mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
1d19cae752
Fix occurrences of left-shifting negative constants in C code. sim/arm/ChangeLog: * thumbemu.c (handle_T2_insn): Fix left shift of negative value. * armemu.c (handle_v6_insn): Likewise. sim/avr/ChangeLog: * interp.c (sign_ext): Fix left shift of negative value. sim/mips/ChangeLog: * micromips.igen (process_isa_mode): Fix left shift of negative value. sim/msp430/ChangeLog: * msp430-sim.c (get_op, put_op): Fix left shift of negative value. sim/v850/ChangeLog: * simops.c (v850_bins): Fix left shift of negative value.
3612 lines
74 KiB
C
3612 lines
74 KiB
C
#include "sim-main.h"
|
||
#include "v850_sim.h"
|
||
#include "simops.h"
|
||
|
||
#include <sys/types.h>
|
||
|
||
#ifdef HAVE_UTIME_H
|
||
#include <utime.h>
|
||
#endif
|
||
|
||
#ifdef HAVE_TIME_H
|
||
#include <time.h>
|
||
#endif
|
||
|
||
#ifdef HAVE_UNISTD_H
|
||
#include <unistd.h>
|
||
#endif
|
||
|
||
#ifdef HAVE_STRING_H
|
||
#include <string.h>
|
||
#else
|
||
#ifdef HAVE_STRINGS_H
|
||
#include <strings.h>
|
||
#endif
|
||
#endif
|
||
|
||
#include "targ-vals.h"
|
||
|
||
#include "libiberty.h"
|
||
|
||
#include <errno.h>
|
||
#if !defined(__GO32__) && !defined(_WIN32)
|
||
#include <sys/stat.h>
|
||
#include <sys/times.h>
|
||
#include <sys/time.h>
|
||
#endif
|
||
|
||
/* This is an array of the bit positions of registers r20 .. r31 in
|
||
that order in a prepare/dispose instruction. */
|
||
int type1_regs[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 };
|
||
/* This is an array of the bit positions of registers r16 .. r31 in
|
||
that order in a push/pop instruction. */
|
||
int type2_regs[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
|
||
/* This is an array of the bit positions of registers r1 .. r15 in
|
||
that order in a push/pop instruction. */
|
||
int type3_regs[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
|
||
|
||
#ifdef DEBUG
|
||
#ifndef SIZE_INSTRUCTION
|
||
#define SIZE_INSTRUCTION 18
|
||
#endif
|
||
|
||
#ifndef SIZE_VALUES
|
||
#define SIZE_VALUES 11
|
||
#endif
|
||
|
||
|
||
unsigned32 trace_values[3];
|
||
int trace_num_values;
|
||
unsigned32 trace_pc;
|
||
const char * trace_name;
|
||
int trace_module;
|
||
|
||
|
||
void
|
||
trace_input (char *name, enum op_types type, int size)
|
||
{
|
||
if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
|
||
return;
|
||
|
||
trace_pc = PC;
|
||
trace_name = name;
|
||
trace_module = TRACE_ALU_IDX;
|
||
|
||
switch (type)
|
||
{
|
||
default:
|
||
case OP_UNKNOWN:
|
||
case OP_NONE:
|
||
case OP_TRAP:
|
||
trace_num_values = 0;
|
||
break;
|
||
|
||
case OP_REG:
|
||
case OP_REG_REG_MOVE:
|
||
trace_values[0] = State.regs[OP[0]];
|
||
trace_num_values = 1;
|
||
break;
|
||
|
||
case OP_BIT_CHANGE:
|
||
case OP_REG_REG:
|
||
case OP_REG_REG_CMP:
|
||
trace_values[0] = State.regs[OP[1]];
|
||
trace_values[1] = State.regs[OP[0]];
|
||
trace_num_values = 2;
|
||
break;
|
||
|
||
case OP_IMM_REG:
|
||
case OP_IMM_REG_CMP:
|
||
trace_values[0] = SEXT5 (OP[0]);
|
||
trace_values[1] = OP[1];
|
||
trace_num_values = 2;
|
||
break;
|
||
|
||
case OP_IMM_REG_MOVE:
|
||
trace_values[0] = SEXT5 (OP[0]);
|
||
trace_num_values = 1;
|
||
break;
|
||
|
||
case OP_COND_BR:
|
||
trace_values[0] = State.pc;
|
||
trace_values[1] = SEXT9 (OP[0]);
|
||
trace_values[2] = PSW;
|
||
trace_num_values = 3;
|
||
break;
|
||
|
||
case OP_LOAD16:
|
||
trace_values[0] = OP[1] * size;
|
||
trace_values[1] = State.regs[30];
|
||
trace_num_values = 2;
|
||
break;
|
||
|
||
case OP_STORE16:
|
||
trace_values[0] = State.regs[OP[0]];
|
||
trace_values[1] = OP[1] * size;
|
||
trace_values[2] = State.regs[30];
|
||
trace_num_values = 3;
|
||
break;
|
||
|
||
case OP_LOAD32:
|
||
trace_values[0] = EXTEND16 (OP[2]);
|
||
trace_values[1] = State.regs[OP[0]];
|
||
trace_num_values = 2;
|
||
break;
|
||
|
||
case OP_STORE32:
|
||
trace_values[0] = State.regs[OP[1]];
|
||
trace_values[1] = EXTEND16 (OP[2]);
|
||
trace_values[2] = State.regs[OP[0]];
|
||
trace_num_values = 3;
|
||
break;
|
||
|
||
case OP_JUMP:
|
||
trace_values[0] = SEXT22 (OP[0]);
|
||
trace_values[1] = State.pc;
|
||
trace_num_values = 2;
|
||
break;
|
||
|
||
case OP_IMM_REG_REG:
|
||
trace_values[0] = EXTEND16 (OP[0]) << size;
|
||
trace_values[1] = State.regs[OP[1]];
|
||
trace_num_values = 2;
|
||
break;
|
||
|
||
case OP_IMM16_REG_REG:
|
||
trace_values[0] = EXTEND16 (OP[2]) << size;
|
||
trace_values[1] = State.regs[OP[1]];
|
||
trace_num_values = 2;
|
||
break;
|
||
|
||
case OP_UIMM_REG_REG:
|
||
trace_values[0] = (OP[0] & 0xffff) << size;
|
||
trace_values[1] = State.regs[OP[1]];
|
||
trace_num_values = 2;
|
||
break;
|
||
|
||
case OP_UIMM16_REG_REG:
|
||
trace_values[0] = (OP[2]) << size;
|
||
trace_values[1] = State.regs[OP[1]];
|
||
trace_num_values = 2;
|
||
break;
|
||
|
||
case OP_BIT:
|
||
trace_num_values = 0;
|
||
break;
|
||
|
||
case OP_EX1:
|
||
trace_values[0] = PSW;
|
||
trace_num_values = 1;
|
||
break;
|
||
|
||
case OP_EX2:
|
||
trace_num_values = 0;
|
||
break;
|
||
|
||
case OP_LDSR:
|
||
trace_values[0] = State.regs[OP[0]];
|
||
trace_num_values = 1;
|
||
break;
|
||
|
||
case OP_STSR:
|
||
trace_values[0] = State.sregs[OP[1]];
|
||
trace_num_values = 1;
|
||
}
|
||
|
||
}
|
||
|
||
void
|
||
trace_result (int has_result, unsigned32 result)
|
||
{
|
||
char buf[1000];
|
||
char *chp;
|
||
|
||
buf[0] = '\0';
|
||
chp = buf;
|
||
|
||
/* write out the values saved during the trace_input call */
|
||
{
|
||
int i;
|
||
for (i = 0; i < trace_num_values; i++)
|
||
{
|
||
sprintf (chp, "%*s0x%.8lx", SIZE_VALUES - 10, "",
|
||
(long) trace_values[i]);
|
||
chp = strchr (chp, '\0');
|
||
}
|
||
while (i++ < 3)
|
||
{
|
||
sprintf (chp, "%*s", SIZE_VALUES, "");
|
||
chp = strchr (chp, '\0');
|
||
}
|
||
}
|
||
|
||
/* append any result to the end of the buffer */
|
||
if (has_result)
|
||
sprintf (chp, " :: 0x%.8lx", (unsigned long) result);
|
||
|
||
trace_generic (simulator, STATE_CPU (simulator, 0), trace_module, "%s", buf);
|
||
}
|
||
|
||
void
|
||
trace_output (enum op_types result)
|
||
{
|
||
if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
|
||
return;
|
||
|
||
switch (result)
|
||
{
|
||
default:
|
||
case OP_UNKNOWN:
|
||
case OP_NONE:
|
||
case OP_TRAP:
|
||
case OP_REG:
|
||
case OP_REG_REG_CMP:
|
||
case OP_IMM_REG_CMP:
|
||
case OP_COND_BR:
|
||
case OP_STORE16:
|
||
case OP_STORE32:
|
||
case OP_BIT:
|
||
case OP_EX2:
|
||
trace_result (0, 0);
|
||
break;
|
||
|
||
case OP_LOAD16:
|
||
case OP_STSR:
|
||
trace_result (1, State.regs[OP[0]]);
|
||
break;
|
||
|
||
case OP_REG_REG:
|
||
case OP_REG_REG_MOVE:
|
||
case OP_IMM_REG:
|
||
case OP_IMM_REG_MOVE:
|
||
case OP_LOAD32:
|
||
case OP_EX1:
|
||
trace_result (1, State.regs[OP[1]]);
|
||
break;
|
||
|
||
case OP_IMM_REG_REG:
|
||
case OP_UIMM_REG_REG:
|
||
case OP_IMM16_REG_REG:
|
||
case OP_UIMM16_REG_REG:
|
||
trace_result (1, State.regs[OP[1]]);
|
||
break;
|
||
|
||
case OP_JUMP:
|
||
if (OP[1] != 0)
|
||
trace_result (1, State.regs[OP[1]]);
|
||
else
|
||
trace_result (0, 0);
|
||
break;
|
||
|
||
case OP_LDSR:
|
||
trace_result (1, State.sregs[OP[1]]);
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
/* Returns 1 if the specific condition is met, returns 0 otherwise. */
|
||
int
|
||
condition_met (unsigned code)
|
||
{
|
||
unsigned int psw = PSW;
|
||
|
||
switch (code & 0xf)
|
||
{
|
||
case 0x0: return ((psw & PSW_OV) != 0);
|
||
case 0x1: return ((psw & PSW_CY) != 0);
|
||
case 0x2: return ((psw & PSW_Z) != 0);
|
||
case 0x3: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) != 0);
|
||
case 0x4: return ((psw & PSW_S) != 0);
|
||
/*case 0x5: return 1;*/
|
||
case 0x6: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) != 0);
|
||
case 0x7: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) != 0);
|
||
case 0x8: return ((psw & PSW_OV) == 0);
|
||
case 0x9: return ((psw & PSW_CY) == 0);
|
||
case 0xa: return ((psw & PSW_Z) == 0);
|
||
case 0xb: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) == 0);
|
||
case 0xc: return ((psw & PSW_S) == 0);
|
||
case 0xd: return ((psw & PSW_SAT) != 0);
|
||
case 0xe: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) == 0);
|
||
case 0xf: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) == 0);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
unsigned long
|
||
Add32 (unsigned long a1, unsigned long a2, int * carry)
|
||
{
|
||
unsigned long result = (a1 + a2);
|
||
|
||
* carry = (result < a1);
|
||
|
||
return result;
|
||
}
|
||
|
||
static void
|
||
Multiply64 (int sign, unsigned long op0)
|
||
{
|
||
unsigned long op1;
|
||
unsigned long lo;
|
||
unsigned long mid1;
|
||
unsigned long mid2;
|
||
unsigned long hi;
|
||
unsigned long RdLo;
|
||
unsigned long RdHi;
|
||
int carry;
|
||
|
||
op1 = State.regs[ OP[1] ];
|
||
|
||
if (sign)
|
||
{
|
||
/* Compute sign of result and adjust operands if necessary. */
|
||
|
||
sign = (op0 ^ op1) & 0x80000000;
|
||
|
||
if (((signed long) op0) < 0)
|
||
op0 = - op0;
|
||
|
||
if (((signed long) op1) < 0)
|
||
op1 = - op1;
|
||
}
|
||
|
||
/* We can split the 32x32 into four 16x16 operations. This ensures
|
||
that we do not lose precision on 32bit only hosts: */
|
||
lo = ( (op0 & 0xFFFF) * (op1 & 0xFFFF));
|
||
mid1 = ( (op0 & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
|
||
mid2 = (((op0 >> 16) & 0xFFFF) * (op1 & 0xFFFF));
|
||
hi = (((op0 >> 16) & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
|
||
|
||
/* We now need to add all of these results together, taking care
|
||
to propogate the carries from the additions: */
|
||
RdLo = Add32 (lo, (mid1 << 16), & carry);
|
||
RdHi = carry;
|
||
RdLo = Add32 (RdLo, (mid2 << 16), & carry);
|
||
RdHi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi);
|
||
|
||
if (sign)
|
||
{
|
||
/* Negate result if necessary. */
|
||
|
||
RdLo = ~ RdLo;
|
||
RdHi = ~ RdHi;
|
||
if (RdLo == 0xFFFFFFFF)
|
||
{
|
||
RdLo = 0;
|
||
RdHi += 1;
|
||
}
|
||
else
|
||
RdLo += 1;
|
||
}
|
||
|
||
/* Don't store into register 0. */
|
||
if (OP[1])
|
||
State.regs[ OP[1] ] = RdLo;
|
||
if (OP[2] >> 11)
|
||
State.regs[ OP[2] >> 11 ] = RdHi;
|
||
|
||
return;
|
||
}
|
||
|
||
|
||
/* Read a null terminated string from memory, return in a buffer. */
|
||
|
||
static char *
|
||
fetch_str (SIM_DESC sd, address_word addr)
|
||
{
|
||
char *buf;
|
||
int nr = 0;
|
||
|
||
while (sim_core_read_1 (STATE_CPU (sd, 0),
|
||
PC, read_map, addr + nr) != 0)
|
||
nr++;
|
||
|
||
buf = NZALLOC (char, nr + 1);
|
||
sim_read (simulator, addr, (unsigned char *) buf, nr);
|
||
|
||
return buf;
|
||
}
|
||
|
||
/* Read a null terminated argument vector from memory, return in a
|
||
buffer. */
|
||
|
||
static char **
|
||
fetch_argv (SIM_DESC sd, address_word addr)
|
||
{
|
||
int max_nr = 64;
|
||
int nr = 0;
|
||
char **buf = xmalloc (max_nr * sizeof (char*));
|
||
|
||
while (1)
|
||
{
|
||
unsigned32 a = sim_core_read_4 (STATE_CPU (sd, 0),
|
||
PC, read_map, addr + nr * 4);
|
||
if (a == 0) break;
|
||
buf[nr] = fetch_str (sd, a);
|
||
nr ++;
|
||
if (nr == max_nr - 1)
|
||
{
|
||
max_nr += 50;
|
||
buf = xrealloc (buf, max_nr * sizeof (char*));
|
||
}
|
||
}
|
||
buf[nr] = 0;
|
||
return buf;
|
||
}
|
||
|
||
|
||
/* sst.b */
|
||
int
|
||
OP_380 (void)
|
||
{
|
||
trace_input ("sst.b", OP_STORE16, 1);
|
||
|
||
store_mem (State.regs[30] + (OP[3] & 0x7f), 1, State.regs[ OP[1] ]);
|
||
|
||
trace_output (OP_STORE16);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* sst.h */
|
||
int
|
||
OP_480 (void)
|
||
{
|
||
trace_input ("sst.h", OP_STORE16, 2);
|
||
|
||
store_mem (State.regs[30] + ((OP[3] & 0x7f) << 1), 2, State.regs[ OP[1] ]);
|
||
|
||
trace_output (OP_STORE16);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* sst.w */
|
||
int
|
||
OP_501 (void)
|
||
{
|
||
trace_input ("sst.w", OP_STORE16, 4);
|
||
|
||
store_mem (State.regs[30] + ((OP[3] & 0x7e) << 1), 4, State.regs[ OP[1] ]);
|
||
|
||
trace_output (OP_STORE16);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* ld.b */
|
||
int
|
||
OP_700 (void)
|
||
{
|
||
int adr;
|
||
|
||
trace_input ("ld.b", OP_LOAD32, 1);
|
||
|
||
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
|
||
|
||
State.regs[ OP[1] ] = EXTEND8 (load_mem (adr, 1));
|
||
|
||
trace_output (OP_LOAD32);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* ld.h */
|
||
int
|
||
OP_720 (void)
|
||
{
|
||
int adr;
|
||
|
||
trace_input ("ld.h", OP_LOAD32, 2);
|
||
|
||
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
|
||
adr &= ~0x1;
|
||
|
||
State.regs[ OP[1] ] = EXTEND16 (load_mem (adr, 2));
|
||
|
||
trace_output (OP_LOAD32);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* ld.w */
|
||
int
|
||
OP_10720 (void)
|
||
{
|
||
int adr;
|
||
|
||
trace_input ("ld.w", OP_LOAD32, 4);
|
||
|
||
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
|
||
adr &= ~0x3;
|
||
|
||
State.regs[ OP[1] ] = load_mem (adr, 4);
|
||
|
||
trace_output (OP_LOAD32);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* st.b */
|
||
int
|
||
OP_740 (void)
|
||
{
|
||
trace_input ("st.b", OP_STORE32, 1);
|
||
|
||
store_mem (State.regs[ OP[0] ] + EXTEND16 (OP[2]), 1, State.regs[ OP[1] ]);
|
||
|
||
trace_output (OP_STORE32);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* st.h */
|
||
int
|
||
OP_760 (void)
|
||
{
|
||
int adr;
|
||
|
||
trace_input ("st.h", OP_STORE32, 2);
|
||
|
||
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
|
||
adr &= ~1;
|
||
|
||
store_mem (adr, 2, State.regs[ OP[1] ]);
|
||
|
||
trace_output (OP_STORE32);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* st.w */
|
||
int
|
||
OP_10760 (void)
|
||
{
|
||
int adr;
|
||
|
||
trace_input ("st.w", OP_STORE32, 4);
|
||
|
||
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
|
||
adr &= ~3;
|
||
|
||
store_mem (adr, 4, State.regs[ OP[1] ]);
|
||
|
||
trace_output (OP_STORE32);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* add reg, reg */
|
||
int
|
||
OP_1C0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov;
|
||
|
||
trace_input ("add", OP_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
|
||
result = op0 + op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (result < op0 || result < op1);
|
||
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
|
||
&& (op0 & 0x80000000) != (result & 0x80000000));
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* add sign_extend(imm5), reg */
|
||
int
|
||
OP_240 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov;
|
||
int temp;
|
||
|
||
trace_input ("add", OP_IMM_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
temp = SEXT5 (OP[0]);
|
||
op0 = temp;
|
||
op1 = State.regs[OP[1]];
|
||
result = op0 + op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (result < op0 || result < op1);
|
||
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
|
||
&& (op0 & 0x80000000) != (result & 0x80000000));
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
|
||
trace_output (OP_IMM_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* addi sign_extend(imm16), reg, reg */
|
||
int
|
||
OP_600 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov;
|
||
|
||
trace_input ("addi", OP_IMM16_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
|
||
op0 = EXTEND16 (OP[2]);
|
||
op1 = State.regs[ OP[0] ];
|
||
result = op0 + op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (result < op0 || result < op1);
|
||
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
|
||
&& (op0 & 0x80000000) != (result & 0x80000000));
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
|
||
trace_output (OP_IMM16_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* sub reg1, reg2 */
|
||
int
|
||
OP_1A0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov;
|
||
|
||
trace_input ("sub", OP_REG_REG, 0);
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op1 - op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op1 < op0);
|
||
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
|
||
&& (op1 & 0x80000000) != (result & 0x80000000));
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* subr reg1, reg2 */
|
||
int
|
||
OP_180 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov;
|
||
|
||
trace_input ("subr", OP_REG_REG, 0);
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op0 - op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op0 < op1);
|
||
ov = ((op0 & 0x80000000) != (op1 & 0x80000000)
|
||
&& (op0 & 0x80000000) != (result & 0x80000000));
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* sxh reg1 */
|
||
int
|
||
OP_E0 (void)
|
||
{
|
||
trace_input ("mulh", OP_REG_REG, 0);
|
||
|
||
State.regs[ OP[1] ] = (EXTEND16 (State.regs[ OP[1] ]) * EXTEND16 (State.regs[ OP[0] ]));
|
||
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* mulh sign_extend(imm5), reg2 */
|
||
int
|
||
OP_2E0 (void)
|
||
{
|
||
trace_input ("mulh", OP_IMM_REG, 0);
|
||
|
||
State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[1] ]) * SEXT5 (OP[0]);
|
||
|
||
trace_output (OP_IMM_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* mulhi imm16, reg1, reg2 */
|
||
int
|
||
OP_6E0 (void)
|
||
{
|
||
trace_input ("mulhi", OP_IMM16_REG_REG, 0);
|
||
|
||
State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[0] ]) * EXTEND16 (OP[2]);
|
||
|
||
trace_output (OP_IMM16_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* cmp reg, reg */
|
||
int
|
||
OP_1E0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov;
|
||
|
||
trace_input ("cmp", OP_REG_REG_CMP, 0);
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op1 - op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op1 < op0);
|
||
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
|
||
&& (op1 & 0x80000000) != (result & 0x80000000));
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
|
||
trace_output (OP_REG_REG_CMP);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* cmp sign_extend(imm5), reg */
|
||
int
|
||
OP_260 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov;
|
||
int temp;
|
||
|
||
/* Compute the result. */
|
||
trace_input ("cmp", OP_IMM_REG_CMP, 0);
|
||
temp = SEXT5 (OP[0]);
|
||
op0 = temp;
|
||
op1 = State.regs[OP[1]];
|
||
result = op1 - op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op1 < op0);
|
||
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
|
||
&& (op1 & 0x80000000) != (result & 0x80000000));
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
|
||
trace_output (OP_IMM_REG_CMP);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* setf cccc,reg2 */
|
||
int
|
||
OP_7E0 (void)
|
||
{
|
||
trace_input ("setf", OP_EX1, 0);
|
||
|
||
State.regs[ OP[1] ] = condition_met (OP[0]);
|
||
|
||
trace_output (OP_EX1);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* satadd reg,reg */
|
||
int
|
||
OP_C0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov, sat;
|
||
|
||
trace_input ("satadd", OP_REG_REG, 0);
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op0 + op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (result < op0 || result < op1);
|
||
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
|
||
&& (op0 & 0x80000000) != (result & 0x80000000));
|
||
sat = ov;
|
||
|
||
/* Handle saturated results. */
|
||
if (sat && s)
|
||
{
|
||
/* An overflow that results in a negative result implies that we
|
||
became too positive. */
|
||
result = 0x7fffffff;
|
||
s = 0;
|
||
}
|
||
else if (sat)
|
||
{
|
||
/* Any other overflow must have thus been too negative. */
|
||
result = 0x80000000;
|
||
s = 1;
|
||
z = 0;
|
||
}
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
|
||
| (sat ? PSW_SAT : 0));
|
||
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* satadd sign_extend(imm5), reg */
|
||
int
|
||
OP_220 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov, sat;
|
||
|
||
int temp;
|
||
|
||
trace_input ("satadd", OP_IMM_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
temp = SEXT5 (OP[0]);
|
||
op0 = temp;
|
||
op1 = State.regs[OP[1]];
|
||
result = op0 + op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (result < op0 || result < op1);
|
||
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
|
||
&& (op0 & 0x80000000) != (result & 0x80000000));
|
||
sat = ov;
|
||
|
||
/* Handle saturated results. */
|
||
if (sat && s)
|
||
{
|
||
/* An overflow that results in a negative result implies that we
|
||
became too positive. */
|
||
result = 0x7fffffff;
|
||
s = 0;
|
||
}
|
||
else if (sat)
|
||
{
|
||
/* Any other overflow must have thus been too negative. */
|
||
result = 0x80000000;
|
||
s = 1;
|
||
z = 0;
|
||
}
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
|
||
| (sat ? PSW_SAT : 0));
|
||
trace_output (OP_IMM_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* satsub reg1, reg2 */
|
||
int
|
||
OP_A0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov, sat;
|
||
|
||
trace_input ("satsub", OP_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op1 - op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op1 < op0);
|
||
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
|
||
&& (op1 & 0x80000000) != (result & 0x80000000));
|
||
sat = ov;
|
||
|
||
/* Handle saturated results. */
|
||
if (sat && s)
|
||
{
|
||
/* An overflow that results in a negative result implies that we
|
||
became too positive. */
|
||
result = 0x7fffffff;
|
||
s = 0;
|
||
}
|
||
else if (sat)
|
||
{
|
||
/* Any other overflow must have thus been too negative. */
|
||
result = 0x80000000;
|
||
s = 1;
|
||
z = 0;
|
||
}
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
|
||
| (sat ? PSW_SAT : 0));
|
||
|
||
trace_output (OP_REG_REG);
|
||
return 2;
|
||
}
|
||
|
||
/* satsubi sign_extend(imm16), reg */
|
||
int
|
||
OP_660 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov, sat;
|
||
int temp;
|
||
|
||
trace_input ("satsubi", OP_IMM_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
temp = EXTEND16 (OP[2]);
|
||
op0 = temp;
|
||
op1 = State.regs[ OP[0] ];
|
||
result = op1 - op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op1 < op0);
|
||
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
|
||
&& (op1 & 0x80000000) != (result & 0x80000000));
|
||
sat = ov;
|
||
|
||
/* Handle saturated results. */
|
||
if (sat && s)
|
||
{
|
||
/* An overflow that results in a negative result implies that we
|
||
became too positive. */
|
||
result = 0x7fffffff;
|
||
s = 0;
|
||
}
|
||
else if (sat)
|
||
{
|
||
/* Any other overflow must have thus been too negative. */
|
||
result = 0x80000000;
|
||
s = 1;
|
||
z = 0;
|
||
}
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
|
||
| (sat ? PSW_SAT : 0));
|
||
|
||
trace_output (OP_IMM_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* satsubr reg,reg */
|
||
int
|
||
OP_80 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy, ov, sat;
|
||
|
||
trace_input ("satsubr", OP_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op0 - op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op0 < op1);
|
||
ov = ((op0 & 0x80000000) != (op1 & 0x80000000)
|
||
&& (op0 & 0x80000000) != (result & 0x80000000));
|
||
sat = ov;
|
||
|
||
/* Handle saturated results. */
|
||
if (sat && s)
|
||
{
|
||
/* An overflow that results in a negative result implies that we
|
||
became too positive. */
|
||
result = 0x7fffffff;
|
||
s = 0;
|
||
}
|
||
else if (sat)
|
||
{
|
||
/* Any other overflow must have thus been too negative. */
|
||
result = 0x80000000;
|
||
s = 1;
|
||
z = 0;
|
||
}
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
|
||
| (sat ? PSW_SAT : 0));
|
||
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* tst reg,reg */
|
||
int
|
||
OP_160 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s;
|
||
|
||
trace_input ("tst", OP_REG_REG_CMP, 0);
|
||
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op0 & op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
|
||
/* Store the condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
|
||
trace_output (OP_REG_REG_CMP);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* mov sign_extend(imm5), reg */
|
||
int
|
||
OP_200 (void)
|
||
{
|
||
int value = SEXT5 (OP[0]);
|
||
|
||
trace_input ("mov", OP_IMM_REG_MOVE, 0);
|
||
|
||
State.regs[ OP[1] ] = value;
|
||
|
||
trace_output (OP_IMM_REG_MOVE);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* movhi imm16, reg, reg */
|
||
int
|
||
OP_640 (void)
|
||
{
|
||
trace_input ("movhi", OP_UIMM16_REG_REG, 16);
|
||
|
||
State.regs[ OP[1] ] = State.regs[ OP[0] ] + (OP[2] << 16);
|
||
|
||
trace_output (OP_UIMM16_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* sar zero_extend(imm5),reg1 */
|
||
int
|
||
OP_2A0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy;
|
||
|
||
trace_input ("sar", OP_IMM_REG, 0);
|
||
op0 = OP[0];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = (signed)op1 >> op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[ OP[1] ] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
trace_output (OP_IMM_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* sar reg1, reg2 */
|
||
int
|
||
OP_A007E0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy;
|
||
|
||
trace_input ("sar", OP_REG_REG, 0);
|
||
|
||
op0 = State.regs[ OP[0] ] & 0x1f;
|
||
op1 = State.regs[ OP[1] ];
|
||
result = (signed)op1 >> op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* shl zero_extend(imm5),reg1 */
|
||
int
|
||
OP_2C0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy;
|
||
|
||
trace_input ("shl", OP_IMM_REG, 0);
|
||
op0 = OP[0];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op1 << op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = op0 ? (op1 & (1 << (32 - op0))) : 0;
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
trace_output (OP_IMM_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* shl reg1, reg2 */
|
||
int
|
||
OP_C007E0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy;
|
||
|
||
trace_input ("shl", OP_REG_REG, 0);
|
||
op0 = State.regs[ OP[0] ] & 0x1f;
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op1 << op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = op0 ? (op1 & (1 << (32 - op0))) : 0;
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* shr zero_extend(imm5),reg1 */
|
||
int
|
||
OP_280 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy;
|
||
|
||
trace_input ("shr", OP_IMM_REG, 0);
|
||
op0 = OP[0];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op1 >> op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
trace_output (OP_IMM_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* shr reg1, reg2 */
|
||
int
|
||
OP_8007E0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s, cy;
|
||
|
||
trace_input ("shr", OP_REG_REG, 0);
|
||
op0 = State.regs[ OP[0] ] & 0x1f;
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op1 >> op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* or reg, reg */
|
||
int
|
||
OP_100 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s;
|
||
|
||
trace_input ("or", OP_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op0 | op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* ori zero_extend(imm16), reg, reg */
|
||
int
|
||
OP_680 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s;
|
||
|
||
trace_input ("ori", OP_UIMM16_REG_REG, 0);
|
||
op0 = OP[2];
|
||
op1 = State.regs[ OP[0] ];
|
||
result = op0 | op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
|
||
trace_output (OP_UIMM16_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* and reg, reg */
|
||
int
|
||
OP_140 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s;
|
||
|
||
trace_input ("and", OP_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op0 & op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* andi zero_extend(imm16), reg, reg */
|
||
int
|
||
OP_6C0 (void)
|
||
{
|
||
unsigned int result, z;
|
||
|
||
trace_input ("andi", OP_UIMM16_REG_REG, 0);
|
||
|
||
result = OP[2] & State.regs[ OP[0] ];
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[ OP[1] ] = result;
|
||
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
PSW |= (z ? PSW_Z : 0);
|
||
|
||
trace_output (OP_UIMM16_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* xor reg, reg */
|
||
int
|
||
OP_120 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s;
|
||
|
||
trace_input ("xor", OP_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = State.regs[ OP[1] ];
|
||
result = op0 ^ op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
|
||
trace_output (OP_REG_REG);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* xori zero_extend(imm16), reg, reg */
|
||
int
|
||
OP_6A0 (void)
|
||
{
|
||
unsigned int op0, op1, result, z, s;
|
||
|
||
trace_input ("xori", OP_UIMM16_REG_REG, 0);
|
||
op0 = OP[2];
|
||
op1 = State.regs[ OP[0] ];
|
||
result = op0 ^ op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
|
||
trace_output (OP_UIMM16_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* not reg1, reg2 */
|
||
int
|
||
OP_20 (void)
|
||
{
|
||
unsigned int op0, result, z, s;
|
||
|
||
trace_input ("not", OP_REG_REG_MOVE, 0);
|
||
/* Compute the result. */
|
||
op0 = State.regs[ OP[0] ];
|
||
result = ~op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
|
||
/* Store the result and condition codes. */
|
||
State.regs[OP[1]] = result;
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
|
||
trace_output (OP_REG_REG_MOVE);
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* set1 */
|
||
int
|
||
OP_7C0 (void)
|
||
{
|
||
unsigned int op0, op1, op2;
|
||
int temp;
|
||
|
||
trace_input ("set1", OP_BIT, 0);
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = OP[1] & 0x7;
|
||
temp = EXTEND16 (OP[2]);
|
||
op2 = temp;
|
||
temp = load_mem (op0 + op2, 1);
|
||
PSW &= ~PSW_Z;
|
||
if ((temp & (1 << op1)) == 0)
|
||
PSW |= PSW_Z;
|
||
temp |= (1 << op1);
|
||
store_mem (op0 + op2, 1, temp);
|
||
trace_output (OP_BIT);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* not1 */
|
||
int
|
||
OP_47C0 (void)
|
||
{
|
||
unsigned int op0, op1, op2;
|
||
int temp;
|
||
|
||
trace_input ("not1", OP_BIT, 0);
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = OP[1] & 0x7;
|
||
temp = EXTEND16 (OP[2]);
|
||
op2 = temp;
|
||
temp = load_mem (op0 + op2, 1);
|
||
PSW &= ~PSW_Z;
|
||
if ((temp & (1 << op1)) == 0)
|
||
PSW |= PSW_Z;
|
||
temp ^= (1 << op1);
|
||
store_mem (op0 + op2, 1, temp);
|
||
trace_output (OP_BIT);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* clr1 */
|
||
int
|
||
OP_87C0 (void)
|
||
{
|
||
unsigned int op0, op1, op2;
|
||
int temp;
|
||
|
||
trace_input ("clr1", OP_BIT, 0);
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = OP[1] & 0x7;
|
||
temp = EXTEND16 (OP[2]);
|
||
op2 = temp;
|
||
temp = load_mem (op0 + op2, 1);
|
||
PSW &= ~PSW_Z;
|
||
if ((temp & (1 << op1)) == 0)
|
||
PSW |= PSW_Z;
|
||
temp &= ~(1 << op1);
|
||
store_mem (op0 + op2, 1, temp);
|
||
trace_output (OP_BIT);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* tst1 */
|
||
int
|
||
OP_C7C0 (void)
|
||
{
|
||
unsigned int op0, op1, op2;
|
||
int temp;
|
||
|
||
trace_input ("tst1", OP_BIT, 0);
|
||
op0 = State.regs[ OP[0] ];
|
||
op1 = OP[1] & 0x7;
|
||
temp = EXTEND16 (OP[2]);
|
||
op2 = temp;
|
||
temp = load_mem (op0 + op2, 1);
|
||
PSW &= ~PSW_Z;
|
||
if ((temp & (1 << op1)) == 0)
|
||
PSW |= PSW_Z;
|
||
trace_output (OP_BIT);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* di */
|
||
int
|
||
OP_16007E0 (void)
|
||
{
|
||
trace_input ("di", OP_NONE, 0);
|
||
PSW |= PSW_ID;
|
||
trace_output (OP_NONE);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* ei */
|
||
int
|
||
OP_16087E0 (void)
|
||
{
|
||
trace_input ("ei", OP_NONE, 0);
|
||
PSW &= ~PSW_ID;
|
||
trace_output (OP_NONE);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* halt */
|
||
int
|
||
OP_12007E0 (void)
|
||
{
|
||
trace_input ("halt", OP_NONE, 0);
|
||
/* FIXME this should put processor into a mode where NMI still handled */
|
||
trace_output (OP_NONE);
|
||
sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
|
||
sim_stopped, SIM_SIGTRAP);
|
||
return 0;
|
||
}
|
||
|
||
/* trap */
|
||
int
|
||
OP_10007E0 (void)
|
||
{
|
||
trace_input ("trap", OP_TRAP, 0);
|
||
trace_output (OP_TRAP);
|
||
|
||
/* Trap 31 is used for simulating OS I/O functions */
|
||
|
||
if (OP[0] == 31)
|
||
{
|
||
int save_errno = errno;
|
||
errno = 0;
|
||
|
||
/* Registers passed to trap 0 */
|
||
|
||
#define FUNC State.regs[6] /* function number, return value */
|
||
#define PARM1 State.regs[7] /* optional parm 1 */
|
||
#define PARM2 State.regs[8] /* optional parm 2 */
|
||
#define PARM3 State.regs[9] /* optional parm 3 */
|
||
|
||
/* Registers set by trap 0 */
|
||
|
||
#define RETVAL State.regs[10] /* return value */
|
||
#define RETERR State.regs[11] /* return error code */
|
||
|
||
/* Turn a pointer in a register into a pointer into real memory. */
|
||
|
||
#define MEMPTR(x) (map (x))
|
||
|
||
RETERR = 0;
|
||
|
||
switch (FUNC)
|
||
{
|
||
|
||
#ifdef HAVE_FORK
|
||
#ifdef TARGET_SYS_fork
|
||
case TARGET_SYS_fork:
|
||
RETVAL = fork ();
|
||
RETERR = errno;
|
||
break;
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef HAVE_EXECVE
|
||
#ifdef TARGET_SYS_execv
|
||
case TARGET_SYS_execve:
|
||
{
|
||
char *path = fetch_str (simulator, PARM1);
|
||
char **argv = fetch_argv (simulator, PARM2);
|
||
char **envp = fetch_argv (simulator, PARM3);
|
||
RETVAL = execve (path, argv, envp);
|
||
free (path);
|
||
freeargv (argv);
|
||
freeargv (envp);
|
||
RETERR = errno;
|
||
break;
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
#if HAVE_EXECV
|
||
#ifdef TARGET_SYS_execv
|
||
case TARGET_SYS_execv:
|
||
{
|
||
char *path = fetch_str (simulator, PARM1);
|
||
char **argv = fetch_argv (simulator, PARM2);
|
||
RETVAL = execv (path, argv);
|
||
free (path);
|
||
freeargv (argv);
|
||
RETERR = errno;
|
||
break;
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
#if 0
|
||
#ifdef TARGET_SYS_pipe
|
||
case TARGET_SYS_pipe:
|
||
{
|
||
reg_t buf;
|
||
int host_fd[2];
|
||
|
||
buf = PARM1;
|
||
RETVAL = pipe (host_fd);
|
||
SW (buf, host_fd[0]);
|
||
buf += sizeof (uint16);
|
||
SW (buf, host_fd[1]);
|
||
RETERR = errno;
|
||
}
|
||
break;
|
||
#endif
|
||
#endif
|
||
|
||
#if 0
|
||
#ifdef TARGET_SYS_wait
|
||
case TARGET_SYS_wait:
|
||
{
|
||
int status;
|
||
|
||
RETVAL = wait (&status);
|
||
SW (PARM1, status);
|
||
RETERR = errno;
|
||
}
|
||
break;
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_read
|
||
case TARGET_SYS_read:
|
||
{
|
||
char *buf = zalloc (PARM3);
|
||
RETVAL = sim_io_read (simulator, PARM1, buf, PARM3);
|
||
sim_write (simulator, PARM2, (unsigned char *) buf, PARM3);
|
||
free (buf);
|
||
if ((int) RETVAL < 0)
|
||
RETERR = sim_io_get_errno (simulator);
|
||
break;
|
||
}
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_write
|
||
case TARGET_SYS_write:
|
||
{
|
||
char *buf = zalloc (PARM3);
|
||
sim_read (simulator, PARM2, (unsigned char *) buf, PARM3);
|
||
if (PARM1 == 1)
|
||
RETVAL = sim_io_write_stdout (simulator, buf, PARM3);
|
||
else
|
||
RETVAL = sim_io_write (simulator, PARM1, buf, PARM3);
|
||
free (buf);
|
||
if ((int) RETVAL < 0)
|
||
RETERR = sim_io_get_errno (simulator);
|
||
break;
|
||
}
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_lseek
|
||
case TARGET_SYS_lseek:
|
||
RETVAL = sim_io_lseek (simulator, PARM1, PARM2, PARM3);
|
||
if ((int) RETVAL < 0)
|
||
RETERR = sim_io_get_errno (simulator);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_close
|
||
case TARGET_SYS_close:
|
||
RETVAL = sim_io_close (simulator, PARM1);
|
||
if ((int) RETVAL < 0)
|
||
RETERR = sim_io_get_errno (simulator);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_open
|
||
case TARGET_SYS_open:
|
||
{
|
||
char *buf = fetch_str (simulator, PARM1);
|
||
RETVAL = sim_io_open (simulator, buf, PARM2);
|
||
free (buf);
|
||
if ((int) RETVAL < 0)
|
||
RETERR = sim_io_get_errno (simulator);
|
||
break;
|
||
}
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_exit
|
||
case TARGET_SYS_exit:
|
||
if ((PARM1 & 0xffff0000) == 0xdead0000 && (PARM1 & 0xffff) != 0)
|
||
/* get signal encoded by kill */
|
||
sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
|
||
sim_signalled, PARM1 & 0xffff);
|
||
else if (PARM1 == 0xdead)
|
||
/* old libraries */
|
||
sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
|
||
sim_stopped, SIM_SIGABRT);
|
||
else
|
||
/* PARM1 has exit status */
|
||
sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
|
||
sim_exited, PARM1);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_stat
|
||
case TARGET_SYS_stat: /* added at hmsi */
|
||
/* stat system call */
|
||
{
|
||
struct stat host_stat;
|
||
reg_t buf;
|
||
char *path = fetch_str (simulator, PARM1);
|
||
|
||
RETVAL = sim_io_stat (simulator, path, &host_stat);
|
||
|
||
free (path);
|
||
buf = PARM2;
|
||
|
||
/* Just wild-assed guesses. */
|
||
store_mem (buf, 2, host_stat.st_dev);
|
||
store_mem (buf + 2, 2, host_stat.st_ino);
|
||
store_mem (buf + 4, 4, host_stat.st_mode);
|
||
store_mem (buf + 8, 2, host_stat.st_nlink);
|
||
store_mem (buf + 10, 2, host_stat.st_uid);
|
||
store_mem (buf + 12, 2, host_stat.st_gid);
|
||
store_mem (buf + 14, 2, host_stat.st_rdev);
|
||
store_mem (buf + 16, 4, host_stat.st_size);
|
||
store_mem (buf + 20, 4, host_stat.st_atime);
|
||
store_mem (buf + 28, 4, host_stat.st_mtime);
|
||
store_mem (buf + 36, 4, host_stat.st_ctime);
|
||
|
||
if ((int) RETVAL < 0)
|
||
RETERR = sim_io_get_errno (simulator);
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_fstat
|
||
case TARGET_SYS_fstat:
|
||
/* fstat system call */
|
||
{
|
||
struct stat host_stat;
|
||
reg_t buf;
|
||
|
||
RETVAL = sim_io_fstat (simulator, PARM1, &host_stat);
|
||
|
||
buf = PARM2;
|
||
|
||
/* Just wild-assed guesses. */
|
||
store_mem (buf, 2, host_stat.st_dev);
|
||
store_mem (buf + 2, 2, host_stat.st_ino);
|
||
store_mem (buf + 4, 4, host_stat.st_mode);
|
||
store_mem (buf + 8, 2, host_stat.st_nlink);
|
||
store_mem (buf + 10, 2, host_stat.st_uid);
|
||
store_mem (buf + 12, 2, host_stat.st_gid);
|
||
store_mem (buf + 14, 2, host_stat.st_rdev);
|
||
store_mem (buf + 16, 4, host_stat.st_size);
|
||
store_mem (buf + 20, 4, host_stat.st_atime);
|
||
store_mem (buf + 28, 4, host_stat.st_mtime);
|
||
store_mem (buf + 36, 4, host_stat.st_ctime);
|
||
|
||
if ((int) RETVAL < 0)
|
||
RETERR = sim_io_get_errno (simulator);
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_rename
|
||
case TARGET_SYS_rename:
|
||
{
|
||
char *oldpath = fetch_str (simulator, PARM1);
|
||
char *newpath = fetch_str (simulator, PARM2);
|
||
RETVAL = sim_io_rename (simulator, oldpath, newpath);
|
||
free (oldpath);
|
||
free (newpath);
|
||
if ((int) RETVAL < 0)
|
||
RETERR = sim_io_get_errno (simulator);
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_unlink
|
||
case TARGET_SYS_unlink:
|
||
{
|
||
char *path = fetch_str (simulator, PARM1);
|
||
RETVAL = sim_io_unlink (simulator, path);
|
||
free (path);
|
||
if ((int) RETVAL < 0)
|
||
RETERR = sim_io_get_errno (simulator);
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
#ifdef HAVE_CHOWN
|
||
#ifdef TARGET_SYS_chown
|
||
case TARGET_SYS_chown:
|
||
{
|
||
char *path = fetch_str (simulator, PARM1);
|
||
RETVAL = chown (path, PARM2, PARM3);
|
||
free (path);
|
||
RETERR = errno;
|
||
}
|
||
break;
|
||
#endif
|
||
#endif
|
||
|
||
#if HAVE_CHMOD
|
||
#ifdef TARGET_SYS_chmod
|
||
case TARGET_SYS_chmod:
|
||
{
|
||
char *path = fetch_str (simulator, PARM1);
|
||
RETVAL = chmod (path, PARM2);
|
||
free (path);
|
||
RETERR = errno;
|
||
}
|
||
break;
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_time
|
||
#if HAVE_TIME
|
||
case TARGET_SYS_time:
|
||
{
|
||
time_t now;
|
||
RETVAL = time (&now);
|
||
store_mem (PARM1, 4, now);
|
||
RETERR = errno;
|
||
}
|
||
break;
|
||
#endif
|
||
#endif
|
||
|
||
#if !defined(__GO32__) && !defined(_WIN32)
|
||
#ifdef TARGET_SYS_times
|
||
case TARGET_SYS_times:
|
||
{
|
||
struct tms tms;
|
||
RETVAL = times (&tms);
|
||
store_mem (PARM1, 4, tms.tms_utime);
|
||
store_mem (PARM1 + 4, 4, tms.tms_stime);
|
||
store_mem (PARM1 + 8, 4, tms.tms_cutime);
|
||
store_mem (PARM1 + 12, 4, tms.tms_cstime);
|
||
reterr = errno;
|
||
break;
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_gettimeofday
|
||
#if !defined(__GO32__) && !defined(_WIN32)
|
||
case TARGET_SYS_gettimeofday:
|
||
{
|
||
struct timeval t;
|
||
struct timezone tz;
|
||
RETVAL = gettimeofday (&t, &tz);
|
||
store_mem (PARM1, 4, t.tv_sec);
|
||
store_mem (PARM1 + 4, 4, t.tv_usec);
|
||
store_mem (PARM2, 4, tz.tz_minuteswest);
|
||
store_mem (PARM2 + 4, 4, tz.tz_dsttime);
|
||
RETERR = errno;
|
||
break;
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef TARGET_SYS_utime
|
||
#if HAVE_UTIME
|
||
case TARGET_SYS_utime:
|
||
{
|
||
/* Cast the second argument to void *, to avoid type mismatch
|
||
if a prototype is present. */
|
||
sim_io_error (simulator, "Utime not supported");
|
||
/* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */
|
||
}
|
||
break;
|
||
#endif
|
||
#endif
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
errno = save_errno;
|
||
|
||
return 4;
|
||
}
|
||
else
|
||
{ /* Trap 0 -> 30 */
|
||
EIPC = PC + 4;
|
||
EIPSW = PSW;
|
||
/* Mask out EICC */
|
||
ECR &= 0xffff0000;
|
||
ECR |= 0x40 + OP[0];
|
||
/* Flag that we are now doing exception processing. */
|
||
PSW |= PSW_EP | PSW_ID;
|
||
PC = (OP[0] < 0x10) ? 0x40 : 0x50;
|
||
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* tst1 reg2, [reg1] */
|
||
int
|
||
OP_E607E0 (void)
|
||
{
|
||
int temp;
|
||
|
||
trace_input ("tst1", OP_BIT, 1);
|
||
|
||
temp = load_mem (State.regs[ OP[0] ], 1);
|
||
|
||
PSW &= ~PSW_Z;
|
||
if ((temp & (1 << (State.regs[ OP[1] ] & 0x7))) == 0)
|
||
PSW |= PSW_Z;
|
||
|
||
trace_output (OP_BIT);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* mulu reg1, reg2, reg3 */
|
||
int
|
||
OP_22207E0 (void)
|
||
{
|
||
trace_input ("mulu", OP_REG_REG_REG, 0);
|
||
|
||
Multiply64 (0, State.regs[ OP[0] ]);
|
||
|
||
trace_output (OP_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
#define BIT_CHANGE_OP( name, binop ) \
|
||
unsigned int bit; \
|
||
unsigned int temp; \
|
||
\
|
||
trace_input (name, OP_BIT_CHANGE, 0); \
|
||
\
|
||
bit = 1 << (State.regs[ OP[1] ] & 0x7); \
|
||
temp = load_mem (State.regs[ OP[0] ], 1); \
|
||
\
|
||
PSW &= ~PSW_Z; \
|
||
if ((temp & bit) == 0) \
|
||
PSW |= PSW_Z; \
|
||
temp binop bit; \
|
||
\
|
||
store_mem (State.regs[ OP[0] ], 1, temp); \
|
||
\
|
||
trace_output (OP_BIT_CHANGE); \
|
||
\
|
||
return 4;
|
||
|
||
/* clr1 reg2, [reg1] */
|
||
int
|
||
OP_E407E0 (void)
|
||
{
|
||
BIT_CHANGE_OP ("clr1", &= ~ );
|
||
}
|
||
|
||
/* not1 reg2, [reg1] */
|
||
int
|
||
OP_E207E0 (void)
|
||
{
|
||
BIT_CHANGE_OP ("not1", ^= );
|
||
}
|
||
|
||
/* set1 */
|
||
int
|
||
OP_E007E0 (void)
|
||
{
|
||
BIT_CHANGE_OP ("set1", |= );
|
||
}
|
||
|
||
/* sasf */
|
||
int
|
||
OP_20007E0 (void)
|
||
{
|
||
trace_input ("sasf", OP_EX1, 0);
|
||
|
||
State.regs[ OP[1] ] = (State.regs[ OP[1] ] << 1) | condition_met (OP[0]);
|
||
|
||
trace_output (OP_EX1);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* This function is courtesy of Sugimoto at NEC, via Seow Tan
|
||
(Soew_Tan@el.nec.com) */
|
||
void
|
||
divun
|
||
(
|
||
unsigned int N,
|
||
unsigned long int als,
|
||
unsigned long int sfi,
|
||
unsigned32 /*unsigned long int*/ * quotient_ptr,
|
||
unsigned32 /*unsigned long int*/ * remainder_ptr,
|
||
int * overflow_ptr
|
||
)
|
||
{
|
||
unsigned long ald = sfi >> (N - 1);
|
||
unsigned long alo = als;
|
||
unsigned int Q = 1;
|
||
unsigned int C;
|
||
unsigned int S = 0;
|
||
unsigned int i;
|
||
unsigned int R1 = 1;
|
||
unsigned int DBZ = (als == 0) ? 1 : 0;
|
||
unsigned long alt = Q ? ~als : als;
|
||
|
||
/* 1st Loop */
|
||
alo = ald + alt + Q;
|
||
C = (((alt >> 31) & (ald >> 31))
|
||
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
|
||
C = C ^ Q;
|
||
Q = ~(C ^ S) & 1;
|
||
R1 = (alo == 0) ? 0 : (R1 & Q);
|
||
if ((S ^ (alo>>31)) && !C)
|
||
{
|
||
DBZ = 1;
|
||
}
|
||
S = alo >> 31;
|
||
sfi = (sfi << (32-N+1)) | Q;
|
||
ald = (alo << 1) | (sfi >> 31);
|
||
|
||
/* 2nd - N-1th Loop */
|
||
for (i = 2; i < N; i++)
|
||
{
|
||
alt = Q ? ~als : als;
|
||
alo = ald + alt + Q;
|
||
C = (((alt >> 31) & (ald >> 31))
|
||
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
|
||
C = C ^ Q;
|
||
Q = ~(C ^ S) & 1;
|
||
R1 = (alo == 0) ? 0 : (R1 & Q);
|
||
if ((S ^ (alo>>31)) && !C && !DBZ)
|
||
{
|
||
DBZ = 1;
|
||
}
|
||
S = alo >> 31;
|
||
sfi = (sfi << 1) | Q;
|
||
ald = (alo << 1) | (sfi >> 31);
|
||
}
|
||
|
||
/* Nth Loop */
|
||
alt = Q ? ~als : als;
|
||
alo = ald + alt + Q;
|
||
C = (((alt >> 31) & (ald >> 31))
|
||
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
|
||
C = C ^ Q;
|
||
Q = ~(C ^ S) & 1;
|
||
R1 = (alo == 0) ? 0 : (R1 & Q);
|
||
if ((S ^ (alo>>31)) && !C)
|
||
{
|
||
DBZ = 1;
|
||
}
|
||
|
||
* quotient_ptr = (sfi << 1) | Q;
|
||
* remainder_ptr = Q ? alo : (alo + als);
|
||
* overflow_ptr = DBZ | R1;
|
||
}
|
||
|
||
/* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */
|
||
void
|
||
divn
|
||
(
|
||
unsigned int N,
|
||
unsigned long int als,
|
||
unsigned long int sfi,
|
||
signed32 /*signed long int*/ * quotient_ptr,
|
||
signed32 /*signed long int*/ * remainder_ptr,
|
||
int * overflow_ptr
|
||
)
|
||
{
|
||
unsigned long ald = (signed long) sfi >> (N - 1);
|
||
unsigned long alo = als;
|
||
unsigned int SS = als >> 31;
|
||
unsigned int SD = sfi >> 31;
|
||
unsigned int R1 = 1;
|
||
unsigned int OV;
|
||
unsigned int DBZ = als == 0 ? 1 : 0;
|
||
unsigned int Q = ~(SS ^ SD) & 1;
|
||
unsigned int C;
|
||
unsigned int S;
|
||
unsigned int i;
|
||
unsigned long alt = Q ? ~als : als;
|
||
|
||
|
||
/* 1st Loop */
|
||
|
||
alo = ald + alt + Q;
|
||
C = (((alt >> 31) & (ald >> 31))
|
||
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
|
||
Q = C ^ SS;
|
||
R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
|
||
S = alo >> 31;
|
||
sfi = (sfi << (32-N+1)) | Q;
|
||
ald = (alo << 1) | (sfi >> 31);
|
||
if ((alo >> 31) ^ (ald >> 31))
|
||
{
|
||
DBZ = 1;
|
||
}
|
||
|
||
/* 2nd - N-1th Loop */
|
||
|
||
for (i = 2; i < N; i++)
|
||
{
|
||
alt = Q ? ~als : als;
|
||
alo = ald + alt + Q;
|
||
C = (((alt >> 31) & (ald >> 31))
|
||
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
|
||
Q = C ^ SS;
|
||
R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
|
||
S = alo >> 31;
|
||
sfi = (sfi << 1) | Q;
|
||
ald = (alo << 1) | (sfi >> 31);
|
||
if ((alo >> 31) ^ (ald >> 31))
|
||
{
|
||
DBZ = 1;
|
||
}
|
||
}
|
||
|
||
/* Nth Loop */
|
||
alt = Q ? ~als : als;
|
||
alo = ald + alt + Q;
|
||
C = (((alt >> 31) & (ald >> 31))
|
||
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
|
||
Q = C ^ SS;
|
||
R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
|
||
sfi = (sfi << (32-N+1));
|
||
ald = alo;
|
||
|
||
/* End */
|
||
if (alo != 0)
|
||
{
|
||
alt = Q ? ~als : als;
|
||
alo = ald + alt + Q;
|
||
}
|
||
R1 = R1 & ((~alo >> 31) ^ SD);
|
||
if ((alo != 0) && ((Q ^ (SS ^ SD)) ^ R1)) alo = ald;
|
||
if (N != 32)
|
||
ald = sfi = (long) ((sfi >> 1) | (SS ^ SD) << 31) >> (32-N-1) | Q;
|
||
else
|
||
ald = sfi = sfi | Q;
|
||
|
||
OV = DBZ | ((alo == 0) ? 0 : R1);
|
||
|
||
* remainder_ptr = alo;
|
||
|
||
/* Adj */
|
||
if (((alo != 0) && ((SS ^ SD) ^ R1))
|
||
|| ((alo == 0) && (SS ^ R1)))
|
||
alo = ald + 1;
|
||
else
|
||
alo = ald;
|
||
|
||
OV = (DBZ | R1) ? OV : ((alo >> 31) & (~ald >> 31));
|
||
|
||
* quotient_ptr = alo;
|
||
* overflow_ptr = OV;
|
||
}
|
||
|
||
/* sdivun imm5, reg1, reg2, reg3 */
|
||
int
|
||
OP_1C207E0 (void)
|
||
{
|
||
unsigned32 /*unsigned long int*/ quotient;
|
||
unsigned32 /*unsigned long int*/ remainder;
|
||
unsigned long int divide_by;
|
||
unsigned long int divide_this;
|
||
int overflow = 0;
|
||
unsigned int imm5;
|
||
|
||
trace_input ("sdivun", OP_IMM_REG_REG_REG, 0);
|
||
|
||
imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
|
||
|
||
divide_by = State.regs[ OP[0] ];
|
||
divide_this = State.regs[ OP[1] ] << imm5;
|
||
|
||
divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
|
||
|
||
State.regs[ OP[1] ] = quotient;
|
||
State.regs[ OP[2] >> 11 ] = remainder;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (overflow) PSW |= PSW_OV;
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient & 0x80000000) PSW |= PSW_S;
|
||
|
||
trace_output (OP_IMM_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* sdivn imm5, reg1, reg2, reg3 */
|
||
int
|
||
OP_1C007E0 (void)
|
||
{
|
||
signed32 /*signed long int*/ quotient;
|
||
signed32 /*signed long int*/ remainder;
|
||
signed long int divide_by;
|
||
signed long int divide_this;
|
||
int overflow = 0;
|
||
unsigned int imm5;
|
||
|
||
trace_input ("sdivn", OP_IMM_REG_REG_REG, 0);
|
||
|
||
imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
|
||
|
||
divide_by = (signed32) State.regs[ OP[0] ];
|
||
divide_this = (signed32) (State.regs[ OP[1] ] << imm5);
|
||
|
||
divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
|
||
|
||
State.regs[ OP[1] ] = quotient;
|
||
State.regs[ OP[2] >> 11 ] = remainder;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (overflow) PSW |= PSW_OV;
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient < 0) PSW |= PSW_S;
|
||
|
||
trace_output (OP_IMM_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* sdivhun imm5, reg1, reg2, reg3 */
|
||
int
|
||
OP_18207E0 (void)
|
||
{
|
||
unsigned32 /*unsigned long int*/ quotient;
|
||
unsigned32 /*unsigned long int*/ remainder;
|
||
unsigned long int divide_by;
|
||
unsigned long int divide_this;
|
||
int overflow = 0;
|
||
unsigned int imm5;
|
||
|
||
trace_input ("sdivhun", OP_IMM_REG_REG_REG, 0);
|
||
|
||
imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
|
||
|
||
divide_by = State.regs[ OP[0] ] & 0xffff;
|
||
divide_this = State.regs[ OP[1] ] << imm5;
|
||
|
||
divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
|
||
|
||
State.regs[ OP[1] ] = quotient;
|
||
State.regs[ OP[2] >> 11 ] = remainder;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (overflow) PSW |= PSW_OV;
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient & 0x80000000) PSW |= PSW_S;
|
||
|
||
trace_output (OP_IMM_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* sdivhn imm5, reg1, reg2, reg3 */
|
||
int
|
||
OP_18007E0 (void)
|
||
{
|
||
signed32 /*signed long int*/ quotient;
|
||
signed32 /*signed long int*/ remainder;
|
||
signed long int divide_by;
|
||
signed long int divide_this;
|
||
int overflow = 0;
|
||
unsigned int imm5;
|
||
|
||
trace_input ("sdivhn", OP_IMM_REG_REG_REG, 0);
|
||
|
||
imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
|
||
|
||
divide_by = EXTEND16 (State.regs[ OP[0] ]);
|
||
divide_this = (signed32) (State.regs[ OP[1] ] << imm5);
|
||
|
||
divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
|
||
|
||
State.regs[ OP[1] ] = quotient;
|
||
State.regs[ OP[2] >> 11 ] = remainder;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (overflow) PSW |= PSW_OV;
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient < 0) PSW |= PSW_S;
|
||
|
||
trace_output (OP_IMM_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* divu reg1, reg2, reg3 */
|
||
int
|
||
OP_2C207E0 (void)
|
||
{
|
||
unsigned long int quotient;
|
||
unsigned long int remainder;
|
||
unsigned long int divide_by;
|
||
unsigned long int divide_this;
|
||
int overflow = 0;
|
||
|
||
trace_input ("divu", OP_REG_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
|
||
divide_by = State.regs[ OP[0] ];
|
||
divide_this = State.regs[ OP[1] ];
|
||
|
||
if (divide_by == 0)
|
||
{
|
||
PSW |= PSW_OV;
|
||
}
|
||
else
|
||
{
|
||
State.regs[ OP[1] ] = quotient = divide_this / divide_by;
|
||
State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (overflow) PSW |= PSW_OV;
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient & 0x80000000) PSW |= PSW_S;
|
||
}
|
||
|
||
trace_output (OP_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* div reg1, reg2, reg3 */
|
||
int
|
||
OP_2C007E0 (void)
|
||
{
|
||
signed long int quotient;
|
||
signed long int remainder;
|
||
signed long int divide_by;
|
||
signed long int divide_this;
|
||
|
||
trace_input ("div", OP_REG_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
|
||
divide_by = (signed32) State.regs[ OP[0] ];
|
||
divide_this = State.regs[ OP[1] ];
|
||
|
||
if (divide_by == 0)
|
||
{
|
||
PSW |= PSW_OV;
|
||
}
|
||
else if (divide_by == -1 && divide_this == (1L << 31))
|
||
{
|
||
PSW &= ~PSW_Z;
|
||
PSW |= PSW_OV | PSW_S;
|
||
State.regs[ OP[1] ] = (1 << 31);
|
||
State.regs[ OP[2] >> 11 ] = 0;
|
||
}
|
||
else
|
||
{
|
||
divide_this = (signed32) divide_this;
|
||
State.regs[ OP[1] ] = quotient = divide_this / divide_by;
|
||
State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient < 0) PSW |= PSW_S;
|
||
}
|
||
|
||
trace_output (OP_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* divhu reg1, reg2, reg3 */
|
||
int
|
||
OP_28207E0 (void)
|
||
{
|
||
unsigned long int quotient;
|
||
unsigned long int remainder;
|
||
unsigned long int divide_by;
|
||
unsigned long int divide_this;
|
||
int overflow = 0;
|
||
|
||
trace_input ("divhu", OP_REG_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
|
||
divide_by = State.regs[ OP[0] ] & 0xffff;
|
||
divide_this = State.regs[ OP[1] ];
|
||
|
||
if (divide_by == 0)
|
||
{
|
||
PSW |= PSW_OV;
|
||
}
|
||
else
|
||
{
|
||
State.regs[ OP[1] ] = quotient = divide_this / divide_by;
|
||
State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (overflow) PSW |= PSW_OV;
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient & 0x80000000) PSW |= PSW_S;
|
||
}
|
||
|
||
trace_output (OP_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* divh reg1, reg2, reg3 */
|
||
int
|
||
OP_28007E0 (void)
|
||
{
|
||
signed long int quotient;
|
||
signed long int remainder;
|
||
signed long int divide_by;
|
||
signed long int divide_this;
|
||
int overflow = 0;
|
||
|
||
trace_input ("divh", OP_REG_REG_REG, 0);
|
||
|
||
/* Compute the result. */
|
||
|
||
divide_by = EXTEND16 (State.regs[ OP[0] ]);
|
||
divide_this = State.regs[ OP[1] ];
|
||
|
||
if (divide_by == 0)
|
||
{
|
||
PSW |= PSW_OV;
|
||
}
|
||
else if (divide_by == -1 && divide_this == (1L << 31))
|
||
{
|
||
PSW &= ~PSW_Z;
|
||
PSW |= PSW_OV | PSW_S;
|
||
State.regs[ OP[1] ] = (1 << 31);
|
||
State.regs[ OP[2] >> 11 ] = 0;
|
||
}
|
||
else
|
||
{
|
||
divide_this = (signed32) divide_this;
|
||
State.regs[ OP[1] ] = quotient = divide_this / divide_by;
|
||
State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient < 0) PSW |= PSW_S;
|
||
}
|
||
|
||
trace_output (OP_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* mulu imm9, reg2, reg3 */
|
||
int
|
||
OP_24207E0 (void)
|
||
{
|
||
trace_input ("mulu", OP_IMM_REG_REG, 0);
|
||
|
||
Multiply64 (0, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0));
|
||
|
||
trace_output (OP_IMM_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* mul imm9, reg2, reg3 */
|
||
int
|
||
OP_24007E0 (void)
|
||
{
|
||
trace_input ("mul", OP_IMM_REG_REG, 0);
|
||
|
||
Multiply64 (1, SEXT9 ((OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0)));
|
||
|
||
trace_output (OP_IMM_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* ld.hu */
|
||
int
|
||
OP_107E0 (void)
|
||
{
|
||
int adr;
|
||
|
||
trace_input ("ld.hu", OP_LOAD32, 2);
|
||
|
||
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
|
||
adr &= ~0x1;
|
||
|
||
State.regs[ OP[1] ] = load_mem (adr, 2);
|
||
|
||
trace_output (OP_LOAD32);
|
||
|
||
return 4;
|
||
}
|
||
|
||
|
||
/* ld.bu */
|
||
int
|
||
OP_10780 (void)
|
||
{
|
||
int adr;
|
||
|
||
trace_input ("ld.bu", OP_LOAD32, 1);
|
||
|
||
adr = (State.regs[ OP[0] ]
|
||
+ (EXTEND16 (OP[2] & ~1) | ((OP[3] >> 5) & 1)));
|
||
|
||
State.regs[ OP[1] ] = load_mem (adr, 1);
|
||
|
||
trace_output (OP_LOAD32);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* prepare list12, imm5, imm32 */
|
||
int
|
||
OP_1B0780 (void)
|
||
{
|
||
int i;
|
||
|
||
trace_input ("prepare", OP_PUSHPOP1, 0);
|
||
|
||
/* Store the registers with lower number registers being placed at higher addresses. */
|
||
for (i = 0; i < 12; i++)
|
||
if ((OP[3] & (1 << type1_regs[ i ])))
|
||
{
|
||
SP -= 4;
|
||
store_mem (SP, 4, State.regs[ 20 + i ]);
|
||
}
|
||
|
||
SP -= (OP[3] & 0x3e) << 1;
|
||
|
||
EP = load_mem (PC + 4, 4);
|
||
|
||
trace_output (OP_PUSHPOP1);
|
||
|
||
return 8;
|
||
}
|
||
|
||
/* prepare list12, imm5, imm16-32 */
|
||
int
|
||
OP_130780 (void)
|
||
{
|
||
int i;
|
||
|
||
trace_input ("prepare", OP_PUSHPOP1, 0);
|
||
|
||
/* Store the registers with lower number registers being placed at higher addresses. */
|
||
for (i = 0; i < 12; i++)
|
||
if ((OP[3] & (1 << type1_regs[ i ])))
|
||
{
|
||
SP -= 4;
|
||
store_mem (SP, 4, State.regs[ 20 + i ]);
|
||
}
|
||
|
||
SP -= (OP[3] & 0x3e) << 1;
|
||
|
||
EP = load_mem (PC + 4, 2) << 16;
|
||
|
||
trace_output (OP_PUSHPOP1);
|
||
|
||
return 6;
|
||
}
|
||
|
||
/* prepare list12, imm5, imm16 */
|
||
int
|
||
OP_B0780 (void)
|
||
{
|
||
int i;
|
||
|
||
trace_input ("prepare", OP_PUSHPOP1, 0);
|
||
|
||
/* Store the registers with lower number registers being placed at higher addresses. */
|
||
for (i = 0; i < 12; i++)
|
||
if ((OP[3] & (1 << type1_regs[ i ])))
|
||
{
|
||
SP -= 4;
|
||
store_mem (SP, 4, State.regs[ 20 + i ]);
|
||
}
|
||
|
||
SP -= (OP[3] & 0x3e) << 1;
|
||
|
||
EP = EXTEND16 (load_mem (PC + 4, 2));
|
||
|
||
trace_output (OP_PUSHPOP1);
|
||
|
||
return 6;
|
||
}
|
||
|
||
/* prepare list12, imm5, sp */
|
||
int
|
||
OP_30780 (void)
|
||
{
|
||
int i;
|
||
|
||
trace_input ("prepare", OP_PUSHPOP1, 0);
|
||
|
||
/* Store the registers with lower number registers being placed at higher addresses. */
|
||
for (i = 0; i < 12; i++)
|
||
if ((OP[3] & (1 << type1_regs[ i ])))
|
||
{
|
||
SP -= 4;
|
||
store_mem (SP, 4, State.regs[ 20 + i ]);
|
||
}
|
||
|
||
SP -= (OP[3] & 0x3e) << 1;
|
||
|
||
EP = SP;
|
||
|
||
trace_output (OP_PUSHPOP1);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* mul reg1, reg2, reg3 */
|
||
int
|
||
OP_22007E0 (void)
|
||
{
|
||
trace_input ("mul", OP_REG_REG_REG, 0);
|
||
|
||
Multiply64 (1, State.regs[ OP[0] ]);
|
||
|
||
trace_output (OP_REG_REG_REG);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* popmh list18 */
|
||
int
|
||
OP_307F0 (void)
|
||
{
|
||
int i;
|
||
|
||
trace_input ("popmh", OP_PUSHPOP2, 0);
|
||
|
||
if (OP[3] & (1 << 19))
|
||
{
|
||
if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
|
||
{
|
||
FEPSW = load_mem ( SP & ~ 3, 4);
|
||
FEPC = load_mem ((SP + 4) & ~ 3, 4);
|
||
}
|
||
else
|
||
{
|
||
EIPSW = load_mem ( SP & ~ 3, 4);
|
||
EIPC = load_mem ((SP + 4) & ~ 3, 4);
|
||
}
|
||
|
||
SP += 8;
|
||
}
|
||
|
||
/* Load the registers with lower number registers being retrieved from higher addresses. */
|
||
for (i = 16; i--;)
|
||
if ((OP[3] & (1 << type2_regs[ i ])))
|
||
{
|
||
State.regs[ i + 16 ] = load_mem (SP & ~ 3, 4);
|
||
SP += 4;
|
||
}
|
||
|
||
trace_output (OP_PUSHPOP2);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* popml lsit18 */
|
||
int
|
||
OP_107F0 (void)
|
||
{
|
||
int i;
|
||
|
||
trace_input ("popml", OP_PUSHPOP3, 0);
|
||
|
||
if (OP[3] & (1 << 19))
|
||
{
|
||
if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
|
||
{
|
||
FEPSW = load_mem ( SP & ~ 3, 4);
|
||
FEPC = load_mem ((SP + 4) & ~ 3, 4);
|
||
}
|
||
else
|
||
{
|
||
EIPSW = load_mem ( SP & ~ 3, 4);
|
||
EIPC = load_mem ((SP + 4) & ~ 3, 4);
|
||
}
|
||
|
||
SP += 8;
|
||
}
|
||
|
||
if (OP[3] & (1 << 3))
|
||
{
|
||
PSW = load_mem (SP & ~ 3, 4);
|
||
SP += 4;
|
||
}
|
||
|
||
/* Load the registers with lower number registers being retrieved from higher addresses. */
|
||
for (i = 15; i--;)
|
||
if ((OP[3] & (1 << type3_regs[ i ])))
|
||
{
|
||
State.regs[ i + 1 ] = load_mem (SP & ~ 3, 4);
|
||
SP += 4;
|
||
}
|
||
|
||
trace_output (OP_PUSHPOP2);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* pushmh list18 */
|
||
int
|
||
OP_307E0 (void)
|
||
{
|
||
int i;
|
||
|
||
trace_input ("pushmh", OP_PUSHPOP2, 0);
|
||
|
||
/* Store the registers with lower number registers being placed at higher addresses. */
|
||
for (i = 0; i < 16; i++)
|
||
if ((OP[3] & (1 << type2_regs[ i ])))
|
||
{
|
||
SP -= 4;
|
||
store_mem (SP & ~ 3, 4, State.regs[ i + 16 ]);
|
||
}
|
||
|
||
if (OP[3] & (1 << 19))
|
||
{
|
||
SP -= 8;
|
||
|
||
if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
|
||
{
|
||
store_mem ((SP + 4) & ~ 3, 4, FEPC);
|
||
store_mem ( SP & ~ 3, 4, FEPSW);
|
||
}
|
||
else
|
||
{
|
||
store_mem ((SP + 4) & ~ 3, 4, EIPC);
|
||
store_mem ( SP & ~ 3, 4, EIPSW);
|
||
}
|
||
}
|
||
|
||
trace_output (OP_PUSHPOP2);
|
||
|
||
return 4;
|
||
}
|
||
|
||
/* V850E2R FPU functions */
|
||
/*
|
||
sim_fpu_status_invalid_snan = 1, -V--- (sim spec.)
|
||
sim_fpu_status_invalid_qnan = 2, ----- (sim spec.)
|
||
sim_fpu_status_invalid_isi = 4, (inf - inf) -V---
|
||
sim_fpu_status_invalid_idi = 8, (inf / inf) -V---
|
||
sim_fpu_status_invalid_zdz = 16, (0 / 0) -V---
|
||
sim_fpu_status_invalid_imz = 32, (inf * 0) -V---
|
||
sim_fpu_status_invalid_cvi = 64, convert to integer -V---
|
||
sim_fpu_status_invalid_div0 = 128, (X / 0) --Z--
|
||
sim_fpu_status_invalid_cmp = 256, compare ----- (sim spec.)
|
||
sim_fpu_status_invalid_sqrt = 512, -V---
|
||
sim_fpu_status_rounded = 1024, I----
|
||
sim_fpu_status_inexact = 2048, I---- (sim spec.)
|
||
sim_fpu_status_overflow = 4096, I--O-
|
||
sim_fpu_status_underflow = 8192, I---U
|
||
sim_fpu_status_denorm = 16384, ----U (sim spec.)
|
||
*/
|
||
|
||
void
|
||
update_fpsr (SIM_DESC sd, sim_fpu_status status, unsigned int mask, unsigned int double_op_p)
|
||
{
|
||
unsigned int fpsr = FPSR & mask;
|
||
|
||
unsigned int flags = 0;
|
||
|
||
if (fpsr & FPSR_XEI
|
||
&& ((status & (sim_fpu_status_rounded
|
||
| sim_fpu_status_overflow
|
||
| sim_fpu_status_inexact))
|
||
|| (status & sim_fpu_status_underflow
|
||
&& (fpsr & (FPSR_XEU | FPSR_XEI)) == 0
|
||
&& fpsr & FPSR_FS)))
|
||
{
|
||
flags |= FPSR_XCI | FPSR_XPI;
|
||
}
|
||
|
||
if (fpsr & FPSR_XEV
|
||
&& (status & (sim_fpu_status_invalid_isi
|
||
| sim_fpu_status_invalid_imz
|
||
| sim_fpu_status_invalid_zdz
|
||
| sim_fpu_status_invalid_idi
|
||
| sim_fpu_status_invalid_cvi
|
||
| sim_fpu_status_invalid_sqrt
|
||
| sim_fpu_status_invalid_snan)))
|
||
{
|
||
flags |= FPSR_XCV | FPSR_XPV;
|
||
}
|
||
|
||
if (fpsr & FPSR_XEZ
|
||
&& (status & sim_fpu_status_invalid_div0))
|
||
{
|
||
flags |= FPSR_XCV | FPSR_XPV;
|
||
}
|
||
|
||
if (fpsr & FPSR_XEO
|
||
&& (status & sim_fpu_status_overflow))
|
||
{
|
||
flags |= FPSR_XCO | FPSR_XPO;
|
||
}
|
||
|
||
if (((fpsr & FPSR_XEU) || (fpsr & FPSR_FS) == 0)
|
||
&& (status & (sim_fpu_status_underflow
|
||
| sim_fpu_status_denorm)))
|
||
{
|
||
flags |= FPSR_XCU | FPSR_XPU;
|
||
}
|
||
|
||
if (flags)
|
||
{
|
||
FPSR &= ~FPSR_XC;
|
||
FPSR |= flags;
|
||
|
||
SignalExceptionFPE (sd, double_op_p);
|
||
}
|
||
}
|
||
|
||
/* Exception. */
|
||
|
||
void
|
||
SignalException (SIM_DESC sd)
|
||
{
|
||
if (MPM & MPM_AUE)
|
||
{
|
||
PSW = PSW & ~(PSW_NPV | PSW_DMP | PSW_IMP);
|
||
}
|
||
}
|
||
|
||
void
|
||
SignalExceptionFPE (SIM_DESC sd, unsigned int double_op_p)
|
||
{
|
||
if (((PSW & (PSW_NP|PSW_ID)) == 0)
|
||
|| !(FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM)))
|
||
{
|
||
EIPC = PC;
|
||
EIPSW = PSW;
|
||
EIIC = (FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM))
|
||
? 0x71 : 0x72;
|
||
PSW |= (PSW_EP | PSW_ID);
|
||
PC = 0x70;
|
||
|
||
SignalException (sd);
|
||
}
|
||
}
|
||
|
||
void
|
||
check_invalid_snan (SIM_DESC sd, sim_fpu_status status, unsigned int double_op_p)
|
||
{
|
||
if ((FPSR & FPSR_XEI)
|
||
&& (status & sim_fpu_status_invalid_snan))
|
||
{
|
||
FPSR &= ~FPSR_XC;
|
||
FPSR |= FPSR_XCV;
|
||
FPSR |= FPSR_XPV;
|
||
SignalExceptionFPE (sd, double_op_p);
|
||
}
|
||
}
|
||
|
||
int
|
||
v850_float_compare (SIM_DESC sd, int cmp, sim_fpu wop1, sim_fpu wop2, int double_op_p)
|
||
{
|
||
int result = -1;
|
||
|
||
if (sim_fpu_is_nan (&wop1) || sim_fpu_is_nan (&wop2))
|
||
{
|
||
if (cmp & 0x8)
|
||
{
|
||
if (FPSR & FPSR_XEV)
|
||
{
|
||
FPSR |= FPSR_XCV | FPSR_XPV;
|
||
SignalExceptionFPE (sd, double_op_p);
|
||
}
|
||
}
|
||
|
||
switch (cmp)
|
||
{
|
||
case FPU_CMP_F:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_UN:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_EQ:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_UEQ:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_OLT:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_ULT:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_OLE:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_ULE:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_SF:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_NGLE:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_SEQ:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_NGL:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_LT:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_NGE:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_LE:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_NGT:
|
||
result = 1;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
else if (sim_fpu_is_infinity (&wop1) && sim_fpu_is_infinity (&wop2)
|
||
&& sim_fpu_sign (&wop1) == sim_fpu_sign (&wop2))
|
||
{
|
||
switch (cmp)
|
||
{
|
||
case FPU_CMP_F:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_UN:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_EQ:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_UEQ:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_OLT:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_ULT:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_OLE:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_ULE:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_SF:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_NGLE:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_SEQ:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_NGL:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_LT:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_NGE:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_LE:
|
||
result = 1;
|
||
break;
|
||
case FPU_CMP_NGT:
|
||
result = 1;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int gt = 0,lt = 0,eq = 0, status;
|
||
|
||
status = sim_fpu_cmp (&wop1, &wop2);
|
||
|
||
switch (status)
|
||
{
|
||
case SIM_FPU_IS_SNAN:
|
||
case SIM_FPU_IS_QNAN:
|
||
abort ();
|
||
break;
|
||
|
||
case SIM_FPU_IS_NINF:
|
||
lt = 1;
|
||
break;
|
||
case SIM_FPU_IS_PINF:
|
||
gt = 1;
|
||
break;
|
||
case SIM_FPU_IS_NNUMBER:
|
||
lt = 1;
|
||
break;
|
||
case SIM_FPU_IS_PNUMBER:
|
||
gt = 1;
|
||
break;
|
||
case SIM_FPU_IS_NDENORM:
|
||
lt = 1;
|
||
break;
|
||
case SIM_FPU_IS_PDENORM:
|
||
gt = 1;
|
||
break;
|
||
case SIM_FPU_IS_NZERO:
|
||
case SIM_FPU_IS_PZERO:
|
||
eq = 1;
|
||
break;
|
||
}
|
||
|
||
switch (cmp)
|
||
{
|
||
case FPU_CMP_F:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_UN:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_EQ:
|
||
result = eq;
|
||
break;
|
||
case FPU_CMP_UEQ:
|
||
result = eq;
|
||
break;
|
||
case FPU_CMP_OLT:
|
||
result = lt;
|
||
break;
|
||
case FPU_CMP_ULT:
|
||
result = lt;
|
||
break;
|
||
case FPU_CMP_OLE:
|
||
result = lt || eq;
|
||
break;
|
||
case FPU_CMP_ULE:
|
||
result = lt || eq;
|
||
break;
|
||
case FPU_CMP_SF:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_NGLE:
|
||
result = 0;
|
||
break;
|
||
case FPU_CMP_SEQ:
|
||
result = eq;
|
||
break;
|
||
case FPU_CMP_NGL:
|
||
result = eq;
|
||
break;
|
||
case FPU_CMP_LT:
|
||
result = lt;
|
||
break;
|
||
case FPU_CMP_NGE:
|
||
result = lt;
|
||
break;
|
||
case FPU_CMP_LE:
|
||
result = lt || eq;
|
||
break;
|
||
case FPU_CMP_NGT:
|
||
result = lt || eq;
|
||
break;
|
||
}
|
||
}
|
||
|
||
ASSERT (result != -1);
|
||
return result;
|
||
}
|
||
|
||
void
|
||
v850_div (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p)
|
||
{
|
||
signed long int quotient;
|
||
signed long int remainder;
|
||
signed long int divide_by;
|
||
signed long int divide_this;
|
||
bfd_boolean overflow = FALSE;
|
||
|
||
/* Compute the result. */
|
||
divide_by = op0;
|
||
divide_this = op1;
|
||
|
||
if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31)))
|
||
{
|
||
overflow = TRUE;
|
||
divide_by = 1;
|
||
}
|
||
|
||
quotient = divide_this / divide_by;
|
||
remainder = divide_this % divide_by;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (overflow) PSW |= PSW_OV;
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient < 0) PSW |= PSW_S;
|
||
|
||
*op2p = quotient;
|
||
*op3p = remainder;
|
||
}
|
||
|
||
void
|
||
v850_divu (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p)
|
||
{
|
||
unsigned long int quotient;
|
||
unsigned long int remainder;
|
||
unsigned long int divide_by;
|
||
unsigned long int divide_this;
|
||
bfd_boolean overflow = FALSE;
|
||
|
||
/* Compute the result. */
|
||
|
||
divide_by = op0;
|
||
divide_this = op1;
|
||
|
||
if (divide_by == 0)
|
||
{
|
||
overflow = TRUE;
|
||
divide_by = 1;
|
||
}
|
||
|
||
quotient = divide_this / divide_by;
|
||
remainder = divide_this % divide_by;
|
||
|
||
/* Set condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
|
||
|
||
if (overflow) PSW |= PSW_OV;
|
||
if (quotient == 0) PSW |= PSW_Z;
|
||
if (quotient & 0x80000000) PSW |= PSW_S;
|
||
|
||
*op2p = quotient;
|
||
*op3p = remainder;
|
||
}
|
||
|
||
void
|
||
v850_sar (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
|
||
{
|
||
unsigned int result, z, s, cy;
|
||
|
||
op0 &= 0x1f;
|
||
result = (signed)op1 >> op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op1 & (1 << (op0 - 1)));
|
||
|
||
/* Store the result and condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
|
||
*op2p = result;
|
||
}
|
||
|
||
void
|
||
v850_shl (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
|
||
{
|
||
unsigned int result, z, s, cy;
|
||
|
||
op0 &= 0x1f;
|
||
result = op1 << op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op1 & (1 << (32 - op0)));
|
||
|
||
/* Store the result and condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
|
||
*op2p = result;
|
||
}
|
||
|
||
void
|
||
v850_rotl (SIM_DESC sd, unsigned int amount, unsigned int src, unsigned int * dest)
|
||
{
|
||
unsigned int result, z, s, cy;
|
||
|
||
amount &= 0x1f;
|
||
result = src << amount;
|
||
result |= src >> (32 - amount);
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = ! (result & 1);
|
||
|
||
/* Store the result and condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
|
||
* dest = result;
|
||
}
|
||
|
||
void
|
||
v850_bins (SIM_DESC sd, unsigned int source, unsigned int lsb, unsigned int msb,
|
||
unsigned int * dest)
|
||
{
|
||
unsigned int mask;
|
||
unsigned int result, pos, width;
|
||
unsigned int z, s;
|
||
|
||
pos = lsb;
|
||
width = (msb - lsb) + 1;
|
||
|
||
mask = ~ (-(1 << width));
|
||
source &= mask;
|
||
mask <<= pos;
|
||
result = (* dest) & ~ mask;
|
||
result |= source << pos;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = result & 0x80000000;
|
||
|
||
/* Store the result and condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV );
|
||
PSW |= (z ? PSW_Z : 0) | (s ? PSW_S : 0);
|
||
|
||
* dest = result;
|
||
}
|
||
|
||
void
|
||
v850_shr (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
|
||
{
|
||
unsigned int result, z, s, cy;
|
||
|
||
op0 &= 0x1f;
|
||
result = op1 >> op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op1 & (1 << (op0 - 1)));
|
||
|
||
/* Store the result and condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0));
|
||
|
||
*op2p = result;
|
||
}
|
||
|
||
void
|
||
v850_satadd (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
|
||
{
|
||
unsigned int result, z, s, cy, ov, sat;
|
||
|
||
result = op0 + op1;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (result < op0 || result < op1);
|
||
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
|
||
&& (op0 & 0x80000000) != (result & 0x80000000));
|
||
sat = ov;
|
||
|
||
/* Store the result and condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
|
||
| (sat ? PSW_SAT : 0));
|
||
|
||
/* Handle saturated results. */
|
||
if (sat && s)
|
||
{
|
||
result = 0x7fffffff;
|
||
PSW &= ~PSW_S;
|
||
}
|
||
else if (sat)
|
||
{
|
||
result = 0x80000000;
|
||
PSW |= PSW_S;
|
||
}
|
||
|
||
*op2p = result;
|
||
}
|
||
|
||
void
|
||
v850_satsub (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
|
||
{
|
||
unsigned int result, z, s, cy, ov, sat;
|
||
|
||
/* Compute the result. */
|
||
result = op1 - op0;
|
||
|
||
/* Compute the condition codes. */
|
||
z = (result == 0);
|
||
s = (result & 0x80000000);
|
||
cy = (op1 < op0);
|
||
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
|
||
&& (op1 & 0x80000000) != (result & 0x80000000));
|
||
sat = ov;
|
||
|
||
/* Store the result and condition codes. */
|
||
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
|
||
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
|
||
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
|
||
| (sat ? PSW_SAT : 0));
|
||
|
||
/* Handle saturated results. */
|
||
if (sat && s)
|
||
{
|
||
result = 0x7fffffff;
|
||
PSW &= ~PSW_S;
|
||
}
|
||
else if (sat)
|
||
{
|
||
result = 0x80000000;
|
||
PSW |= PSW_S;
|
||
}
|
||
|
||
*op2p = result;
|
||
}
|
||
|
||
unsigned32
|
||
load_data_mem (SIM_DESC sd,
|
||
SIM_ADDR addr,
|
||
int len)
|
||
{
|
||
uint32 data;
|
||
|
||
switch (len)
|
||
{
|
||
case 1:
|
||
data = sim_core_read_unaligned_1 (STATE_CPU (sd, 0),
|
||
PC, read_map, addr);
|
||
break;
|
||
case 2:
|
||
data = sim_core_read_unaligned_2 (STATE_CPU (sd, 0),
|
||
PC, read_map, addr);
|
||
break;
|
||
case 4:
|
||
data = sim_core_read_unaligned_4 (STATE_CPU (sd, 0),
|
||
PC, read_map, addr);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return data;
|
||
}
|
||
|
||
void
|
||
store_data_mem (SIM_DESC sd,
|
||
SIM_ADDR addr,
|
||
int len,
|
||
unsigned32 data)
|
||
{
|
||
switch (len)
|
||
{
|
||
case 1:
|
||
store_mem (addr, 1, data);
|
||
break;
|
||
case 2:
|
||
store_mem (addr, 2, data);
|
||
break;
|
||
case 4:
|
||
store_mem (addr, 4, data);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
int
|
||
mpu_load_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg)
|
||
{
|
||
int result = 1;
|
||
|
||
if (PSW & PSW_DMP)
|
||
{
|
||
if (IPE0 && addr >= IPA2ADDR (IPA0L) && addr <= IPA2ADDR (IPA0L) && IPR0)
|
||
{
|
||
/* text area */
|
||
}
|
||
else if (IPE1 && addr >= IPA2ADDR (IPA1L) && addr <= IPA2ADDR (IPA1L) && IPR1)
|
||
{
|
||
/* text area */
|
||
}
|
||
else if (IPE2 && addr >= IPA2ADDR (IPA2L) && addr <= IPA2ADDR (IPA2L) && IPR2)
|
||
{
|
||
/* text area */
|
||
}
|
||
else if (IPE3 && addr >= IPA2ADDR (IPA3L) && addr <= IPA2ADDR (IPA3L) && IPR3)
|
||
{
|
||
/* text area */
|
||
}
|
||
else if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM))
|
||
{
|
||
/* preifarallel area */
|
||
}
|
||
else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU))
|
||
{
|
||
/* stack area */
|
||
}
|
||
else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPR0
|
||
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
|
||
{
|
||
/* data area */
|
||
}
|
||
else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPR1
|
||
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
|
||
{
|
||
/* data area */
|
||
}
|
||
else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPR2
|
||
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
|
||
{
|
||
/* data area */
|
||
}
|
||
else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPR3
|
||
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
|
||
{
|
||
/* data area */
|
||
}
|
||
else
|
||
{
|
||
VMECR &= ~(VMECR_VMW | VMECR_VMX);
|
||
VMECR |= VMECR_VMR;
|
||
VMADR = addr;
|
||
VMTID = TID;
|
||
FEIC = 0x431;
|
||
|
||
PC = 0x30;
|
||
|
||
SignalException (sd);
|
||
result = 0;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
int
|
||
mpu_store_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg)
|
||
{
|
||
int result = 1;
|
||
|
||
if (PSW & PSW_DMP)
|
||
{
|
||
if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM))
|
||
{
|
||
/* preifarallel area */
|
||
}
|
||
else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU))
|
||
{
|
||
/* stack area */
|
||
}
|
||
else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPW0
|
||
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
|
||
{
|
||
/* data area */
|
||
}
|
||
else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPW1
|
||
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
|
||
{
|
||
/* data area */
|
||
}
|
||
else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPW2
|
||
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
|
||
{
|
||
/* data area */
|
||
}
|
||
else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPW3
|
||
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
|
||
{
|
||
/* data area */
|
||
}
|
||
else
|
||
{
|
||
if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM))
|
||
{
|
||
FEIC = 0x432;
|
||
VPTID = TID;
|
||
VPADR = PC;
|
||
#ifdef NOT_YET
|
||
VIP_PP;
|
||
VPECR;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
FEIC = 0x431;
|
||
VMTID = TID;
|
||
VMADR = VMECR;
|
||
VMECR &= ~(VMECR_VMW | VMECR_VMX);
|
||
VMECR |= VMECR_VMR;
|
||
PC = 0x30;
|
||
}
|
||
result = 0;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|