binutils-gdb/sim/rl78/rl78.c
DJ Delorie 0952813b0b Make RL78 disassembler and simulator respect ISA for mul/div
[gas]
	* config/rl78-defs.h (rl78_isa_g10): New.
	(rl78_isa_g13): New.
	(rl78_isa_g14): New.
	* config/rl78-parse.y (ISA_G10): New.
	(ISA_G13): New.
	(ISA_G14): New.
	(MULHU, MULH, MULU, DIVHU, DIVWU, MACHU, MACH): Use them.
	* config/tc-rl78.c (rl78_isa_g10): New.
	(rl78_isa_g13): New.
	(rl78_isa_g14): New.

[gdb]
	* rl78-tdep.c (rl78_analyze_prologue): Pass RL78_ISA_DEFAULT to
	rl78_decode_opcode

[include]
	* dis-asm.h (print_insn_rl78_g10): New.
	(print_insn_rl78_g13): New.
	(print_insn_rl78_g14): New.
	(rl78_get_disassembler): New.
	* opcode/rl78.h (RL78_Dis_Isa): New.
	(rl78_decode_opcode): Add ISA parameter.

[opcodes]
	* disassemble.c (disassembler): Choose suitable disassembler based
	on E_ABI.
	* rl78-decode.opc (rl78_decode_opcode): Take ISA parameter.  Use
	it to decode mul/div insns.
	* rl78-decode.c: Regenerate.
	* rl78-dis.c (print_insn_rl78): Rename to...
	(print_insn_rl78_common): ...this, take ISA parameter.
	(print_insn_rl78): New.
	(print_insn_rl78_g10): New.
	(print_insn_rl78_g13): New.
	(print_insn_rl78_g14): New.
	(rl78_get_disassembler): New.

[sim]
	* rl78/cpu.c (g14_multiply): New.
	* rl78/cpu.h (g14_multiply): New.
	* rl78/load.c (rl78_load): Decode ISA completely.
	* rl78/main.c (main): Expand -M to include other ISAs.
	* rl78/rl78.c (decode_opcode): Decode based on ISA.
	* rl78/trace.c (rl78_disasm_fn): New.
	(sim_disasm_init): Reset it.
	(sim_disasm_one): Get correct disassembler for ISA.
2015-04-30 15:25:49 -04:00

922 lines
19 KiB
C

/* rl78.c --- opcode semantics for stand-alone RL78 simulator.
Copyright (C) 2008-2015 Free Software Foundation, Inc.
Contributed by Red Hat, Inc.
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <setjmp.h>
#include <time.h>
#include "opcode/rl78.h"
#include "cpu.h"
#include "mem.h"
extern int skip_init;
static int opcode_pc = 0;
jmp_buf decode_jmp_buf;
#define DO_RETURN(x) longjmp (decode_jmp_buf, x)
#define tprintf if (trace) printf
#define WILD_JUMP_CHECK(new_pc) \
do { \
if (new_pc == 0 || new_pc > 0xfffff) \
{ \
pc = opcode_pc; \
fprintf (stderr, "Wild jump to 0x%x from 0x%x!\n", new_pc, pc); \
DO_RETURN (RL78_MAKE_HIT_BREAK ()); \
} \
} while (0)
typedef struct {
unsigned long dpc;
} RL78_Data;
static int
rl78_get_byte (void *vdata)
{
RL78_Data *rl78_data = (RL78_Data *)vdata;
int rv = mem_get_pc (rl78_data->dpc);
rl78_data->dpc ++;
return rv;
}
static int
op_addr (const RL78_Opcode_Operand *o, int for_data)
{
int v = o->addend;
if (o->reg != RL78_Reg_None)
v += get_reg (o->reg);
if (o->reg2 != RL78_Reg_None)
v += get_reg (o->reg2);
if (o->use_es)
v |= (get_reg (RL78_Reg_ES) & 0xf) << 16;
else if (for_data)
v |= 0xf0000;
v &= 0xfffff;
return v;
}
static int
get_op (const RL78_Opcode_Decoded *rd, int i, int for_data)
{
int v, r;
const RL78_Opcode_Operand *o = rd->op + i;
switch (o->type)
{
case RL78_Operand_None:
/* condition code does this. */
v = 0;
break;
case RL78_Operand_Immediate:
tprintf (" #");
v = o->addend;
break;
case RL78_Operand_Register:
tprintf (" %s=", reg_names[o->reg]);
v = get_reg (o->reg);
break;
case RL78_Operand_Bit:
tprintf (" %s.%d=", reg_names[o->reg], o->bit_number);
v = get_reg (o->reg);
v = (v & (1 << o->bit_number)) ? 1 : 0;
break;
case RL78_Operand_Indirect:
v = op_addr (o, for_data);
tprintf (" [0x%x]=", v);
if (rd->size == RL78_Word)
v = mem_get_hi (v);
else
v = mem_get_qi (v);
break;
case RL78_Operand_BitIndirect:
v = op_addr (o, for_data);
tprintf (" [0x%x].%d=", v, o->bit_number);
v = (mem_get_qi (v) & (1 << o->bit_number)) ? 1 : 0;
break;
case RL78_Operand_PreDec:
r = get_reg (o->reg);
tprintf (" [--%s]", reg_names[o->reg]);
if (rd->size == RL78_Word)
{
r -= 2;
v = mem_get_hi (r | 0xf0000);
}
else
{
r -= 1;
v = mem_get_qi (r | 0xf0000);
}
set_reg (o->reg, r);
break;
case RL78_Operand_PostInc:
tprintf (" [%s++]", reg_names[o->reg]);
r = get_reg (o->reg);
if (rd->size == RL78_Word)
{
v = mem_get_hi (r | 0xf0000);
r += 2;
}
else
{
v = mem_get_qi (r | 0xf0000);
r += 1;
}
set_reg (o->reg, r);
break;
default:
abort ();
}
tprintf ("%d", v);
return v;
}
static void
put_op (const RL78_Opcode_Decoded *rd, int i, int for_data, int v)
{
int r, a;
const RL78_Opcode_Operand *o = rd->op + i;
tprintf (" -> ");
switch (o->type)
{
case RL78_Operand_Register:
tprintf ("%s", reg_names[o->reg]);
set_reg (o->reg, v);
break;
case RL78_Operand_Bit:
tprintf ("%s.%d", reg_names[o->reg], o->bit_number);
r = get_reg (o->reg);
if (v)
r |= (1 << o->bit_number);
else
r &= ~(1 << o->bit_number);
set_reg (o->reg, r);
break;
case RL78_Operand_Indirect:
r = op_addr (o, for_data);
tprintf ("[0x%x]", r);
if (rd->size == RL78_Word)
mem_put_hi (r, v);
else
mem_put_qi (r, v);
break;
case RL78_Operand_BitIndirect:
a = op_addr (o, for_data);
tprintf ("[0x%x].%d", a, o->bit_number);
r = mem_get_qi (a);
if (v)
r |= (1 << o->bit_number);
else
r &= ~(1 << o->bit_number);
mem_put_qi (a, r);
break;
case RL78_Operand_PreDec:
r = get_reg (o->reg);
tprintf ("[--%s]", reg_names[o->reg]);
if (rd->size == RL78_Word)
{
r -= 2;
set_reg (o->reg, r);
mem_put_hi (r | 0xf0000, v);
}
else
{
r -= 1;
set_reg (o->reg, r);
mem_put_qi (r | 0xf0000, v);
}
break;
case RL78_Operand_PostInc:
tprintf ("[%s++]", reg_names[o->reg]);
r = get_reg (o->reg);
if (rd->size == RL78_Word)
{
mem_put_hi (r | 0xf0000, v);
r += 2;
}
else
{
mem_put_qi (r | 0xf0000, v);
r += 1;
}
set_reg (o->reg, r);
break;
default:
abort ();
}
tprintf ("\n");
}
static void
op_flags (int before, int after, int mask, RL78_Size size)
{
int vmask, cmask, amask, avmask;
if (size == RL78_Word)
{
cmask = 0x10000;
vmask = 0xffff;
amask = 0x100;
avmask = 0x0ff;
}
else
{
cmask = 0x100;
vmask = 0xff;
amask = 0x10;
avmask = 0x0f;
}
int psw = get_reg (RL78_Reg_PSW);
psw &= ~mask;
if (mask & RL78_PSW_CY)
{
if ((after & cmask) != (before & cmask))
psw |= RL78_PSW_CY;
}
if (mask & RL78_PSW_AC)
{
if ((after & amask) != (before & amask)
&& (after & avmask) < (before & avmask))
psw |= RL78_PSW_AC;
}
if (mask & RL78_PSW_Z)
{
if (! (after & vmask))
psw |= RL78_PSW_Z;
}
set_reg (RL78_Reg_PSW, psw);
}
#define FLAGS(before,after) if (opcode.flags) op_flags (before, after, opcode.flags, opcode.size)
#define PD(x) put_op (&opcode, 0, 1, x)
#define PS(x) put_op (&opcode, 1, 1, x)
#define GD() get_op (&opcode, 0, 1)
#define GS() get_op (&opcode, 1, 1)
#define GPC() gpc (&opcode, 0)
static int
gpc (RL78_Opcode_Decoded *opcode, int idx)
{
int a = get_op (opcode, 0, 1);
if (opcode->op[idx].type == RL78_Operand_Register)
a =(a & 0x0ffff) | ((get_reg (RL78_Reg_CS) & 0x0f) << 16);
else
a &= 0xfffff;
return a;
}
static int
get_carry (void)
{
return (get_reg (RL78_Reg_PSW) & RL78_PSW_CY) ? 1 : 0;
}
static void
set_carry (int c)
{
int p = get_reg (RL78_Reg_PSW);
tprintf ("set_carry (%d)\n", c ? 1 : 0);
if (c)
p |= RL78_PSW_CY;
else
p &= ~RL78_PSW_CY;
set_reg (RL78_Reg_PSW, p);
}
/* We simulate timer TM00 in interval mode, no clearing, with
interrupts. I.e. it's a cycle counter. */
unsigned int counts_per_insn[0x100000];
int pending_clocks = 0;
long long total_clocks = 0;
#define TCR0 0xf0180
#define MK1 0xfffe6
static void
process_clock_tick (void)
{
unsigned short cnt;
unsigned short ivect;
unsigned short mask;
unsigned char psw;
int save_trace;
save_trace = trace;
trace = 0;
pending_clocks ++;
counts_per_insn[opcode_pc] += pending_clocks;
total_clocks += pending_clocks;
while (pending_clocks)
{
pending_clocks --;
cnt = mem_get_hi (TCR0);
cnt --;
mem_put_hi (TCR0, cnt);
if (cnt != 0xffff)
continue;
/* overflow. */
psw = get_reg (RL78_Reg_PSW);
ivect = mem_get_hi (0x0002c);
mask = mem_get_hi (MK1);
if ((psw & RL78_PSW_IE)
&& (ivect != 0)
&& !(mask & 0x0010))
{
unsigned short sp = get_reg (RL78_Reg_SP);
set_reg (RL78_Reg_SP, sp - 4);
sp --;
mem_put_qi (sp | 0xf0000, psw);
sp -= 3;
mem_put_psi (sp | 0xf0000, pc);
psw &= ~RL78_PSW_IE;
set_reg (RL78_Reg_PSW, psw);
pc = ivect;
/* Spec says 9-14 clocks */
pending_clocks += 9;
}
}
trace = save_trace;
}
void
dump_counts_per_insn (const char * filename)
{
int i;
FILE *f;
f = fopen (filename, "w");
if (!f)
{
perror (filename);
return;
}
for (i = 0; i < 0x100000; i ++)
{
if (counts_per_insn[i])
fprintf (f, "%05x %d\n", i, counts_per_insn[i]);
}
fclose (f);
}
static void
CLOCKS (int n)
{
pending_clocks += n - 1;
}
int
decode_opcode (void)
{
RL78_Data rl78_data;
RL78_Opcode_Decoded opcode;
int opcode_size;
int a, b, v, v2;
unsigned int u, u2;
int obits;
RL78_Dis_Isa isa;
isa = (rl78_g10_mode ? RL78_ISA_G10
: g14_multiply ? RL78_ISA_G14
: g13_multiply ? RL78_ISA_G13
: RL78_ISA_DEFAULT);
rl78_data.dpc = pc;
opcode_size = rl78_decode_opcode (pc, &opcode,
rl78_get_byte, &rl78_data, isa);
opcode_pc = pc;
pc += opcode_size;
trace_register_words = opcode.size == RL78_Word ? 1 : 0;
/* Used by shfit/rotate instructions */
obits = opcode.size == RL78_Word ? 16 : 8;
switch (opcode.id)
{
case RLO_add:
tprintf ("ADD: ");
a = GS ();
b = GD ();
v = a + b;
FLAGS (b, v);
PD (v);
if (opcode.op[0].type == RL78_Operand_Indirect)
CLOCKS (2);
break;
case RLO_addc:
tprintf ("ADDC: ");
a = GS ();
b = GD ();
v = a + b + get_carry ();
FLAGS (b, v);
PD (v);
if (opcode.op[0].type == RL78_Operand_Indirect)
CLOCKS (2);
break;
case RLO_and:
tprintf ("AND: ");
a = GS ();
b = GD ();
v = a & b;
FLAGS (b, v);
PD (v);
if (opcode.op[0].type == RL78_Operand_Indirect)
CLOCKS (2);
break;
case RLO_branch_cond:
case RLO_branch_cond_clear:
tprintf ("BRANCH_COND: ");
if (!condition_true (opcode.op[1].condition, GS ()))
{
tprintf (" false\n");
if (opcode.op[1].condition == RL78_Condition_T
|| opcode.op[1].condition == RL78_Condition_F)
CLOCKS (3);
else
CLOCKS (2);
break;
}
if (opcode.id == RLO_branch_cond_clear)
PS (0);
tprintf (" ");
if (opcode.op[1].condition == RL78_Condition_T
|| opcode.op[1].condition == RL78_Condition_F)
CLOCKS (3); /* note: adds two clocks, total 5 clocks */
else
CLOCKS (2); /* note: adds one clock, total 4 clocks */
case RLO_branch:
tprintf ("BRANCH: ");
v = GPC ();
WILD_JUMP_CHECK (v);
pc = v;
tprintf (" => 0x%05x\n", pc);
CLOCKS (3);
break;
case RLO_break:
tprintf ("BRK: ");
CLOCKS (5);
if (rl78_in_gdb)
DO_RETURN (RL78_MAKE_HIT_BREAK ());
else
DO_RETURN (RL78_MAKE_EXITED (1));
break;
case RLO_call:
tprintf ("CALL: ");
a = get_reg (RL78_Reg_SP);
set_reg (RL78_Reg_SP, a - 4);
mem_put_psi ((a - 4) | 0xf0000, pc);
v = GPC ();
WILD_JUMP_CHECK (v);
pc = v;
#if 0
/* Enable this code to dump the arguments for each call. */
if (trace)
{
int i;
skip_init ++;
for (i = 0; i < 8; i ++)
printf (" %02x", mem_get_qi (0xf0000 | (a + i)) & 0xff);
skip_init --;
}
#endif
tprintf ("\n");
CLOCKS (3);
break;
case RLO_cmp:
tprintf ("CMP: ");
a = GD ();
b = GS ();
v = a - b;
FLAGS (b, v);
tprintf (" (%d)\n", v);
break;
case RLO_divhu:
a = get_reg (RL78_Reg_AX);
b = get_reg (RL78_Reg_DE);
tprintf (" %d / %d = ", a, b);
if (b == 0)
{
tprintf ("%d rem %d\n", 0xffff, a);
set_reg (RL78_Reg_AX, 0xffff);
set_reg (RL78_Reg_DE, a);
}
else
{
v = a / b;
a = a % b;
tprintf ("%d rem %d\n", v, a);
set_reg (RL78_Reg_AX, v);
set_reg (RL78_Reg_DE, a);
}
CLOCKS (9);
break;
case RLO_divwu:
{
unsigned long bcax, hlde, quot, rem;
bcax = get_reg (RL78_Reg_AX) + 65536 * get_reg (RL78_Reg_BC);
hlde = get_reg (RL78_Reg_DE) + 65536 * get_reg (RL78_Reg_HL);
tprintf (" %lu / %lu = ", bcax, hlde);
if (hlde == 0)
{
tprintf ("%lu rem %lu\n", 0xffffLU, bcax);
set_reg (RL78_Reg_AX, 0xffffLU);
set_reg (RL78_Reg_BC, 0xffffLU);
set_reg (RL78_Reg_DE, bcax);
set_reg (RL78_Reg_HL, bcax >> 16);
}
else
{
quot = bcax / hlde;
rem = bcax % hlde;
tprintf ("%lu rem %lu\n", quot, rem);
set_reg (RL78_Reg_AX, quot);
set_reg (RL78_Reg_BC, quot >> 16);
set_reg (RL78_Reg_DE, rem);
set_reg (RL78_Reg_HL, rem >> 16);
}
}
CLOCKS (17);
break;
case RLO_halt:
tprintf ("HALT.\n");
DO_RETURN (RL78_MAKE_EXITED (get_reg (RL78_Reg_A)));
case RLO_mov:
tprintf ("MOV: ");
a = GS ();
FLAGS (a, a);
PD (a);
break;
#define MACR 0xffff0
case RLO_mach:
tprintf ("MACH:");
a = sign_ext (get_reg (RL78_Reg_AX), 16);
b = sign_ext (get_reg (RL78_Reg_BC), 16);
v = sign_ext (mem_get_si (MACR), 32);
tprintf ("%08x %d + %d * %d = ", v, v, a, b);
v2 = sign_ext (v + a * b, 32);
tprintf ("%08x %d\n", v2, v2);
mem_put_si (MACR, v2);
a = get_reg (RL78_Reg_PSW);
v ^= v2;
if (v & (1<<31))
a |= RL78_PSW_CY;
else
a &= ~RL78_PSW_CY;
if (v2 & (1 << 31))
a |= RL78_PSW_AC;
else
a &= ~RL78_PSW_AC;
set_reg (RL78_Reg_PSW, a);
CLOCKS (3);
break;
case RLO_machu:
tprintf ("MACHU:");
a = get_reg (RL78_Reg_AX);
b = get_reg (RL78_Reg_BC);
u = mem_get_si (MACR);
tprintf ("%08x %u + %u * %u = ", u, u, a, b);
u2 = (u + (unsigned)a * (unsigned)b) & 0xffffffffUL;
tprintf ("%08x %u\n", u2, u2);
mem_put_si (MACR, u2);
a = get_reg (RL78_Reg_PSW);
if (u2 < u)
a |= RL78_PSW_CY;
else
a &= ~RL78_PSW_CY;
a &= ~RL78_PSW_AC;
set_reg (RL78_Reg_PSW, a);
CLOCKS (3);
break;
case RLO_mulu:
tprintf ("MULU:");
a = get_reg (RL78_Reg_A);
b = get_reg (RL78_Reg_X);
v = a * b;
tprintf (" %d * %d = %d\n", a, b, v);
set_reg (RL78_Reg_AX, v);
break;
case RLO_mulh:
tprintf ("MUL:");
a = sign_ext (get_reg (RL78_Reg_AX), 16);
b = sign_ext (get_reg (RL78_Reg_BC), 16);
v = a * b;
tprintf (" %d * %d = %d\n", a, b, v);
set_reg (RL78_Reg_BC, v >> 16);
set_reg (RL78_Reg_AX, v);
CLOCKS (2);
break;
case RLO_mulhu:
tprintf ("MULHU:");
a = get_reg (RL78_Reg_AX);
b = get_reg (RL78_Reg_BC);
v = a * b;
tprintf (" %d * %d = %d\n", a, b, v);
set_reg (RL78_Reg_BC, v >> 16);
set_reg (RL78_Reg_AX, v);
CLOCKS (2);
break;
case RLO_nop:
tprintf ("NOP.\n");
break;
case RLO_or:
tprintf ("OR:");
a = GS ();
b = GD ();
v = a | b;
FLAGS (b, v);
PD (v);
if (opcode.op[0].type == RL78_Operand_Indirect)
CLOCKS (2);
break;
case RLO_ret:
tprintf ("RET: ");
a = get_reg (RL78_Reg_SP);
v = mem_get_psi (a | 0xf0000);
WILD_JUMP_CHECK (v);
pc = v;
set_reg (RL78_Reg_SP, a + 4);
#if 0
/* Enable this code to dump the return values for each return. */
if (trace)
{
int i;
skip_init ++;
for (i = 0; i < 8; i ++)
printf (" %02x", mem_get_qi (0xffef0 + i) & 0xff);
skip_init --;
}
#endif
tprintf ("\n");
CLOCKS (6);
break;
case RLO_reti:
tprintf ("RETI: ");
a = get_reg (RL78_Reg_SP);
v = mem_get_psi (a | 0xf0000);
WILD_JUMP_CHECK (v);
pc = v;
b = mem_get_qi ((a + 3) | 0xf0000);
set_reg (RL78_Reg_PSW, b);
set_reg (RL78_Reg_SP, a + 4);
tprintf ("\n");
break;
case RLO_rol:
tprintf ("ROL:"); /* d <<= s */
a = GS ();
b = GD ();
v = b;
while (a --)
{
v = b << 1;
v |= (b >> (obits - 1)) & 1;
set_carry ((b >> (obits - 1)) & 1);
b = v;
}
PD (v);
break;
case RLO_rolc:
tprintf ("ROLC:"); /* d <<= s */
a = GS ();
b = GD ();
v = b;
while (a --)
{
v = b << 1;
v |= get_carry ();
set_carry ((b >> (obits - 1)) & 1);
b = v;
}
PD (v);
break;
case RLO_ror:
tprintf ("ROR:"); /* d >>= s */
a = GS ();
b = GD ();
v = b;
while (a --)
{
v = b >> 1;
v |= (b & 1) << (obits - 1);
set_carry (b & 1);
b = v;
}
PD (v);
break;
case RLO_rorc:
tprintf ("RORC:"); /* d >>= s */
a = GS ();
b = GD ();
v = b;
while (a --)
{
v = b >> 1;
v |= (get_carry () << (obits - 1));
set_carry (b & 1);
b = v;
}
PD (v);
break;
case RLO_sar:
tprintf ("SAR:"); /* d >>= s */
a = GS ();
b = GD ();
v = b;
while (a --)
{
v = b >> 1;
v |= b & (1 << (obits - 1));
set_carry (b & 1);
b = v;
}
PD (v);
break;
case RLO_sel:
tprintf ("SEL:");
a = GS ();
b = get_reg (RL78_Reg_PSW);
b &= ~(RL78_PSW_RBS1 | RL78_PSW_RBS0);
if (a & 1)
b |= RL78_PSW_RBS0;
if (a & 2)
b |= RL78_PSW_RBS1;
set_reg (RL78_Reg_PSW, b);
tprintf ("\n");
break;
case RLO_shl:
tprintf ("SHL%d:", obits); /* d <<= s */
a = GS ();
b = GD ();
v = b;
while (a --)
{
v = b << 1;
tprintf ("b = 0x%x & 0x%x\n", b, 1<<(obits - 1));
set_carry (b & (1<<(obits - 1)));
b = v;
}
PD (v);
break;
case RLO_shr:
tprintf ("SHR:"); /* d >>= s */
a = GS ();
b = GD ();
v = b;
while (a --)
{
v = b >> 1;
set_carry (b & 1);
b = v;
}
PD (v);
break;
case RLO_skip:
tprintf ("SKIP: ");
if (!condition_true (opcode.op[1].condition, GS ()))
{
tprintf (" false\n");
break;
}
rl78_data.dpc = pc;
opcode_size = rl78_decode_opcode (pc, &opcode,
rl78_get_byte, &rl78_data, isa);
pc += opcode_size;
tprintf (" skipped: %s\n", opcode.syntax);
break;
case RLO_stop:
tprintf ("STOP.\n");
DO_RETURN (RL78_MAKE_EXITED (get_reg (RL78_Reg_A)));
DO_RETURN (RL78_MAKE_HIT_BREAK ());
case RLO_sub:
tprintf ("SUB: ");
a = GS ();
b = GD ();
v = b - a;
FLAGS (b, v);
PD (v);
tprintf ("%d (0x%x) - %d (0x%x) = %d (0x%x)\n", b, b, a, a, v, v);
if (opcode.op[0].type == RL78_Operand_Indirect)
CLOCKS (2);
break;
case RLO_subc:
tprintf ("SUBC: ");
a = GS ();
b = GD ();
v = b - a - get_carry ();
FLAGS (b, v);
PD (v);
if (opcode.op[0].type == RL78_Operand_Indirect)
CLOCKS (2);
break;
case RLO_xch:
tprintf ("XCH: ");
a = GS ();
b = GD ();
PD (a);
PS (b);
break;
case RLO_xor:
tprintf ("XOR:");
a = GS ();
b = GD ();
v = a ^ b;
FLAGS (b, v);
PD (v);
if (opcode.op[0].type == RL78_Operand_Indirect)
CLOCKS (2);
break;
default:
tprintf ("Unknown opcode?\n");
DO_RETURN (RL78_MAKE_HIT_BREAK ());
}
if (timer_enabled)
process_clock_tick ();
return RL78_MAKE_STEPPED ();
}