copy these reloc types into the output file.
|
|
Create a reloc section in dynobj and make room for
|
|
this reloc. */
|
|
if (sreloc == NULL)
|
|
{
|
|
if (htab->elf.dynobj == NULL)
|
|
htab->elf.dynobj = abfd;
|
|
|
|
sreloc = _bfd_elf_make_dynamic_reloc_section
|
|
(sec, htab->elf.dynobj, 2, abfd, TRUE);
|
|
|
|
if (sreloc == NULL)
|
|
return FALSE;
|
|
}
|
|
|
|
if (h == NULL && !use_branch_stub
|
|
&& ((ELF32_R_TYPE (rel->r_info)
|
|
== R_CKCORE_PCREL_IMM26BY2)
|
|
|| (ELF32_R_TYPE (rel->r_info)
|
|
== R_CKCORE_PCREL_IMM11BY2)))
|
|
break;
|
|
|
|
/* If this is a global symbol, we count the number of
|
|
relocations we need for this symbol. */
|
|
if (h != NULL)
|
|
{
|
|
struct csky_elf_link_hash_entry *eh;
|
|
eh = (struct csky_elf_link_hash_entry *)h;
|
|
if ((ELF32_R_TYPE (rel->r_info)
|
|
== R_CKCORE_PCREL_JSR_IMM26BY2)
|
|
|| (ELF32_R_TYPE (rel->r_info)
|
|
== R_CKCORE_PCREL_JSR_IMM11BY2))
|
|
eh->jsri2bsr_refcount += 1;
|
|
head = &eh->dyn_relocs;
|
|
}
|
|
else
|
|
{
|
|
/* Track dynamic relocs needed for local syms too.
|
|
We really need local syms available to do this
|
|
easily. Oh well. */
|
|
void **vpp;
|
|
asection *s;
|
|
Elf_Internal_Sym *loc_isym;
|
|
|
|
loc_isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
|
abfd, r_symndx);
|
|
if (loc_isym == NULL)
|
|
return FALSE;
|
|
s = bfd_section_from_elf_index (abfd, loc_isym->st_shndx);
|
|
if (s == NULL)
|
|
s = sec;
|
|
vpp = &elf_section_data (s)->local_dynrel;
|
|
head = (struct elf_dyn_relocs **)vpp;
|
|
}
|
|
|
|
p = *head;
|
|
if (p == NULL || p->sec != sec)
|
|
{
|
|
bfd_size_type amt = sizeof *p;
|
|
p = ((struct elf_dyn_relocs *)
|
|
bfd_alloc (htab->elf.dynobj, amt));
|
|
if (p == NULL)
|
|
return FALSE;
|
|
p->next = *head;
|
|
*head = p;
|
|
p->sec = sec;
|
|
p->count = 0;
|
|
p->pc_count = 0;
|
|
}
|
|
|
|
if (ELF32_R_TYPE (rel->r_info) == R_CKCORE_PCREL_IMM26BY2
|
|
|| ELF32_R_TYPE (rel->r_info) == R_CKCORE_PCREL_IMM11BY2)
|
|
p->pc_count += 1;
|
|
p->count += 1;
|
|
}
|
|
break;
|
|
|
|
case R_CKCORE_PLT_IMM18BY4:
|
|
case R_CKCORE_PLT32:
|
|
/* This symbol requires a procedure linkage table entry. We
|
|
actually build the entry in adjust_dynamic_symbol,
|
|
because this might be a case of linking PIC code which is
|
|
never referenced by a dynamic object, in which case we
|
|
don't need to generate a procedure linkage table entry
|
|
after all. */
|
|
|
|
/* If this is a local symbol, we resolve it directly without
|
|
creating a procedure linkage table entry. */
|
|
if (h == NULL)
|
|
continue;
|
|
if (ELF32_R_TYPE (rel->r_info) == R_CKCORE_PLT_IMM18BY4)
|
|
check_got_overflow = 1;
|
|
|
|
h->needs_plt = 1;
|
|
h->plt.refcount += 1;
|
|
h->got.refcount += 1;
|
|
((struct csky_elf_link_hash_entry *)h)->plt_refcount += 1;
|
|
break;
|
|
|
|
case R_CKCORE_GOT12:
|
|
case R_CKCORE_PLT12:
|
|
case R_CKCORE_GOT32:
|
|
case R_CKCORE_GOT_HI16:
|
|
case R_CKCORE_GOT_LO16:
|
|
case R_CKCORE_PLT_HI16:
|
|
case R_CKCORE_PLT_LO16:
|
|
case R_CKCORE_GOT_IMM18BY4:
|
|
case R_CKCORE_TLS_IE32:
|
|
case R_CKCORE_TLS_GD32:
|
|
{
|
|
int tls_type, old_tls_type;
|
|
|
|
if (h != NULL
|
|
&& bfd_link_executable (info)
|
|
&& r_type == R_CKCORE_GOT_IMM18BY4
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& (sec->flags & SEC_READONLY))
|
|
/* If this reloc is in a read-only section, we might
|
|
need a copy reloc. We can't check reliably at this
|
|
stage whether the section is read-only, as input
|
|
sections have not yet been mapped to output sections.
|
|
Tentatively set the flag for now, and correct in
|
|
adjust_dynamic_symbol. */
|
|
h->non_got_ref = 1;
|
|
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_CKCORE_TLS_IE32:
|
|
tls_type = GOT_TLS_IE;
|
|
break;
|
|
case R_CKCORE_TLS_GD32:
|
|
tls_type = GOT_TLS_GD;
|
|
break;
|
|
default:
|
|
tls_type = GOT_NORMAL;
|
|
break;
|
|
}
|
|
if (h != NULL)
|
|
{
|
|
if (ELF32_R_TYPE (rel->r_info) == R_CKCORE_GOT_IMM18BY4)
|
|
check_got_overflow = 1;
|
|
h->got.refcount += 1;
|
|
old_tls_type = csky_elf_hash_entry (h)->tls_type;
|
|
}
|
|
else
|
|
{
|
|
bfd_signed_vma *local_got_refcounts;
|
|
|
|
/* This is a global offset table entry for a local symbol. */
|
|
/* we can write a new function named
|
|
elf32_csky_allocate_local_sym_info() to replace
|
|
following code. */
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
|
if (local_got_refcounts == NULL)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
size = symtab_hdr->sh_info;
|
|
size *= (sizeof (bfd_signed_vma) + sizeof (char));
|
|
local_got_refcounts = ((bfd_signed_vma *)
|
|
bfd_zalloc (abfd, size));
|
|
if (local_got_refcounts == NULL)
|
|
return FALSE;
|
|
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
|
csky_elf_local_got_tls_type (abfd)
|
|
= (char *) (local_got_refcounts + symtab_hdr->sh_info);
|
|
}
|
|
local_got_refcounts[r_symndx] += 1;
|
|
old_tls_type = csky_elf_local_got_tls_type (abfd)[r_symndx];
|
|
}
|
|
|
|
/* We will already have issued an error message if there is a
|
|
TLS / non-TLS mismatch, based on the symbol type. We don't
|
|
support any linker relaxations. So just combine any TLS
|
|
types needed. */
|
|
if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
|
|
&& tls_type != GOT_NORMAL)
|
|
tls_type |= old_tls_type;
|
|
|
|
if (old_tls_type != tls_type)
|
|
{
|
|
if (h != NULL)
|
|
csky_elf_hash_entry (h)->tls_type = tls_type;
|
|
else
|
|
csky_elf_local_got_tls_type (abfd)[r_symndx] = tls_type;
|
|
}
|
|
}
|
|
/* Fall through. */
|
|
|
|
case R_CKCORE_TLS_LDM32:
|
|
if (ELF32_R_TYPE (rel->r_info) == R_CKCORE_TLS_LDM32)
|
|
htab->tls_ldm_got.refcount++;
|
|
/* Fall through. */
|
|
|
|
case R_CKCORE_GOTOFF:
|
|
case R_CKCORE_GOTPC:
|
|
case R_CKCORE_GOTOFF_HI16:
|
|
case R_CKCORE_GOTOFF_LO16:
|
|
case R_CKCORE_GOTPC_HI16:
|
|
case R_CKCORE_GOTPC_LO16:
|
|
case R_CKCORE_GOTOFF_IMM18:
|
|
if (htab->elf.sgot == NULL)
|
|
{
|
|
if (htab->elf.dynobj == NULL)
|
|
htab->elf.dynobj = abfd;
|
|
if (!_bfd_elf_create_got_section (htab->elf.dynobj, info))
|
|
return FALSE;
|
|
}
|
|
break;
|
|
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
|
Reconstruct it for later use during GC. */
|
|
case R_CKCORE_GNU_VTINHERIT:
|
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
|
return FALSE;
|
|
break;
|
|
|
|
/* This relocation describes which C++ vtable entries are actually
|
|
used. Record for later use during GC. */
|
|
case R_CKCORE_GNU_VTENTRY:
|
|
BFD_ASSERT (h != NULL);
|
|
if (h != NULL
|
|
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
|
return FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static const struct bfd_elf_special_section csky_elf_special_sections[]=
|
|
{
|
|
{ STRING_COMMA_LEN (".ctors"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
|
{ STRING_COMMA_LEN (".dtors"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
|
{ NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
/* Function to keep CSKY specific flags in the ELF header. */
|
|
|
|
static bfd_boolean
|
|
csky_elf_set_private_flags (bfd * abfd, flagword flags)
|
|
{
|
|
BFD_ASSERT (! elf_flags_init (abfd)
|
|
|| elf_elfheader (abfd)->e_flags == flags);
|
|
|
|
elf_elfheader (abfd)->e_flags = flags;
|
|
elf_flags_init (abfd) = TRUE;
|
|
return TRUE;
|
|
}
|
|
|
|
static csky_arch_for_merge *
|
|
csky_find_arch_with_eflag (const unsigned long arch_eflag)
|
|
{
|
|
csky_arch_for_merge *csky_arch = NULL;
|
|
|
|
for (csky_arch = csky_archs; csky_arch->name != NULL; csky_arch++)
|
|
if (csky_arch->arch_eflag == arch_eflag)
|
|
break;
|
|
if (csky_arch == NULL)
|
|
{
|
|
_bfd_error_handler (_("warning: unrecognized arch eflag '%#lx'"),
|
|
arch_eflag);
|
|
bfd_set_error (bfd_error_wrong_format);
|
|
}
|
|
return csky_arch;
|
|
}
|
|
|
|
/* Merge backend specific data from an object file to the output
|
|
object file when linking. */
|
|
|
|
static bfd_boolean
|
|
csky_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
|
|
{
|
|
bfd *obfd = info->output_bfd;
|
|
flagword old_flags;
|
|
flagword new_flags;
|
|
csky_arch_for_merge *old_arch = NULL;
|
|
csky_arch_for_merge *new_arch = NULL;
|
|
|
|
/* Check if we have the same endianness. */
|
|
if (! _bfd_generic_verify_endian_match (ibfd, info))
|
|
return FALSE;
|
|
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
|
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
|
return TRUE;
|
|
|
|
new_flags = elf_elfheader (ibfd)->e_flags;
|
|
old_flags = elf_elfheader (obfd)->e_flags;
|
|
|
|
if (! elf_flags_init (obfd))
|
|
{
|
|
/* First call, no flags set. */
|
|
elf_flags_init (obfd) = TRUE;
|
|
elf_elfheader (obfd)->e_flags = new_flags;
|
|
}
|
|
else if (new_flags == old_flags)
|
|
/* Do nothing. */
|
|
;
|
|
else if (new_flags == 0 || old_flags == 0)
|
|
/* When one flag is 0, assign the other one's flag. */
|
|
elf_elfheader (obfd)->e_flags = new_flags | old_flags;
|
|
else
|
|
{
|
|
flagword newest_flag = 0;
|
|
|
|
if ((new_flags & CSKY_ARCH_MASK) != 0
|
|
&& (old_flags & CSKY_ARCH_MASK) != 0)
|
|
{
|
|
new_arch = csky_find_arch_with_eflag (new_flags & CSKY_ARCH_MASK);
|
|
old_arch = csky_find_arch_with_eflag (old_flags & CSKY_ARCH_MASK);
|
|
/* Collect flags like e, f, g. */
|
|
newest_flag = (old_flags & (~CSKY_ARCH_MASK))
|
|
| (new_flags & (~CSKY_ARCH_MASK));
|
|
if (new_arch != NULL && old_arch != NULL)
|
|
{
|
|
if (new_arch->class != old_arch->class)
|
|
{
|
|
_bfd_error_handler
|
|
/* xgettext:c-format */
|
|
(_("%pB: machine flag conflict with target"), ibfd);
|
|
bfd_set_error (bfd_error_wrong_format);
|
|
return FALSE;
|
|
}
|
|
else if (new_arch->class_level != old_arch->class_level)
|
|
{
|
|
csky_arch_for_merge *newest_arch
|
|
= (new_arch->class_level > old_arch->class_level
|
|
? new_arch : old_arch);
|
|
if (new_arch->do_warning || old_arch->do_warning)
|
|
{
|
|
_bfd_error_handler
|
|
/* xgettext:c-format */
|
|
(_("warning: file %pB's arch flag ck%s conflicts with "
|
|
"target ck%s, using ck%s"),
|
|
ibfd, new_arch->name, old_arch->name,
|
|
newest_arch->name);
|
|
bfd_set_error (bfd_error_wrong_format);
|
|
}
|
|
|
|
newest_flag |= newest_arch->arch_eflag;
|
|
}
|
|
else
|
|
newest_flag |= ((new_flags & (CSKY_ARCH_MASK | CSKY_ABI_MASK))
|
|
| (old_flags
|
|
& (CSKY_ARCH_MASK | CSKY_ABI_MASK)));
|
|
}
|
|
else
|
|
newest_flag |= ((new_flags & (CSKY_ARCH_MASK | CSKY_ABI_MASK))
|
|
| (old_flags & (CSKY_ARCH_MASK | CSKY_ABI_MASK)));
|
|
}
|
|
else
|
|
newest_flag |= ((new_flags & (CSKY_ARCH_MASK | CSKY_ABI_MASK))
|
|
| (old_flags & (CSKY_ARCH_MASK | CSKY_ABI_MASK)));
|
|
|
|
elf_elfheader (obfd)->e_flags = newest_flag;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Ignore the discarded relocs in special sections in link time. */
|
|
|
|
static bfd_boolean
|
|
csky_elf_ignore_discarded_relocs (asection *sec)
|
|
{
|
|
if (strcmp (sec->name, ".csky_stack_size") == 0)
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
/* .csky_stack_size are not referenced directly. This pass marks all of
|
|
them as required. */
|
|
|
|
static bfd_boolean
|
|
elf32_csky_gc_mark_extra_sections (struct bfd_link_info *info,
|
|
elf_gc_mark_hook_fn gc_mark_hook ATTRIBUTE_UNUSED)
|
|
{
|
|
bfd *sub;
|
|
|
|
_bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
|
|
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
|
|
{
|
|
asection *o;
|
|
|
|
for (o = sub->sections; o != NULL; o = o->next)
|
|
if (strcmp (o->name, ".csky_stack_size") == 0)
|
|
o->gc_mark = 1;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* The linker repeatedly calls this function for each input section,
|
|
in the order that input sections are linked into output sections.
|
|
Build lists of input sections to determine groupings between which
|
|
we may insert linker stubs. */
|
|
|
|
void
|
|
elf32_csky_next_input_section (struct bfd_link_info *info,
|
|
asection *isec)
|
|
{
|
|
struct csky_elf_link_hash_table *htab = csky_elf_hash_table (info);
|
|
if (htab == NULL)
|
|
return;
|
|
if (isec->output_section->index <= htab->top_index)
|
|
{
|
|
asection **list = htab->input_list + isec->output_section->index;
|
|
|
|
if (*list != bfd_abs_section_ptr)
|
|
{
|
|
/* Steal the link_sec pointer for our list. */
|
|
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
|
|
/* This happens to make the list in reverse order,
|
|
which we reverse later in group_sections. */
|
|
PREV_SEC (isec) = *list;
|
|
*list = isec;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See whether we can group stub sections together. Grouping stub
|
|
sections may result in fewer stubs. More importantly, we need to
|
|
put all .init* and .fini* stubs at the end of the .init or
|
|
.fini output sections respectively, because glibc splits the
|
|
_init and _fini functions into multiple parts. Putting a stub in
|
|
the middle of a function is not a good idea. */
|
|
|
|
static void
|
|
group_sections (struct csky_elf_link_hash_table *htab,
|
|
bfd_size_type stub_group_size,
|
|
bfd_boolean stubs_always_after_branch)
|
|
{
|
|
asection **list = htab->input_list;
|
|
|
|
do
|
|
{
|
|
asection *tail = *list;
|
|
asection *head;
|
|
|
|
if (tail == bfd_abs_section_ptr)
|
|
continue;
|
|
|
|
/* Reverse the list: we must avoid placing stubs at the
|
|
beginning of the section because the beginning of the text
|
|
section may be required for an interrupt vector in bare metal
|
|
code. */
|
|
#define NEXT_SEC PREV_SEC
|
|
head = NULL;
|
|
while (tail != NULL)
|
|
{
|
|
/* Pop from tail. */
|
|
asection *item = tail;
|
|
tail = PREV_SEC (item);
|
|
|
|
/* Push on head. */
|
|
NEXT_SEC (item) = head;
|
|
head = item;
|
|
}
|
|
|
|
while (head != NULL)
|
|
{
|
|
asection *curr;
|
|
asection *next;
|
|
bfd_vma stub_group_start = head->output_offset;
|
|
bfd_vma end_of_next;
|
|
|
|
curr = head;
|
|
while (NEXT_SEC (curr) != NULL)
|
|
{
|
|
next = NEXT_SEC (curr);
|
|
end_of_next = next->output_offset + next->size;
|
|
if (end_of_next - stub_group_start >= stub_group_size)
|
|
/* End of NEXT is too far from start, so stop. */
|
|
break;
|
|
curr = next;
|
|
}
|
|
|
|
/* OK, the size from the start to the start of CURR is less
|
|
* than stub_group_size and thus can be handled by one stub
|
|
* section. (Or the head section is itself larger than
|
|
* stub_group_size, in which case we may be toast.)
|
|
* We should really be keeping track of the total size of
|
|
* stubs added here, as stubs contribute to the final output
|
|
* section size. */
|
|
do
|
|
{
|
|
next = NEXT_SEC (head);
|
|
/* Set up this stub group. */
|
|
htab->stub_group[head->id].link_sec = curr;
|
|
}
|
|
while (head != curr && (head = next) != NULL);
|
|
|
|
/* But wait, there's more! Input sections up to stub_group_size
|
|
* bytes after the stub section can be handled by it too. */
|
|
if (!stubs_always_after_branch)
|
|
{
|
|
stub_group_start = curr->output_offset + curr->size;
|
|
|
|
while (next != NULL)
|
|
{
|
|
end_of_next = next->output_offset + next->size;
|
|
if (end_of_next - stub_group_start >= stub_group_size)
|
|
/* End of NEXT is too far from stubs, so stop. */
|
|
break;
|
|
/* Add NEXT to the stub group. */
|
|
head = next;
|
|
next = NEXT_SEC (head);
|
|
htab->stub_group[head->id].link_sec = curr;
|
|
}
|
|
}
|
|
head = next;
|
|
}
|
|
}
|
|
while (list++ != htab->input_list + htab->top_index);
|
|
|
|
free (htab->input_list);
|
|
#undef PREV_SEC
|
|
#undef NEXT_SEC
|
|
}
|
|
|
|
/* If the symbol referenced by bsr is defined in shared object file,
|
|
or it is a weak symbol and we aim to create shared object file,
|
|
we must create a stub for this bsr. */
|
|
|
|
static bfd_boolean
|
|
sym_must_create_stub (struct elf_link_hash_entry *h,
|
|
struct bfd_link_info *info)
|
|
{
|
|
if (h != NULL
|
|
&& ((h->def_dynamic && !h->def_regular)
|
|
|| (bfd_link_pic (info) && h->root.type == bfd_link_hash_defweak)))
|
|
return TRUE;
|
|
else
|
|
return FALSE;
|
|
}
|
|
|
|
/* Calculate the template, template size and instruction size for a stub.
|
|
Return value is the instruction size. */
|
|
|
|
static unsigned int
|
|
find_stub_size_and_template (enum elf32_csky_stub_type stub_type,
|
|
const insn_sequence **stub_template,
|
|
int *stub_template_size)
|
|
{
|
|
const insn_sequence *template_sequence = NULL;
|
|
int template_size = 0;
|
|
int i;
|
|
unsigned int size;
|
|
|
|
template_sequence = stub_definitions[stub_type].template_sequence;
|
|
template_size = stub_definitions[stub_type].template_size;
|
|
|
|
size = 0;
|
|
for (i = 0; i < template_size; i++)
|
|
{
|
|
switch (template_sequence[i].type)
|
|
{
|
|
case INSN16:
|
|
size += 2;
|
|
break;
|
|
|
|
case INSN32:
|
|
case DATA_TYPE:
|
|
size += 4;
|
|
break;
|
|
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
if (stub_template)
|
|
*stub_template = template_sequence;
|
|
if (stub_template_size)
|
|
*stub_template_size = template_size;
|
|
|
|
return size;
|
|
}
|
|
|
|
/* As above, but don't actually build the stub. Just bump offset so
|
|
we know stub section sizes. */
|
|
|
|
static bfd_boolean
|
|
csky_size_one_stub (struct bfd_hash_entry *gen_entry,
|
|
void * in_arg ATTRIBUTE_UNUSED)
|
|
{
|
|
struct elf32_csky_stub_hash_entry *stub_entry;
|
|
const insn_sequence *template_sequence = NULL;
|
|
int template_size = 0;
|
|
int size = 0;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf32_csky_stub_hash_entry *) gen_entry;
|
|
|
|
BFD_ASSERT (stub_entry->stub_type > csky_stub_none
|
|
&& stub_entry->stub_type < ARRAY_SIZE (stub_definitions));
|
|
size = find_stub_size_and_template (stub_entry->stub_type,
|
|
&template_sequence, &template_size);
|
|
stub_entry->stub_size = size;
|
|
stub_entry->stub_template = template_sequence;
|
|
stub_entry->stub_template_size = template_size;
|
|
|
|
size = (size + 7) & ~7;
|
|
stub_entry->stub_sec->size += size;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
|
stub entry are initialised. */
|
|
|
|
static struct elf32_csky_stub_hash_entry *
|
|
elf32_csky_add_stub (const char *stub_name,
|
|
asection *section,
|
|
struct csky_elf_link_hash_table *htab)
|
|
{
|
|
asection *link_sec;
|
|
asection *stub_sec;
|
|
struct elf32_csky_stub_hash_entry *stub_entry;
|
|
|
|
stub_sec = elf32_csky_create_or_find_stub_sec (&link_sec, section, htab);
|
|
if (stub_sec == NULL)
|
|
return NULL;
|
|
|
|
/* Enter this entry into the linker stub hash table. */
|
|
stub_entry = csky_stub_hash_lookup (&htab->stub_hash_table, stub_name,
|
|
TRUE, FALSE);
|
|
if (stub_entry == NULL)
|
|
{
|
|
_bfd_error_handler (_("%pB: cannot create stub entry %s"),
|
|
section->owner, stub_name);
|
|
return NULL;
|
|
}
|
|
|
|
stub_entry->stub_sec = stub_sec;
|
|
stub_entry->stub_offset = 0;
|
|
stub_entry->id_sec = link_sec;
|
|
|
|
return stub_entry;
|
|
}
|
|
|
|
/* Determine and set the size of the stub section for a final link.
|
|
The basic idea here is to examine all the relocations looking for
|
|
PC-relative calls to a target that is unreachable with a "bsr"
|
|
instruction. */
|
|
|
|
bfd_boolean
|
|
elf32_csky_size_stubs (bfd *output_bfd,
|
|
bfd *stub_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd_signed_vma group_size,
|
|
asection *(*add_stub_section) (const char*, asection*),
|
|
void (*layout_sections_again) (void))
|
|
{
|
|
bfd_size_type stub_group_size;
|
|
bfd_boolean stubs_always_after_branch;
|
|
struct csky_elf_link_hash_table *htab = csky_elf_hash_table (info);
|
|
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
/* Propagate mach to stub bfd, because it may not have been
|
|
finalized when we created stub_bfd. */
|
|
bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
|
|
bfd_get_mach (output_bfd));
|
|
|
|
/* Stash our params away. */
|
|
htab->stub_bfd = stub_bfd;
|
|
htab->add_stub_section = add_stub_section;
|
|
htab->layout_sections_again = layout_sections_again;
|
|
stubs_always_after_branch = group_size < 0;
|
|
|
|
if (group_size < 0)
|
|
stub_group_size = -group_size;
|
|
else
|
|
stub_group_size = group_size;
|
|
|
|
if (stub_group_size == 1)
|
|
/* The 'bsr' range in abiv2 is +-64MB has to be used as the
|
|
default maximum size.
|
|
This value is 128K less than that, which allows for 131072
|
|
byte stubs. If we exceed that, then we will fail to link.
|
|
The user will have to relink with an explicit group size
|
|
option. */
|
|
stub_group_size = 66977792;
|
|
|
|
group_sections (htab, stub_group_size, stubs_always_after_branch);
|
|
|
|
while (1)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_indx;
|
|
asection *stub_sec;
|
|
bfd_boolean stub_changed = FALSE;
|
|
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link.next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *section;
|
|
Elf_Internal_Sym *local_syms = NULL;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing more
|
|
* to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| section->reloc_count == 0
|
|
|| (section->flags & SEC_CODE) == 0)
|
|
continue;
|
|
|
|
/* If this section is a link-once section that will be
|
|
discarded, then don't create any stubs. */
|
|
if (section->output_section == NULL
|
|
|| section->output_section->owner != output_bfd)
|
|
continue;
|
|
|
|
/* Get the relocs. */
|
|
internal_relocs = _bfd_elf_link_read_relocs (input_bfd,
|
|
section,
|
|
NULL, NULL,
|
|
info->keep_memory);
|
|
|
|
if (internal_relocs == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
unsigned int r_type, r_indx;
|
|
enum elf32_csky_stub_type stub_type;
|
|
struct elf32_csky_stub_hash_entry *stub_entry;
|
|
asection *sym_sec;
|
|
bfd_vma sym_value;
|
|
bfd_vma destination;
|
|
struct csky_elf_link_hash_entry *hash;
|
|
const char *sym_name;
|
|
char *stub_name;
|
|
const asection *id_sec;
|
|
unsigned char st_type;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|
if (r_type >= (unsigned int) R_CKCORE_MAX)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
error_ret_free_internal:
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Only look for stubs on branch instructions. */
|
|
if (r_type != (unsigned int) R_CKCORE_PCREL_IMM26BY2)
|
|
continue;
|
|
/* Now determine the call target, its name, value,
|
|
section. */
|
|
sym_sec = NULL;
|
|
sym_value = 0;
|
|
destination = 0;
|
|
hash = NULL;
|
|
sym_name = NULL;
|
|
if (r_indx < symtab_hdr->sh_info)
|
|
{
|
|
/* It's a local symbol. */
|
|
Elf_Internal_Sym *sym;
|
|
Elf_Internal_Shdr *hdr;
|
|
if (local_syms == NULL)
|
|
local_syms =
|
|
(Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (local_syms == NULL)
|
|
{
|
|
local_syms =
|
|
bfd_elf_get_elf_syms (input_bfd,
|
|
symtab_hdr,
|
|
symtab_hdr->sh_info,
|
|
0, NULL, NULL, NULL);
|
|
if (local_syms == NULL)
|
|
goto error_ret_free_internal;
|
|
}
|
|
sym = local_syms + r_indx;
|
|
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
|
|
sym_sec = hdr->bfd_section;
|
|
if (!sym_sec)
|
|
/* This is an undefined symbol. It can never
|
|
be resolved. */
|
|
continue;
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
|
sym_value = sym->st_value;
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
st_type = ELF_ST_TYPE (sym->st_info);
|
|
sym_name =
|
|
bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
}
|
|
else
|
|
{
|
|
/* It's an external symbol. */
|
|
int e_indx;
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
|
hash = ((struct csky_elf_link_hash_entry *)
|
|
elf_sym_hashes (input_bfd)[e_indx]);
|
|
|
|
while (hash->elf.root.type == bfd_link_hash_indirect
|
|
|| hash->elf.root.type == bfd_link_hash_warning)
|
|
hash = ((struct csky_elf_link_hash_entry *)
|
|
hash->elf.root.u.i.link);
|
|
if (hash->elf.root.type == bfd_link_hash_defined
|
|
|| hash->elf.root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = hash->elf.root.u.def.section;
|
|
sym_value = hash->elf.root.u.def.value;
|
|
|
|
struct csky_elf_link_hash_table *globals =
|
|
csky_elf_hash_table (info);
|
|
/* FIXME For a destination in a shared library. */
|
|
if (globals->elf.splt != NULL && hash != NULL
|
|
&& hash->elf.plt.offset != (bfd_vma) -1)
|
|
continue;
|
|
else if (sym_sec->output_section != NULL)
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (hash->elf.root.type == bfd_link_hash_undefined
|
|
|| (hash->elf.root.type
|
|
== bfd_link_hash_undefweak))
|
|
/* FIXME For a destination in a shared library. */
|
|
continue;
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
st_type = ELF_ST_TYPE (hash->elf.type);
|
|
sym_name = hash->elf.root.root.string;
|
|
}
|
|
do
|
|
{
|
|
/* Determine what (if any) linker stub is needed. */
|
|
stub_type = csky_type_of_stub (info, section, irela,
|
|
st_type, hash,
|
|
destination, sym_sec,
|
|
input_bfd, sym_name);
|
|
if (stub_type == csky_stub_none)
|
|
break;
|
|
|
|
/* Support for grouping stub sections. */
|
|
id_sec = htab->stub_group[section->id].link_sec;
|
|
|
|
/* Get the name of this stub. */
|
|
stub_name = elf32_csky_stub_name (id_sec, sym_sec, hash,
|
|
irela);
|
|
if (!stub_name)
|
|
goto error_ret_free_internal;
|
|
/* We've either created a stub for this reloc already,
|
|
or we are about to. */
|
|
stub_entry
|
|
= csky_stub_hash_lookup (&htab->stub_hash_table,
|
|
stub_name,
|
|
FALSE, FALSE);
|
|
if (stub_entry != NULL)
|
|
{
|
|
/* The proper stub has already been created. */
|
|
free (stub_name);
|
|
stub_entry->target_value = sym_value;
|
|
break;
|
|
}
|
|
stub_entry = elf32_csky_add_stub (stub_name, section,
|
|
htab);
|
|
if (stub_entry == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
stub_entry->target_value = sym_value;
|
|
stub_entry->target_section = sym_sec;
|
|
stub_entry->stub_type = stub_type;
|
|
stub_entry->h = hash;
|
|
stub_entry->st_type = st_type;
|
|
|
|
if (sym_name == NULL)
|
|
sym_name = "unnamed";
|
|
stub_entry->output_name =
|
|
bfd_alloc (htab->stub_bfd,
|
|
(sizeof (STUB_ENTRY_NAME)
|
|
+ strlen (sym_name)));
|
|
if (stub_entry->output_name == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
|
|
sym_name);
|
|
stub_changed = TRUE;
|
|
}
|
|
while (0);
|
|
}
|
|
/* We're done with the internal relocs, free them. */
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
}
|
|
}
|
|
if (!stub_changed)
|
|
break;
|
|
/* OK, we've added some stubs. Find out the new size of the
|
|
stub sections. */
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
/* Ignore non-stub sections. */
|
|
if (!strstr (stub_sec->name, STUB_SUFFIX))
|
|
continue;
|
|
stub_sec->size = 0;
|
|
}
|
|
bfd_hash_traverse (&htab->stub_hash_table, csky_size_one_stub, htab);
|
|
/* Ask the linker to do its stuff. */
|
|
(*htab->layout_sections_again) ();
|
|
}
|
|
|
|
return TRUE;
|
|
error_ret_free_local:
|
|
return FALSE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
csky_build_one_stub (struct bfd_hash_entry *gen_entry,
|
|
void * in_arg)
|
|
{
|
|
#define MAXRELOCS 2
|
|
struct elf32_csky_stub_hash_entry *stub_entry;
|
|
struct bfd_link_info *info;
|
|
asection *stub_sec;
|
|
bfd *stub_bfd;
|
|
bfd_byte *loc;
|
|
bfd_vma sym_value;
|
|
int template_size;
|
|
int size;
|
|
const insn_sequence *template_sequence;
|
|
int i;
|
|
struct csky_elf_link_hash_table * globals;
|
|
int stub_reloc_idx[MAXRELOCS] = {-1, -1};
|
|
int stub_reloc_offset[MAXRELOCS] = {0, 0};
|
|
int nrelocs = 0;
|
|
struct elf_link_hash_entry *h = NULL;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf32_csky_stub_hash_entry *)gen_entry;
|
|
info = (struct bfd_link_info *) in_arg;
|
|
|
|
globals = csky_elf_hash_table (info);
|
|
if (globals == NULL)
|
|
return FALSE;
|
|
stub_sec = stub_entry->stub_sec;
|
|
|
|
/* Make a note of the offset within the stubs for this entry. */
|
|
stub_entry->stub_offset = stub_sec->size;
|
|
loc = stub_sec->contents + stub_entry->stub_offset;
|
|
|
|
stub_bfd = stub_sec->owner;
|
|
|
|
/* This is the address of the stub destination. */
|
|
h = &stub_entry->h->elf;
|
|
if (sym_must_create_stub (h, info)
|
|
&& !(bfd_link_pic (info)
|
|
&& h->root.type == bfd_link_hash_defweak
|
|
&& h->def_regular
|
|
&& !h->def_dynamic))
|
|
sym_value = 0;
|
|
else
|
|
sym_value = (stub_entry->target_value
|
|
+ stub_entry->target_section->output_offset
|
|
+ stub_entry->target_section->output_section->vma);
|
|
|
|
template_sequence = stub_entry->stub_template;
|
|
template_size = stub_entry->stub_template_size;
|
|
|
|
size = 0;
|
|
for (i = 0; i < template_size; i++)
|
|
switch (template_sequence[i].type)
|
|
{
|
|
case INSN16:
|
|
bfd_put_16 (stub_bfd, (bfd_vma) template_sequence[i].data,
|
|
loc + size);
|
|
size += 2;
|
|
break;
|
|
case INSN32:
|
|
csky_put_insn_32 (stub_bfd, (bfd_vma) template_sequence[i].data,
|
|
loc + size);
|
|
size += 4;
|
|
break;
|
|
case DATA_TYPE:
|
|
bfd_put_32 (stub_bfd, (bfd_vma) template_sequence[i].data,
|
|
loc + size);
|
|
stub_reloc_idx[nrelocs] = i;
|
|
stub_reloc_offset[nrelocs++] = size;
|
|
size += 4;
|
|
break;
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
stub_sec->size += size;
|
|
|
|
/* Stub size has already been computed in csky_size_one_stub. Check
|
|
consistency. */
|
|
BFD_ASSERT (size == stub_entry->stub_size);
|
|
|
|
/* Assume there is at least one and at most MAXRELOCS entries to relocate
|
|
in each stub. */
|
|
BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
|
|
|
|
for (i = 0; i < nrelocs; i++)
|
|
{
|
|
if (sym_must_create_stub (h, info))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
asection * sreloc = globals->elf.srelgot;
|
|
|
|
outrel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
|
|
outrel.r_info =
|
|
ELF32_R_INFO (h->dynindx,
|
|
template_sequence[stub_reloc_idx[i]].r_type);
|
|
outrel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
|
|
|
|
loc = sreloc->contents;
|
|
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
|
|
if (loc != NULL)
|
|
bfd_elf32_swap_reloca_out (info->output_bfd, &outrel, loc);
|
|
}
|
|
_bfd_final_link_relocate (elf32_csky_howto_from_type
|
|
(template_sequence[stub_reloc_idx[i]].r_type),
|
|
stub_bfd, stub_sec, stub_sec->contents,
|
|
stub_entry->stub_offset + stub_reloc_offset[i],
|
|
sym_value + stub_entry->target_addend,
|
|
template_sequence[stub_reloc_idx[i]].reloc_addend);
|
|
}
|
|
|
|
return TRUE;
|
|
#undef MAXRELOCS
|
|
}
|
|
|
|
/* Build all the stubs associated with the current output file. The
|
|
stubs are kept in a hash table attached to the main linker hash
|
|
table. We also set up the .plt entries for statically linked PIC
|
|
functions here. This function is called via arm_elf_finish in the
|
|
linker. */
|
|
|
|
bfd_boolean
|
|
elf32_csky_build_stubs (struct bfd_link_info *info)
|
|
{
|
|
asection *stub_sec;
|
|
struct bfd_hash_table *table;
|
|
struct csky_elf_link_hash_table *htab;
|
|
|
|
htab = csky_elf_hash_table (info);
|
|
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Ignore non-stub sections. */
|
|
if (!strstr (stub_sec->name, STUB_SUFFIX))
|
|
continue;
|
|
|
|
/* Allocate memory to hold the linker stubs. */
|
|
size = stub_sec->size;
|
|
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
|
|
if (stub_sec->contents == NULL && size != 0)
|
|
return FALSE;
|
|
stub_sec->size = 0;
|
|
}
|
|
|
|
/* Build the stubs as directed by the stub hash table. */
|
|
table = &htab->stub_hash_table;
|
|
bfd_hash_traverse (table, csky_build_one_stub, info);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Set up various things so that we can make a list of input sections
|
|
for each output section included in the link. Returns -1 on error,
|
|
0 when no stubs will be needed, and 1 on success. */
|
|
|
|
int
|
|
elf32_csky_setup_section_lists (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_count;
|
|
unsigned int top_id, top_index;
|
|
asection *section;
|
|
asection **input_list, **list;
|
|
bfd_size_type amt;
|
|
struct csky_elf_link_hash_table *htab = csky_elf_hash_table (info);
|
|
|
|
if (!htab)
|
|
return 0;
|
|
if (! is_elf_hash_table (htab))
|
|
return 0;
|
|
|
|
/* Count the number of input BFDs and find the top input section id. */
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link.next)
|
|
{
|
|
bfd_count += 1;
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
if (top_id < section->id)
|
|
top_id = section->id;
|
|
}
|
|
htab->bfd_count = bfd_count;
|
|
amt = sizeof (struct map_stub) * (top_id + 1);
|
|
htab->stub_group = bfd_zmalloc (amt);
|
|
if (htab->stub_group == NULL)
|
|
return -1;
|
|
|
|
/* We can't use output_bfd->section_count here to find the top output
|
|
section index as some sections may have been removed, and
|
|
_bfd_strip_section_from_output doesn't renumber the indices. */
|
|
for (section = output_bfd->sections, top_index = 0;
|
|
section != NULL;
|
|
section = section->next)
|
|
if (top_index < section->index)
|
|
top_index = section->index;
|
|
htab->top_index = top_index;
|
|
amt = sizeof (asection *) * (top_index + 1);
|
|
input_list = bfd_malloc (amt);
|
|
htab->input_list = input_list;
|
|
if (input_list == NULL)
|
|
return -1;
|
|
/* For sections we aren't interested in, mark their entries with a
|
|
value we can check later. */
|
|
list = input_list + top_index;
|
|
do
|
|
*list = bfd_abs_section_ptr;
|
|
while (list-- != input_list);
|
|
for (section = output_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
if ((section->flags & SEC_CODE) != 0)
|
|
input_list[section->index] = NULL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
csky_relocate_contents (reloc_howto_type *howto,
|
|
bfd *input_bfd,
|
|
long relocation,
|
|
bfd_byte *location)
|
|
{
|
|
int size;
|
|
bfd_vma x = 0;
|
|
bfd_reloc_status_type flag;
|
|
unsigned int rightshift = howto->rightshift;
|
|
unsigned int bitpos = howto->bitpos;
|
|
|
|
/* If the size is negative, negate RELOCATION. This isn't very
|
|
general. */
|
|
if (howto->size < 0)
|
|
relocation = -relocation;
|
|
|
|
/* FIXME: these macros should be defined at file head or head file head. */
|
|
#define CSKY_INSN_ADDI_TO_SUBI 0x04000000
|
|
#define CSKY_INSN_MOV_RTB 0xc41d4820 // mov32 rx, r29, 0
|
|
#define CSKY_INSN_MOV_RDB 0xc41c4820 // mov32 rx, r28, 0
|
|
#define CSKY_INSN_GET_ADDI_RZ(x) (((x) & 0x03e00000) >> 21)
|
|
#define CSKY_INSN_SET_MOV_RZ(x) ((x) & 0x0000001f)
|
|
#define CSKY_INSN_JSRI_TO_LRW 0xea9a0000
|
|
#define CSKY_INSN_JSR_R26 0xe8fa0000
|
|
|
|
/* Get the value we are going to relocate. */
|
|
size = bfd_get_reloc_size (howto);
|
|
switch (size)
|
|
{
|
|
default:
|
|
case 0:
|
|
abort ();
|
|
case 1:
|
|
x = bfd_get_8 (input_bfd, location);
|
|
break;
|
|
case 2:
|
|
x = bfd_get_16 (input_bfd, location);
|
|
break;
|
|
case 4:
|
|
if (need_reverse_bits)
|
|
{
|
|
x = csky_get_insn_32 (input_bfd, location);
|
|
|
|
if (R_CKCORE_DOFFSET_LO16 == howto->type)
|
|
{
|
|
if ((signed) relocation < 0)
|
|
{
|
|
x |= CSKY_INSN_ADDI_TO_SUBI;
|
|
relocation = -relocation;
|
|
}
|
|
else if (0 == relocation)
|
|
x = (CSKY_INSN_MOV_RDB |
|
|
CSKY_INSN_SET_MOV_RZ (CSKY_INSN_GET_ADDI_RZ (x)));
|
|
}
|
|
else if (R_CKCORE_TOFFSET_LO16 == howto->type)
|
|
{
|
|
if ((signed) relocation < 0)
|
|
{
|
|
x |= CSKY_INSN_ADDI_TO_SUBI;
|
|
relocation = -relocation;
|
|
}
|
|
else if (0 == relocation)
|
|
x = (CSKY_INSN_MOV_RTB |
|
|
CSKY_INSN_SET_MOV_RZ (CSKY_INSN_GET_ADDI_RZ (x)));
|
|
}
|
|
}
|
|
else
|
|
x = bfd_get_32 (input_bfd, location);
|
|
break;
|
|
}
|
|
/* Check for overflow. FIXME: We may drop bits during the addition
|
|
which we don't check for. We must either check at every single
|
|
operation, which would be tedious, or we must do the computations
|
|
in a type larger than bfd_vma, which would be inefficient. */
|
|
flag = bfd_reloc_ok;
|
|
if (howto->complain_on_overflow != complain_overflow_dont)
|
|
{
|
|
int addrmask;
|
|
int fieldmask;
|
|
int signmask;
|
|
int ss;
|
|
int a;
|
|
int b;
|
|
int sum;
|
|
/* Get the values to be added together. For signed and unsigned
|
|
relocations, we assume that all values should be truncated to
|
|
the size of an address. For bitfields, all the bits matter.
|
|
See also bfd_check_overflow. */
|
|
#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
|
|
fieldmask = N_ONES (howto->bitsize);
|
|
signmask = ~fieldmask;
|
|
addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
|
|
a = (relocation & addrmask) >> rightshift;
|
|
if (read_content_substitute)
|
|
x = read_content_substitute;
|
|
b = (x & howto->src_mask & addrmask) >> bitpos;
|
|
|
|
switch (howto->complain_on_overflow)
|
|
{
|
|
case complain_overflow_signed:
|
|
/* If any sign bits are set, all sign bits must be set.
|
|
That is, A must be a valid negative address after
|
|
shifting. */
|
|
signmask = ~(fieldmask >> 1);
|
|
/* Fall through. */
|
|
|
|
case complain_overflow_bitfield:
|
|
/* Much like the signed check, but for a field one bit
|
|
wider. We allow a bitfield to represent numbers in the
|
|
range -2**n to 2**n-1, where n is the number of bits in the
|
|
field. Note that when bfd_vma is 32 bits, a 32-bit reloc
|
|
can't overflow, which is exactly what we want. */
|
|
ss = a & signmask;
|
|
if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
|
|
flag = bfd_reloc_overflow;
|
|
/* We only need this next bit of code if the sign bit of B
|
|
is below the sign bit of A. This would only happen if
|
|
SRC_MASK had fewer bits than BITSIZE. Note that if
|
|
SRC_MASK has more bits than BITSIZE, we can get into
|
|
trouble; we would need to verify that B is in range, as
|
|
we do for A above. */
|
|
ss = ((~howto->src_mask) >> 1) & howto->src_mask;
|
|
ss >>= bitpos;
|
|
|
|
/* Set all the bits above the sign bit. */
|
|
b = (b ^ ss) - ss;
|
|
|
|
/* Now we can do the addition. */
|
|
sum = a + b;
|
|
|
|
/* See if the result has the correct sign. Bits above the
|
|
sign bit are junk now; ignore them. If the sum is
|
|
positive, make sure we did not have all negative inputs;
|
|
if the sum is negative, make sure we did not have all
|
|
positive inputs. The test below looks only at the sign
|
|
bits, and it really just
|
|
SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
|
|
|
|
We mask with addrmask here to explicitly allow an address
|
|
wrap-around. The Linux kernel relies on it, and it is
|
|
the only way to write assembler code which can run when
|
|
loaded at a location 0x80000000 away from the location at
|
|
which it is linked. */
|
|
|
|
if (((~(a ^ b)) & (a ^ sum)) & signmask & addrmask)
|
|
flag = bfd_reloc_overflow;
|
|
break;
|
|
case complain_overflow_unsigned:
|
|
/* Checking for an unsigned overflow is relatively easy:
|
|
trim the addresses and add, and trim the result as well.
|
|
Overflow is normally indicated when the result does not
|
|
fit in the field. However, we also need to consider the
|
|
case when, e.g., fieldmask is 0x7fffffff or smaller, an
|
|
input is 0x80000000, and bfd_vma is only 32 bits; then we
|
|
will get sum == 0, but there is an overflow, since the
|
|
inputs did not fit in the field. Instead of doing a
|
|
separate test, we can check for this by or-ing in the
|
|
operands when testing for the sum overflowing its final
|
|
field. */
|
|
sum = (a + b) & addrmask;
|
|
if ((a | b | sum) & signmask)
|
|
flag = bfd_reloc_overflow;
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
}
|
|
/* Put RELOCATION in the right bits. */
|
|
relocation >>= (bfd_vma) rightshift;
|
|
|
|
if ((howto->type == R_CKCORE_DOFFSET_LO16
|
|
|| howto->type == R_CKCORE_TOFFSET_LO16)
|
|
&& relocation == 0)
|
|
/* Do nothing lsli32 rx, rz, 0. */
|
|
;
|
|
else
|
|
{
|
|
/* Fir V1, all this relocation must be x -1. */
|
|
if (howto->type == R_CKCORE_PCREL_IMM11BY2
|
|
|| howto->type == R_CKCORE_PCREL_JSR_IMM11BY2
|
|
|| howto->type == R_CKCORE_DOFFSET_LO16
|
|
|| howto->type == R_CKCORE_TOFFSET_LO16)
|
|
relocation -= 1;
|
|
else if (howto->type == R_CKCORE_PCREL_IMM7BY4)
|
|
relocation = (relocation & 0x1f) + ((relocation << 3) & 0x300);
|
|
else if (howto->type == R_CKCORE_PCREL_FLRW_IMM8BY4)
|
|
relocation
|
|
= ((relocation << 4) & 0xf0) + ((relocation << 17) & 0x1e00000);
|
|
else if (howto->type == R_CKCORE_NOJSRI)
|
|
{
|
|
x = (x & howto->dst_mask) | CSKY_INSN_JSRI_TO_LRW;
|
|
relocation = 0;
|
|
csky_put_insn_32 (input_bfd, CSKY_INSN_JSR_R26, location + 4);
|
|
}
|
|
|
|
relocation <<= (bfd_vma) bitpos;
|
|
/* Add RELOCATION to the right bits of X. */
|
|
x = ((x & ~howto->dst_mask)
|
|
| (((x & howto->src_mask) + relocation) & howto->dst_mask));
|
|
}
|
|
/* Put the relocated value back in the object file. */
|
|
switch (size)
|
|
{
|
|
default:
|
|
abort ();
|
|
case 1:
|
|
bfd_put_8 (input_bfd, x, location);
|
|
break;
|
|
case 2:
|
|
bfd_put_16 (input_bfd, x, location);
|
|
break;
|
|
case 4:
|
|
if (need_reverse_bits)
|
|
csky_put_insn_32 (input_bfd, x, location);
|
|
else
|
|
bfd_put_32 (input_bfd, x, location);
|
|
break;
|
|
}
|
|
return flag;
|
|
}
|
|
|
|
/* Look up an entry in the stub hash. Stub entries are cached because
|
|
creating the stub name takes a bit of time. */
|
|
|
|
static struct elf32_csky_stub_hash_entry *
|
|
elf32_csky_get_stub_entry (const asection *input_section,
|
|
const asection *sym_sec,
|
|
struct elf_link_hash_entry *hash,
|
|
const Elf_Internal_Rela *rel,
|
|
struct csky_elf_link_hash_table *htab)
|
|
{
|
|
struct elf32_csky_stub_hash_entry *stub_entry;
|
|
struct csky_elf_link_hash_entry *h
|
|
= (struct csky_elf_link_hash_entry *) hash;
|
|
const asection *id_sec;
|
|
|
|
if ((input_section->flags & SEC_CODE) == 0)
|
|
return NULL;
|
|
|
|
/* If this input section is part of a group of sections sharing one
|
|
stub section, then use the id of the first section in the group.
|
|
Stub names need to include a section id, as there may well be
|
|
more than one stub used to reach say, printf, and we need to
|
|
distinguish between them. */
|
|
id_sec = htab->stub_group[input_section->id].link_sec;
|
|
if (h != NULL && h->stub_cache != NULL
|
|
&& h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
|
|
stub_entry = h->stub_cache;
|
|
else
|
|
{
|
|
char *stub_name;
|
|
stub_name = elf32_csky_stub_name (id_sec, sym_sec, h, rel);
|
|
if (stub_name == NULL)
|
|
return NULL;
|
|
stub_entry = csky_stub_hash_lookup (&htab->stub_hash_table,
|
|
stub_name, FALSE, FALSE);
|
|
if (h != NULL)
|
|
h->stub_cache = stub_entry;
|
|
free (stub_name);
|
|
}
|
|
|
|
return stub_entry;
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
csky_final_link_relocate (reloc_howto_type *howto,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
bfd_vma address,
|
|
bfd_vma value,
|
|
bfd_vma addend)
|
|
{
|
|
bfd_vma relocation;
|
|
|
|
/* Sanity check the address. */
|
|
if (address > bfd_get_section_limit (input_bfd, input_section))
|
|
return bfd_reloc_outofrange;
|
|
|
|
/* This function assumes that we are dealing with a basic relocation
|
|
against a symbol. We want to compute the value of the symbol to
|
|
relocate to. This is just VALUE, the value of the symbol,
|
|
plus ADDEND, any addend associated with the reloc. */
|
|
relocation = value + addend;
|
|
|
|
/* If the relocation is PC relative, we want to set RELOCATION to
|
|
the distance between the symbol (currently in RELOCATION) and the
|
|
location we are relocating. Some targets (e.g., i386-aout)
|
|
arrange for the contents of the section to be the negative of the
|
|
offset of the location within the section; for such targets
|
|
pcrel_offset is FALSE. Other targets (e.g., m88kbcs or ELF)
|
|
simply leave the contents of the section as zero; for such
|
|
targets pcrel_offset is TRUE. If pcrel_offset is FALSE we do not
|
|
need to subtract out the offset of the location within the
|
|
section (which is just ADDRESS). */
|
|
if (howto->pc_relative)
|
|
{
|
|
relocation -= (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
if (howto->pcrel_offset)
|
|
relocation -= address;
|
|
}
|
|
|
|
return csky_relocate_contents (howto, input_bfd, relocation,
|
|
contents + address);
|
|
|
|
}
|
|
|
|
/* Return the base VMA address which should be subtracted from real addresses
|
|
when resolving @dtpoff relocation.
|
|
This is PT_TLS segment p_vaddr. */
|
|
|
|
static bfd_vma
|
|
dtpoff_base (struct bfd_link_info *info)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
|
return 0;
|
|
return elf_hash_table (info)->tls_sec->vma;
|
|
}
|
|
|
|
/* Return the relocation value for @tpoff relocation
|
|
if STT_TLS virtual address is ADDRESS. */
|
|
|
|
static bfd_vma
|
|
tpoff (struct bfd_link_info *info, bfd_vma address)
|
|
{
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
|
bfd_vma base;
|
|
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (htab->tls_sec == NULL)
|
|
return 0;
|
|
base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
|
|
return address - htab->tls_sec->vma + base;
|
|
}
|
|
|
|
/* Relocate a csky section. */
|
|
|
|
static bfd_boolean
|
|
csky_elf_relocate_section (bfd * output_bfd,
|
|
struct bfd_link_info * info,
|
|
bfd * input_bfd,
|
|
asection * input_section,
|
|
bfd_byte * contents,
|
|
Elf_Internal_Rela * relocs,
|
|
Elf_Internal_Sym * local_syms,
|
|
asection ** local_sections)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
const char *name;
|
|
bfd_boolean ret = TRUE;
|
|
struct csky_elf_link_hash_table * htab;
|
|
bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
|
|
|
|
htab = csky_elf_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
symtab_hdr = & elf_symtab_hdr (input_bfd);
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
enum elf_csky_reloc_type r_type
|
|
= (enum elf_csky_reloc_type) ELF32_R_TYPE (rel->r_info);
|
|
unsigned long r_symndx;
|
|
reloc_howto_type * howto;
|
|
Elf_Internal_Sym * sym;
|
|
asection * sec;
|
|
bfd_vma relocation;
|
|
bfd_vma off;
|
|
struct elf_link_hash_entry * h;
|
|
bfd_vma addend = (bfd_vma)rel->r_addend;
|
|
bfd_reloc_status_type r = bfd_reloc_ok;
|
|
bfd_boolean unresolved_reloc = FALSE;
|
|
int do_final_relocate = TRUE;
|
|
bfd_boolean relative_reloc = FALSE;
|
|
bfd_signed_vma disp;
|
|
|
|
/* Ignore these relocation types:
|
|
R_CKCORE_GNU_VTINHERIT, R_CKCORE_GNU_VTENTRY. */
|
|
if (r_type == R_CKCORE_GNU_VTINHERIT || r_type == R_CKCORE_GNU_VTENTRY)
|
|
continue;
|
|
|
|
if ((unsigned) r_type >= (unsigned) R_CKCORE_MAX)
|
|
{
|
|
/* The r_type is error, not support it. */
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%pB: unsupported relocation type: %#x"),
|
|
input_bfd, r_type);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
ret = FALSE;
|
|
continue;
|
|
}
|
|
|
|
howto = &csky_elf_howto_table[(int) r_type];
|
|
|
|
r_symndx = ELF32_R_SYM(rel->r_info);
|
|
h = NULL;
|
|
sym = NULL;
|
|
sec = NULL;
|
|
unresolved_reloc = FALSE;
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* Get symbol table entry. */
|
|
sym = local_syms + r_symndx;
|
|
sec = local_sections[r_symndx];
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
|
addend = (bfd_vma)rel->r_addend;
|
|
}
|
|
else
|
|
{
|
|
bfd_boolean warned, ignored;
|
|
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
|
r_symndx, symtab_hdr, sym_hashes,
|
|
h, sec, relocation,
|
|
unresolved_reloc, warned, ignored);
|
|
}
|
|
|
|
if (sec != NULL && discarded_section (sec))
|
|
{
|
|
/* For relocs against symbols from removed linkonce sections,
|
|
or sections discarded by a linker script, we just want the
|
|
section contents zeroed. Avoid any special processing.
|
|
And if the symbol is referenced in '.csky_stack_size' section,
|
|
set the address to SEC_DISCARDED(0xffffffff). */
|
|
#if 0
|
|
/* The .csky_stack_size section is just for callgraph. */
|
|
if (strcmp (input_section->name, ".csky_stack_size") == 0)
|
|
{
|
|
/* FIXME: it should define in head file. */
|
|
#define SEC_DISCARDED 0xffffffff
|
|
bfd_put_32 (input_bfd, SEC_DISCARDED, contents + rel->r_offset);
|
|
rel->r_info = 0;
|
|
rel->r_addend = 0;
|
|
continue;
|
|
}
|
|
else
|
|
#endif
|
|
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
|
rel, 1, relend, howto, 0,
|
|
contents);
|
|
}
|
|
|
|
if (bfd_link_relocatable (info))
|
|
continue;
|
|
|
|
read_content_substitute = 0;
|
|
|
|
/* Final link. */
|
|
disp = (relocation
|
|
+ (bfd_signed_vma) addend
|
|
- input_section->output_section->vma
|
|
- input_section->output_offset
|
|
- rel->r_offset);
|
|
/* It is for ck8xx. */
|
|
#define CSKY_INSN_BSR32 0xe0000000
|
|
/* It is for ck5xx/ck6xx. */
|
|
#define CSKY_INSN_BSR16 0xf800
|
|
#define within_range(x, L) (-(1 << (L - 1)) < (x) && (x) < (1 << (L -1)) - 2)
|
|
switch (howto->type)
|
|
{
|
|
case R_CKCORE_PCREL_IMM18BY2:
|
|
/* When h is NULL, means the instruction written as
|
|
grs rx, imm32
|
|
if the highest bit is set, prevent the high 32bits
|
|
turn to 0xffffffff when signed extern in 64bit
|
|
host machine. */
|
|
if (h == NULL && (addend & 0x80000000))
|
|
addend &= 0xffffffff;
|
|
break;
|
|
|
|
case R_CKCORE_PCREL32:
|
|
break;
|
|
|
|
case R_CKCORE_GOT12:
|
|
case R_CKCORE_PLT12:
|
|
case R_CKCORE_GOT_HI16:
|
|
case R_CKCORE_GOT_LO16:
|
|
case R_CKCORE_PLT_HI16:
|
|
case R_CKCORE_PLT_LO16:
|
|
case R_CKCORE_GOT32:
|
|
case R_CKCORE_GOT_IMM18BY4:
|
|
/* Relocation is to the entry for this symbol in the global
|
|
offset table. */
|
|
BFD_ASSERT (htab->elf.sgot != NULL);
|
|
if (h != NULL)
|
|
{
|
|
/* Global symbol is defined by other modules. */
|
|
bfd_boolean dyn;
|
|
off = h->got.offset;
|
|
dyn = htab->elf.dynamic_sections_created;
|
|
if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
|
|
bfd_link_pic (info), h)
|
|
|| (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info,h))
|
|
|| (ELF_ST_VISIBILITY(h->other)
|
|
&& h->root.type == bfd_link_hash_undefweak))
|
|
{
|
|
/* This is actually a static link, or it is a
|
|
-Bsymbolic link and the symbol is defined
|
|
locally, or the symbol was forced to be local
|
|
because of a version file. We must initialize
|
|
this entry in the global offset table. Since the
|
|
offset must always be a multiple of 4, we use the
|
|
least significant bit to record whether we have
|
|
initialized it already.
|
|
When doing a dynamic link, we create a .rela.dyn
|
|
relocation entry to initialize the value. This
|
|
is done in the finish_dynamic_symbol routine. FIXME */
|
|
if (off & 1)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, relocation,
|
|
htab->elf.sgot->contents + off);
|
|
h->got.offset |= 1;
|
|
|
|
/* TRUE if relative relocation should be generated. GOT reference to
|
|
global symbol in PIC will lead to dynamic symbol. It becomes a
|
|
problem when "time" or "times" is defined as a variable in an
|
|
executable, clashing with functions of the same name in libc. If a
|
|
symbol isn't undefined weak symbol, don't make it dynamic in PIC and
|
|
generate relative relocation. */
|
|
#define GENERATE_RELATIVE_RELOC_P(INFO, H) \
|
|
((H)->dynindx == -1 \
|
|
&& !(H)->forced_local \
|
|
&& (H)->root.type != bfd_link_hash_undefweak \
|
|
&& bfd_link_pic (INFO))
|
|
|
|
if (GENERATE_RELATIVE_RELOC_P (info, h))
|
|
/* If this symbol isn't dynamic
|
|
in PIC, generate R_CKCORE_RELATIVE here. */
|
|
relative_reloc = TRUE;
|
|
}
|
|
}
|
|
else
|
|
unresolved_reloc = FALSE;
|
|
} /* End if h != NULL. */
|
|
else
|
|
{
|
|
BFD_ASSERT (local_got_offsets != NULL);
|
|
off = local_got_offsets[r_symndx];
|
|
|
|
/* The offset must always be a multiple of 4. We use
|
|
the least significant bit to record whether we have
|
|
already generated the necessary reloc. */
|
|
if (off & 1)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, relocation,
|
|
htab->elf.sgot->contents + off);
|
|
local_got_offsets[r_symndx] |= 1;
|
|
if (bfd_link_pic (info))
|
|
relative_reloc = TRUE;
|
|
}
|
|
}
|
|
if (relative_reloc)
|
|
{
|
|
asection *srelgot;
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
|
|
srelgot = htab->elf.srelgot;
|
|
BFD_ASSERT (srelgot != NULL);
|
|
|
|
outrel.r_offset
|
|
= (htab->elf.sgot->output_section->vma
|
|
+ htab->elf.sgot->output_offset + off);
|
|
outrel.r_info = ELF32_R_INFO (0, R_CKCORE_RELATIVE);
|
|
outrel.r_addend = relocation;
|
|
loc = srelgot->contents;
|
|
loc += (srelgot->reloc_count++ * sizeof (Elf32_External_Rela));
|
|
if (loc != NULL)
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
relocation = htab->elf.sgot->output_offset + off;
|
|
break;
|
|
|
|
case R_CKCORE_GOTOFF_IMM18:
|
|
case R_CKCORE_GOTOFF:
|
|
case R_CKCORE_GOTOFF_HI16:
|
|
case R_CKCORE_GOTOFF_LO16:
|
|
/* Relocation is relative to the start of the global offset
|
|
table. */
|
|
/* Note that sgot->output_offset is not involved in this
|
|
calculation. We always want the start of .got. If we
|
|
defined _GLOBAL_OFFSET_TABLE in a different way, as is
|
|
permitted by the ABI, we might have to change this
|
|
calculation. */
|
|
relocation -= htab->elf.sgot->output_section->vma;
|
|
break;
|
|
|
|
case R_CKCORE_GOTPC:
|
|
case R_CKCORE_GOTPC_HI16:
|
|
case R_CKCORE_GOTPC_LO16:
|
|
/* Use global offset table as symbol value. */
|
|
relocation = htab->elf.sgot->output_section->vma;
|
|
addend = -addend;
|
|
unresolved_reloc = FALSE;
|
|
break;
|
|
|
|
case R_CKCORE_DOFFSET_IMM18:
|
|
case R_CKCORE_DOFFSET_IMM18BY2:
|
|
case R_CKCORE_DOFFSET_IMM18BY4:
|
|
{
|
|
asection *sdata = bfd_get_section_by_name (output_bfd, ".data");
|
|
relocation -= sdata->output_section->vma;
|
|
}
|
|
break;
|
|
|
|
case R_CKCORE_DOFFSET_LO16:
|
|
{
|
|
asection *sdata = bfd_get_section_by_name (output_bfd, ".data");
|
|
relocation -= sdata->output_section->vma;
|
|
}
|
|
break;
|
|
|
|
case R_CKCORE_TOFFSET_LO16:
|
|
{
|
|
asection *stext = bfd_get_section_by_name (output_bfd, ".text");
|
|
if (stext)
|
|
relocation -= stext->output_section->vma;
|
|
}
|
|
break;
|
|
|
|
case R_CKCORE_PLT_IMM18BY4:
|
|
case R_CKCORE_PLT32:
|
|
/* Relocation is to the entry for this symbol in the
|
|
procedure linkage table. */
|
|
|
|
/* Resolve a PLT32 reloc against a local symbol directly,
|
|
without using the procedure linkage table. */
|
|
if (h == NULL)
|
|
break;
|
|
|
|
if (h->plt.offset == (bfd_vma) -1 || htab->elf.splt == NULL)
|
|
{
|
|
/* We didn't make a PLT entry for this symbol. This
|
|
happens when statically linking PIC code, or when
|
|
using -Bsymbolic. */
|
|
if (h->got.offset != (bfd_vma) -1)
|
|
{
|
|
bfd_boolean dyn;
|
|
|
|
off = h->got.offset;
|
|
dyn = htab->elf.dynamic_sections_created;
|
|
if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
|
|
bfd_link_pic (info), h)
|
|
|| (bfd_link_pic (info)
|
|
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
|
|| (ELF_ST_VISIBILITY (h->other)
|
|
&& h->root.type == bfd_link_hash_undefweak))
|
|
{
|
|
/* This is actually a static link, or it is a
|
|
-Bsymbolic link and the symbol is defined
|
|
locally, or the symbol was forced to be local
|
|
because of a version file. We must initialize
|
|
this entry in the global offset table. Since the
|
|
offset must always be a multiple of 4, we use the
|
|
least significant bit to record whether we have
|
|
initialized it already.
|
|
|
|
When doing a dynamic link, we create a .rela.dyn
|
|
relocation entry to initialize the value. This
|
|
is done in the finish_dynamic_symbol routine.
|
|
FIXME! */
|
|
if (off & 1)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
h->got.offset |= 1;
|
|
if (GENERATE_RELATIVE_RELOC_P (info, h))
|
|
relative_reloc = TRUE;
|
|
}
|
|
}
|
|
bfd_put_32 (output_bfd, relocation,
|
|
htab->elf.sgot->contents + off);
|
|
|
|
if (relative_reloc)
|
|
{
|
|
asection *srelgot;
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
|
|
srelgot = htab->elf.srelgot;
|
|
BFD_ASSERT (srelgot != NULL);
|
|
|
|
outrel.r_offset
|
|
= (htab->elf.sgot->output_section->vma
|
|
+ htab->elf.sgot->output_offset + off);
|
|
outrel.r_info = ELF32_R_INFO (0, R_CKCORE_RELATIVE);
|
|
outrel.r_addend = relocation;
|
|
loc = srelgot->contents;
|
|
loc += (srelgot->reloc_count++
|
|
* sizeof (Elf32_External_Rela));
|
|
if (loc != NULL)
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
relocation = off + htab->elf.sgot->output_offset;
|
|
}
|
|
break;
|
|
}
|
|
/* The relocation is the got offset. */
|
|
if (bfd_csky_abi (output_bfd) == CSKY_ABI_V2)
|
|
relocation = (h->plt.offset / PLT_ENTRY_SIZE + 2) * 4;
|
|
else
|
|
relocation = (h->plt.offset / PLT_ENTRY_SIZE_P + 2) * 4;
|
|
unresolved_reloc = FALSE;
|
|
break;
|
|
|
|
case R_CKCORE_PCREL_IMM26BY2:
|
|
case R_CKCORE_PCREL_JSR_IMM26BY2:
|
|
case R_CKCORE_PCREL_JSR_IMM11BY2:
|
|
case R_CKCORE_PCREL_IMM11BY2:
|
|
case R_CKCORE_CALLGRAPH:
|
|
/* Emit callgraph information first. */
|
|
/* TODO: deal with callgraph. */
|
|
if (ELF32_R_TYPE (rel->r_info) == R_CKCORE_CALLGRAPH)
|
|
break;
|
|
/* Some reloc need further handling. */
|
|
/* h == NULL means the symbol is a local symbol,
|
|
r_symndx == 0 means the symbol is 'ABS' and
|
|
the relocation is already handled in assemble,
|
|
here just use for callgraph. */
|
|
/* TODO: deal with callgraph. */
|
|
if (h == NULL && r_symndx == 0)
|
|
{
|
|
do_final_relocate = FALSE;
|
|
break;
|
|
}
|
|
|
|
/* Ignore weak references to undefined symbols. */
|
|
if (h != NULL && h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
do_final_relocate = FALSE;
|
|
break;
|
|
}
|
|
|
|
/* Using branch stub. */
|
|
if (use_branch_stub == TRUE
|
|
&& ELF32_R_TYPE (rel->r_info) == R_CKCORE_PCREL_IMM26BY2)
|
|
{
|
|
struct elf32_csky_stub_hash_entry *stub_entry = NULL;
|
|
if (sym_must_create_stub (h, info))
|
|
stub_entry = elf32_csky_get_stub_entry (input_section,
|
|
input_section,
|
|
h, rel, htab);
|
|
else if (disp > BSR_MAX_FWD_BRANCH_OFFSET
|
|
|| disp < BSR_MAX_BWD_BRANCH_OFFSET)
|
|
stub_entry = elf32_csky_get_stub_entry (input_section,
|
|
input_section,
|
|
h, rel, htab);
|
|
if (stub_entry != NULL)
|
|
relocation
|
|
= (stub_entry->stub_offset
|
|
+ stub_entry->stub_sec->output_offset
|
|
+ stub_entry->stub_sec->output_section->vma);
|
|
break;
|
|
}
|
|
|
|
else if (h == NULL
|
|
|| (h->root.type == bfd_link_hash_defined
|
|
&& h->dynindx == -1)
|
|
|| ((h->def_regular && !h->def_dynamic)
|
|
&& (h->root.type != bfd_link_hash_defweak
|
|
|| ! bfd_link_pic (info))))
|
|
{
|
|
if (ELF32_R_TYPE (rel->r_info) == R_CKCORE_PCREL_JSR_IMM26BY2)
|
|
{
|
|
if (within_range (disp, 26))
|
|
{
|
|
/* In range for BSR32. */
|
|
howto = &csky_elf_howto_table[R_CKCORE_PCREL_IMM26BY2];
|
|
read_content_substitute = CSKY_INSN_BSR32;
|
|
}
|
|
else if (bfd_csky_arch (output_bfd) == CSKY_ARCH_810)
|
|
/* if bsr32 cannot reach, generate
|
|
"lrw r25, label; jsr r25" instead of
|
|
jsri label. */
|
|
howto = &csky_elf_howto_table[R_CKCORE_NOJSRI];
|
|
} /* if ELF32_R_TYPE (rel->r_info)... */
|
|
else if (ELF32_R_TYPE (rel->r_info)
|
|
== R_CKCORE_PCREL_JSR_IMM11BY2)
|
|
{
|
|
if (within_range (disp, 11))
|
|
{
|
|
/* In range for BSR16. */
|
|
howto = &csky_elf_howto_table[R_CKCORE_PCREL_IMM11BY2];
|
|
read_content_substitute = CSKY_INSN_BSR16;
|
|
}
|
|
}
|
|
break;
|
|
} /* else if h == NULL... */
|
|
|
|
else if (bfd_csky_arch (output_bfd) == CSKY_ARCH_810
|
|
&& (ELF32_R_TYPE (rel->r_info)
|
|
== R_CKCORE_PCREL_JSR_IMM26BY2))
|
|
{
|
|
howto = &csky_elf_howto_table[R_CKCORE_NOJSRI];
|
|
break;
|
|
}
|
|
/* Other situation, h->def_dynamic == 1,
|
|
undefined_symbol when output file is shared object, etc. */
|
|
/* Else fall through. */
|
|
|
|
case R_CKCORE_ADDR_HI16:
|
|
case R_CKCORE_ADDR_LO16:
|
|
if (bfd_link_pic (info)
|
|
|| (!bfd_link_pic (info)
|
|
&& h != NULL
|
|
&& h->dynindx != -1
|
|
&& !h->non_got_ref
|
|
&& ((h->def_dynamic && !h->def_regular)
|
|
|| (htab->elf.dynamic_sections_created
|
|
&& (h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_undefined
|
|
|| h->root.type == bfd_link_hash_indirect)))))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_boolean skip, relocate;
|
|
bfd_byte *loc;
|
|
|
|
/* When generating a shared object, these relocations
|
|
are copied into the output file to be resolved at
|
|
run time. */
|
|
skip = FALSE;
|
|
relocate = FALSE;
|
|
|
|
outrel.r_offset =
|
|
_bfd_elf_section_offset (output_bfd, info, input_section,
|
|
rel->r_offset);
|
|
if (outrel.r_offset == (bfd_vma) -1)
|
|
skip = TRUE;
|
|
else if (outrel.r_offset == (bfd_vma) -2)
|
|
{
|
|
skip = TRUE;
|
|
relocate = TRUE;
|
|
}
|
|
outrel.r_offset += (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
if (skip)
|
|
memset (&outrel, 0, sizeof (outrel));
|
|
else if (h != NULL
|
|
&& h->dynindx != -1
|
|
&& (!bfd_link_pic (info)
|
|
|| (!SYMBOLIC_BIND (info, h)
|
|
&& h->root.type == bfd_link_hash_defweak)
|
|
|| !h->def_regular))
|
|
{
|
|
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
|
|
outrel.r_addend = rel->r_addend;
|
|
}
|
|
else
|
|
{
|
|
/* This symbol is local, or marked to become local. */
|
|
relocate = TRUE;
|
|
outrel.r_info = ELF32_R_INFO (0, r_type);
|
|
outrel.r_addend = relocation + rel->r_addend;
|
|
}
|
|
loc = htab->elf.srelgot->contents;
|
|
loc += (htab->elf.srelgot->reloc_count++
|
|
* sizeof (Elf32_External_Rela));
|
|
|
|
if (loc != NULL)
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
|
|
/* If this reloc is against an external symbol, we do not
|
|
want to diddle with the addend. Otherwise, we need to
|
|
include the symbol value so that it becomes an addend
|
|
for the dynamic reloc. */
|
|
if (!relocate)
|
|
continue;
|
|
} /* if bfd_link_pic (info) ... */
|
|
break;
|
|
|
|
case R_CKCORE_ADDR32:
|
|
/* r_symndx will be zero only for relocs against symbols
|
|
from removed linkonce sections, or sections discarded
|
|
by a linker script.
|
|
This relocation don't nedd to handle, the value will
|
|
be set to SEC_DISCARDED(0xffffffff). */
|
|
if (r_symndx == 0
|
|
&& strcmp (sec->name, ".csky_stack_size") == 0)
|
|
{
|
|
do_final_relocate = FALSE;
|
|
break;
|
|
}
|
|
if (r_symndx >= symtab_hdr->sh_info
|
|
&& h->non_got_ref
|
|
&& bfd_link_executable (info))
|
|
break;
|
|
|
|
if (r_symndx == 0 || (input_section->flags & SEC_ALLOC) == 0)
|
|
break;
|
|
|
|
if (bfd_link_pic (info)
|
|
|| (h != NULL
|
|
&& h->dynindx != -1
|
|
&& ((h->def_dynamic && !h->def_regular)
|
|
|| (htab->elf.dynamic_sections_created
|
|
&& (h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_undefined
|
|
|| h->root.type == bfd_link_hash_indirect)))))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_boolean skip, relocate;
|
|
bfd_byte *loc;
|
|
|
|
/* When generating a shared object, these relocations
|
|
are copied into the output file to be resolved at
|
|
run time. */
|
|
skip = FALSE;
|
|
relocate = FALSE;
|
|
|
|
outrel.r_offset =
|
|
_bfd_elf_section_offset (output_bfd, info, input_section,
|
|
rel->r_offset);
|
|
|
|
if (outrel.r_offset == (bfd_vma) -1)
|
|
skip = TRUE;
|
|
else if (outrel.r_offset == (bfd_vma) -2)
|
|
{
|
|
skip = TRUE;
|
|
relocate = TRUE;
|
|
}
|
|
|
|
outrel.r_offset += (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
|
|
if (skip)
|
|
memset (&outrel, 0, sizeof (outrel));
|
|
else if (h != NULL
|
|
&& h->dynindx != -1
|
|
&& (!bfd_link_pic (info)
|
|
|| (!SYMBOLIC_BIND (info, h)
|
|
&& h->root.type == bfd_link_hash_defweak)
|
|
|| !h->def_regular))
|
|
{
|
|
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
|
|
outrel.r_addend = rel->r_addend;
|
|
}
|
|
else
|
|
{
|
|
/* This symbol is local, or marked to become local. */
|
|
outrel.r_info = ELF32_R_INFO (0, R_CKCORE_RELATIVE);
|
|
outrel.r_addend = relocation + rel->r_addend;
|
|
}
|
|
|
|
loc = htab->elf.srelgot->contents;
|
|
loc += (htab->elf.srelgot->reloc_count++
|
|
* sizeof (Elf32_External_Rela));
|
|
|
|
if (loc != NULL)
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
|
|
/* If this reloc is against an external symbol, we do
|
|
want to diddle with the addend. Otherwise, we need to
|
|
include the symbol value so that it becomes an addend
|
|
for the dynamic reloc. */
|
|
if (! relocate)
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case R_CKCORE_TLS_LDO32:
|
|
relocation = relocation - dtpoff_base (info);
|
|
break;
|
|
|
|
case R_CKCORE_TLS_LDM32:
|
|
BFD_ASSERT (htab->elf.sgot != NULL);
|
|
off = htab->tls_ldm_got.offset;
|
|
if (off & 1)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
/* If we don't know the module number,
|
|
create a relocation for it. */
|
|
if (!bfd_link_executable (info))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
|
|
BFD_ASSERT (htab->elf.srelgot != NULL);
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset
|
|
= (htab->elf.sgot->output_section->vma
|
|
+ htab->elf.sgot->output_offset + off);
|
|
outrel.r_info = ELF32_R_INFO (0, R_CKCORE_TLS_DTPMOD32);
|
|
bfd_put_32 (output_bfd, outrel.r_addend,
|
|
htab->elf.sgot->contents + off);
|
|
|
|
loc = htab->elf.srelgot->contents;
|
|
loc += (htab->elf.srelgot->reloc_count++
|
|
* sizeof (Elf32_External_Rela));
|
|
if (loc)
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, 1,
|
|
htab->elf.sgot->contents + off);
|
|
htab->tls_ldm_got.offset |= 1;
|
|
}
|
|
relocation
|
|
= (htab->elf.sgot->output_section->vma
|
|
+ htab->elf.sgot->output_offset + off
|
|
- (input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset));
|
|
break;
|
|
case R_CKCORE_TLS_LE32:
|
|
if (bfd_link_dll (info))
|
|
{
|
|
_bfd_error_handler
|
|
/* xgettext:c-format */
|
|
(_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
|
|
"in shared object"),
|
|
input_bfd, input_section, (uint64_t)rel->r_offset,
|
|
howto->name);
|
|
return FALSE;
|
|
}
|
|
else
|
|
relocation = tpoff (info, relocation);
|
|
break;
|
|
case R_CKCORE_TLS_GD32:
|
|
case R_CKCORE_TLS_IE32:
|
|
{
|
|
int indx;
|
|
char tls_type;
|
|
|
|
BFD_ASSERT (htab->elf.sgot != NULL);
|
|
|
|
indx = 0;
|
|
if (h != NULL)
|
|
{
|
|
bfd_boolean dyn;
|
|
dyn = htab->elf.dynamic_sections_created;
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
|
|
bfd_link_pic (info), h)
|
|
&& (!bfd_link_pic (info)
|
|
|| !SYMBOL_REFERENCES_LOCAL (info, h)))
|
|
{
|
|
unresolved_reloc = FALSE;
|
|
indx = h->dynindx;
|
|
}
|
|
off = h->got.offset;
|
|
tls_type = ((struct csky_elf_link_hash_entry *)h)->tls_type;
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT (local_got_offsets != NULL);
|
|
off = local_got_offsets[r_symndx];
|
|
tls_type = csky_elf_local_got_tls_type (input_bfd)[r_symndx];
|
|
}
|
|
|
|
BFD_ASSERT (tls_type != GOT_UNKNOWN);
|
|
|
|
if (off & 1)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_boolean need_relocs = FALSE;
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc = NULL;
|
|
int cur_off = off;
|
|
/* The GOT entries have not been initialized yet. Do it
|
|
now, and emit any relocations. If both an IE GOT and a
|
|
GD GOT are necessary, we emit the GD first. */
|
|
if ((!bfd_link_executable (info) || indx != 0)
|
|
&& (h == NULL
|
|
|| (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
&& !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
|
|
|| h->root.type != bfd_link_hash_undefined))
|
|
{
|
|
need_relocs = TRUE;
|
|
BFD_ASSERT (htab->elf.srelgot != NULL);
|
|
|
|
loc = htab->elf.srelgot->contents;
|
|
loc += (htab->elf.srelgot->reloc_count
|
|
* sizeof (Elf32_External_Rela));
|
|
}
|
|
if (tls_type & GOT_TLS_GD)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset
|
|
= (htab->elf.sgot->output_section->vma
|
|
+ htab->elf.sgot->output_offset
|
|
+ cur_off);
|
|
outrel.r_info
|
|
= ELF32_R_INFO (indx, R_CKCORE_TLS_DTPMOD32);
|
|
bfd_put_32 (output_bfd, outrel.r_addend,
|
|
htab->elf.sgot->contents + cur_off);
|
|
if (loc)
|
|
bfd_elf32_swap_reloca_out (output_bfd,
|
|
&outrel, loc);
|
|
loc += sizeof (Elf32_External_Rela);
|
|
htab->elf.srelgot->reloc_count++;
|
|
if (indx == 0)
|
|
bfd_put_32 (output_bfd,
|
|
relocation - dtpoff_base (info),
|
|
(htab->elf.sgot->contents
|
|
+ cur_off + 4));
|
|
else
|
|
{
|
|
outrel.r_addend = 0;
|
|
outrel.r_info
|
|
= ELF32_R_INFO (indx, R_CKCORE_TLS_DTPOFF32);
|
|
outrel.r_offset += 4;
|
|
bfd_put_32 (output_bfd, outrel.r_addend,
|
|
(htab->elf.sgot->contents
|
|
+ cur_off + 4));
|
|
outrel.r_info =
|
|
ELF32_R_INFO (indx,
|
|
R_CKCORE_TLS_DTPOFF32);
|
|
if (loc)
|
|
bfd_elf32_swap_reloca_out (output_bfd,
|
|
&outrel,
|
|
loc);
|
|
htab->elf.srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* If are not emitting relocations for a
|
|
general dynamic reference, then we must be in a
|
|
static link or an executable link with the
|
|
symbol binding locally. Mark it as belonging
|
|
to module 1, the executable. */
|
|
bfd_put_32 (output_bfd, 1,
|
|
htab->elf.sgot->contents + cur_off);
|
|
bfd_put_32 (output_bfd,
|
|
relocation - dtpoff_base (info),
|
|
htab->elf.sgot->contents
|
|
+ cur_off + 4);
|
|
}
|
|
cur_off += 8;
|
|
}
|
|
if (tls_type & GOT_TLS_IE)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
if (indx == 0)
|
|
outrel.r_addend = relocation - dtpoff_base (info);
|
|
else
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset
|
|
= (htab->elf.sgot->output_section->vma
|
|
+ htab->elf.sgot->output_offset + cur_off);
|
|
outrel.r_info
|
|
= ELF32_R_INFO (indx, R_CKCORE_TLS_TPOFF32);
|
|
|
|
bfd_put_32 (output_bfd, outrel.r_addend,
|
|
htab->elf.sgot->contents + cur_off);
|
|
if (loc)
|
|
bfd_elf32_swap_reloca_out (output_bfd,
|
|
&outrel, loc);
|
|
htab->elf.srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, tpoff (info, relocation),
|
|
htab->elf.sgot->contents + cur_off);
|
|
}
|
|
if (h != NULL)
|
|
h->got.offset |= 1;
|
|
else
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
if ((tls_type & GOT_TLS_GD) && howto->type != R_CKCORE_TLS_GD32)
|
|
off += 8;
|
|
relocation
|
|
= (htab->elf.sgot->output_section->vma
|
|
+ htab->elf.sgot->output_offset + off
|
|
- (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset));
|
|
break;
|
|
}
|
|
default:
|
|
/* No substitution when final linking. */
|
|
read_content_substitute = 0;
|
|
break;
|
|
} /* End switch (howto->type). */
|
|
|
|
/* Make sure 32-bit data in the text section will not be affected by
|
|
our special endianness.
|
|
However, this currently affects noting, since the ADDR32 howto type
|
|
does no change with the data read. But we may need this mechanism in
|
|
the future. */
|
|
|
|
if (howto->size == 2
|
|
&& (howto->type == R_CKCORE_ADDR32
|
|
|| howto->type == R_CKCORE_PCREL32
|
|
|| howto->type == R_CKCORE_GOT32
|
|
|| howto->type == R_CKCORE_GOTOFF
|
|
|| howto->type == R_CKCORE_GOTPC
|
|
|| howto->type == R_CKCORE_PLT32
|
|
|| howto->type == R_CKCORE_TLS_LE32
|
|
|| howto->type == R_CKCORE_TLS_IE32
|
|
|| howto->type == R_CKCORE_TLS_LDM32
|
|
|| howto->type == R_CKCORE_TLS_GD32
|
|
|| howto->type == R_CKCORE_TLS_LDO32
|
|
|| howto->type == R_CKCORE_RELATIVE))
|
|
need_reverse_bits = 0;
|
|
else
|
|
need_reverse_bits = 1;
|
|
/* Do the final link. */
|
|
if (howto->type != R_CKCORE_PCREL_JSR_IMM11BY2
|
|
&& howto->type != R_CKCORE_PCREL_JSR_IMM26BY2
|
|
&& howto->type != R_CKCORE_CALLGRAPH
|
|
&& do_final_relocate)
|
|
r = csky_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
relocation, addend);
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
ret = FALSE;
|
|
switch (r)
|
|
{
|
|
default:
|
|
break;
|
|
case bfd_reloc_overflow:
|
|
if (h != NULL)
|
|
name = NULL;
|
|
else
|
|
{
|
|
name = bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
if (name == NULL)
|
|
break;
|
|
if (*name == '\0')
|
|
name = bfd_section_name (input_bfd, sec);
|
|
}
|
|
(*info->callbacks->reloc_overflow)
|
|
(info,
|
|
(h ? &h->root : NULL),
|
|
name, howto->name, (bfd_vma) 0,
|
|
input_bfd, input_section, rel->r_offset);
|
|
break;
|
|
}
|
|
}
|
|
} /* End for (;rel < relend; rel++). */
|
|
return ret;
|
|
}
|
|
|
|
static bfd_boolean
|
|
csky_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
int offset;
|
|
size_t size;
|
|
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return FALSE;
|
|
/* Sizeof (struct elf_prstatus) on C-SKY V1 arch. */
|
|
case 148:
|
|
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
|
|
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
|
|
offset = 72;
|
|
size = 72;
|
|
break;
|
|
/* Sizeof (struct elf_prstatus) on C-SKY V1 arch. */
|
|
case 220:
|
|
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
|
|
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
|
|
offset = 72;
|
|
size = 34 * 4;
|
|
break;
|
|
}
|
|
/* Make a ".reg/999" section. */
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
|
size, note->descpos + offset);
|
|
}
|
|
|
|
static bfd_boolean
|
|
csky_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return FALSE;
|
|
|
|
/* Sizeof (struct elf_prpsinfo) on linux csky. */
|
|
case 124:
|
|
elf_tdata (abfd)->core->program
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
|
|
elf_tdata (abfd)->core->command
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
|
|
}
|
|
|
|
/* Note that for some reason, a spurious space is tacked
|
|
onto the end of the args in some (at least one anyway)
|
|
implementations, so strip it off if it exists. */
|
|
{
|
|
char *command = elf_tdata (abfd)->core->command;
|
|
int n = strlen (command);
|
|
|
|
if (0 < n && command[n - 1] == ' ')
|
|
command[n - 1] = '\0';
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* End of external entry points for sizing and building linker stubs. */
|
|
|
|
/* CPU-related basic API. */
|
|
#define TARGET_BIG_SYM csky_elf32_be_vec
|
|
#define TARGET_BIG_NAME "elf32-csky-big"
|
|
#define TARGET_LITTLE_SYM csky_elf32_le_vec
|
|
#define TARGET_LITTLE_NAME "elf32-csky-little"
|
|
#define ELF_ARCH bfd_arch_csky
|
|
#define ELF_MACHINE_CODE EM_CSKY
|
|
#define ELF_MACHINE_ALT1 EM_CSKY_OLD
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
#define elf_info_to_howto csky_elf_info_to_howto
|
|
#define elf_info_to_howto_rel NULL
|
|
#define elf_backend_special_sections csky_elf_special_sections
|
|
#define bfd_elf32_bfd_link_hash_table_create csky_elf_link_hash_table_create
|
|
|
|
/* Target related API. */
|
|
#define bfd_elf32_mkobject csky_elf_mkobject
|
|
#define bfd_elf32_bfd_merge_private_bfd_data csky_elf_merge_private_bfd_data
|
|
#define bfd_elf32_bfd_set_private_flags csky_elf_set_private_flags
|
|
#define elf_backend_copy_indirect_symbol csky_elf_copy_indirect_symbol
|
|
|
|
/* GC section related API. */
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_gc_mark_hook csky_elf_gc_mark_hook
|
|
#define elf_backend_gc_mark_extra_sections elf32_csky_gc_mark_extra_sections
|
|
|
|
/* Relocation related API. */
|
|
#define elf_backend_reloc_type_class csky_elf_reloc_type_class
|
|
#define bfd_elf32_bfd_reloc_type_lookup csky_elf_reloc_type_lookup
|
|
#define bfd_elf32_bfd_reloc_name_lookup csky_elf_reloc_name_lookup
|
|
#define elf_backend_ignore_discarded_relocs csky_elf_ignore_discarded_relocs
|
|
#define elf_backend_relocate_section csky_elf_relocate_section
|
|
#define elf_backend_check_relocs csky_elf_check_relocs
|
|
|
|
/* Dynamic relocate related API. */
|
|
#define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
|
|
#define elf_backend_adjust_dynamic_symbol csky_elf_adjust_dynamic_symbol
|
|
#define elf_backend_size_dynamic_sections csky_elf_size_dynamic_sections
|
|
#define elf_backend_finish_dynamic_symbol csky_elf_finish_dynamic_symbol
|
|
#define elf_backend_finish_dynamic_sections csky_elf_finish_dynamic_sections
|
|
#define elf_backend_rela_normal 1
|
|
#define elf_backend_can_refcount 1
|
|
#define elf_backend_plt_readonly 1
|
|
#define elf_backend_want_got_sym 1
|
|
#define elf_backend_want_dynrelro 1
|
|
#define elf_backend_got_header_size 12
|
|
#define elf_backend_want_got_plt 1
|
|
|
|
/* C-SKY coredump support. */
|
|
#define elf_backend_grok_prstatus csky_elf_grok_prstatus
|
|
#define elf_backend_grok_psinfo csky_elf_grok_psinfo
|
|
|
|
#include "elf32-target.h"
|