mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
95e40d770e
Drop the sim-specific unsignedXX types and move to the standard uintXX_t types that C11 provides.
288 lines
7.5 KiB
C
288 lines
7.5 KiB
C
/* This file is part of the program psim.
|
|
|
|
Copyright (C) 1994-1995, Andrew Cagney <cagney@highland.com.au>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
#ifndef _BITS_H_
|
|
#define _BITS_H_
|
|
|
|
|
|
/* bit manipulation routines:
|
|
|
|
Bit numbering: The bits are numbered according to the PowerPC
|
|
convention - the left most (or most significant) is bit 0 while the
|
|
right most (least significant) is bit 1.
|
|
|
|
Size convention: Each macro is in three forms - <MACRO>32 which
|
|
operates in 32bit quantity (bits are numbered 0..31); <MACRO>64
|
|
which operates using 64bit quantites (and bits are numbered 0..64);
|
|
and <MACRO> which operates using the bit size of the target
|
|
architecture (bits are still numbered 0..63), with 32bit
|
|
architectures ignoring the first 32bits having bit 32 as the most
|
|
significant.
|
|
|
|
BIT*(POS): Quantity with just 1 bit set.
|
|
|
|
MASK*(FIRST, LAST): Create a constant bit mask of the specified
|
|
size with bits [FIRST .. LAST] set.
|
|
|
|
MASKED*(VALUE, FIRST, LAST): Masks out all but bits [FIRST
|
|
.. LAST].
|
|
|
|
LSMASKED*(VALUE, FIRST, LAST): Like MASKED - LS bit is zero.
|
|
|
|
EXTRACTED*(VALUE, FIRST, LAST): Masks out bits [FIRST .. LAST] but
|
|
also right shifts the masked value so that bit LAST becomes the
|
|
least significant (right most).
|
|
|
|
LSEXTRACTED*(VALUE, FIRST, LAST): Same as extracted - LS bit is
|
|
zero.
|
|
|
|
SHUFFLED**(VALUE, OLD, NEW): Mask then move a single bit from OLD
|
|
new NEW.
|
|
|
|
MOVED**(VALUE, OLD_FIRST, OLD_LAST, NEW_FIRST, NEW_LAST): Moves
|
|
things around so that bits OLD_FIRST..OLD_LAST are masked then
|
|
moved to NEW_FIRST..NEW_LAST.
|
|
|
|
INSERTED*(VALUE, FIRST, LAST): Takes VALUE and `inserts' the (LAST
|
|
- FIRST + 1) least significant bits into bit positions [ FIRST
|
|
.. LAST ]. This is almost the complement to EXTRACTED.
|
|
|
|
IEA_MASKED(SHOULD_MASK, ADDR): Convert the address to the targets
|
|
natural size. If in 32bit mode, discard the high 32bits.
|
|
|
|
EXTENDED(VALUE): Convert VALUE (32bits of it) to the targets
|
|
natural size. If in 64bit mode, sign extend the value.
|
|
|
|
ALIGN_*(VALUE): Round upwards the value so that it is aligned.
|
|
|
|
FLOOR_*(VALUE): Truncate the value so that it is aligned.
|
|
|
|
ROTL*(VALUE, NR_BITS): Return the value rotated by NR_BITS
|
|
|
|
*/
|
|
|
|
#define _MAKE_SHIFT(WIDTH, pos) ((WIDTH) - 1 - (pos))
|
|
|
|
|
|
#if (WITH_TARGET_WORD_MSB == 0)
|
|
#define _LSB_POS(WIDTH, SHIFT) (WIDTH - 1 - SHIFT)
|
|
#else
|
|
#define _LSB_POS(WIDTH, SHIFT) (SHIFT)
|
|
#endif
|
|
|
|
|
|
/* MakeBit */
|
|
#define _BITn(WIDTH, pos) (((uint##WIDTH##_t)(1)) \
|
|
<< _MAKE_SHIFT(WIDTH, pos))
|
|
|
|
#define BIT4(POS) (1 << _MAKE_SHIFT(4, POS))
|
|
#define BIT5(POS) (1 << _MAKE_SHIFT(5, POS))
|
|
#define BIT8(POS) (1 << _MAKE_SHIFT(8, POS))
|
|
#define BIT10(POS) (1 << _MAKE_SHIFT(10, POS))
|
|
#define BIT32(POS) _BITn(32, POS)
|
|
#define BIT64(POS) _BITn(64, POS)
|
|
|
|
#if (WITH_TARGET_WORD_BITSIZE == 64)
|
|
#define BIT(POS) BIT64(POS)
|
|
#else
|
|
#define BIT(POS) (((POS) < 32) ? 0 : _BITn(32, (POS)-32))
|
|
#endif
|
|
|
|
|
|
/* multi bit mask */
|
|
#define _MASKn(WIDTH, START, STOP) \
|
|
(((((uint##WIDTH##_t)0) - 1) \
|
|
>> (WIDTH - ((STOP) - (START) + 1))) \
|
|
<< (WIDTH - 1 - (STOP)))
|
|
|
|
#define MASK32(START, STOP) _MASKn(32, START, STOP)
|
|
#define MASK64(START, STOP) _MASKn(64, START, STOP)
|
|
|
|
/* Multi-bit mask on least significant bits */
|
|
|
|
#define _LSMASKn(WIDTH, FIRST, LAST) _MASKn (WIDTH, \
|
|
_LSB_POS (WIDTH, FIRST), \
|
|
_LSB_POS (WIDTH, LAST))
|
|
|
|
#define LSMASK64(FIRST, LAST) _LSMASKn (64, (FIRST), (LAST))
|
|
|
|
#if (WITH_TARGET_WORD_BITSIZE == 64)
|
|
#define MASK(START, STOP) \
|
|
(((START) <= (STOP)) \
|
|
? _MASKn(64, START, STOP) \
|
|
: (_MASKn(64, 0, STOP) \
|
|
| _MASKn(64, START, 63)))
|
|
#else
|
|
#define MASK(START, STOP) \
|
|
(((START) <= (STOP)) \
|
|
? (((STOP) < 32) \
|
|
? 0 \
|
|
: _MASKn(32, \
|
|
(START) < 32 ? 0 : (START) - 32, \
|
|
(STOP)-32)) \
|
|
: (_MASKn(32, \
|
|
(START) < 32 ? 0 : (START) - 32, \
|
|
31) \
|
|
| (((STOP) < 32) \
|
|
? 0 \
|
|
: _MASKn(32, \
|
|
0, \
|
|
(STOP) - 32))))
|
|
#endif
|
|
|
|
|
|
/* mask the required bits, leaving them in place */
|
|
|
|
INLINE_BITS\
|
|
(uint32_t) MASKED32
|
|
(uint32_t word,
|
|
unsigned start,
|
|
unsigned stop);
|
|
|
|
INLINE_BITS\
|
|
(uint64_t) MASKED64
|
|
(uint64_t word,
|
|
unsigned start,
|
|
unsigned stop);
|
|
|
|
INLINE_BITS\
|
|
(unsigned_word) MASKED
|
|
(unsigned_word word,
|
|
unsigned start,
|
|
unsigned stop);
|
|
|
|
INLINE_BITS\
|
|
(uint64_t) LSMASKED64
|
|
(uint64_t word,
|
|
int first,
|
|
int last);
|
|
|
|
|
|
/* extract the required bits aligning them with the lsb */
|
|
#define _EXTRACTEDn(WIDTH, WORD, START, STOP) \
|
|
((((uint##WIDTH##_t)(WORD)) >> (WIDTH - (STOP) - 1)) \
|
|
& _MASKn(WIDTH, WIDTH-1+(START)-(STOP), WIDTH-1))
|
|
|
|
/* #define EXTRACTED10(WORD, START, STOP) _EXTRACTEDn(10, WORD, START, STOP) */
|
|
#define EXTRACTED32(WORD, START, STOP) _EXTRACTEDn(32, WORD, START, STOP)
|
|
#define EXTRACTED64(WORD, START, STOP) _EXTRACTEDn(64, WORD, START, STOP)
|
|
|
|
INLINE_BITS\
|
|
(unsigned_word) EXTRACTED
|
|
(unsigned_word val,
|
|
unsigned start,
|
|
unsigned stop);
|
|
|
|
INLINE_BITS\
|
|
(uint64_t) LSEXTRACTED64
|
|
(uint64_t val,
|
|
int start,
|
|
int stop);
|
|
|
|
/* move a single bit around */
|
|
/* NB: the wierdness (N>O?N-O:0) is to stop a warning from GCC */
|
|
#define _SHUFFLEDn(N, WORD, OLD, NEW) \
|
|
((OLD) < (NEW) \
|
|
? (((uint##N##_t)(WORD) \
|
|
>> (((NEW) > (OLD)) ? ((NEW) - (OLD)) : 0)) \
|
|
& MASK32((NEW), (NEW))) \
|
|
: (((uint##N##_t)(WORD) \
|
|
<< (((OLD) > (NEW)) ? ((OLD) - (NEW)) : 0)) \
|
|
& MASK32((NEW), (NEW))))
|
|
|
|
#define SHUFFLED32(WORD, OLD, NEW) _SHUFFLEDn(32, WORD, OLD, NEW)
|
|
#define SHUFFLED64(WORD, OLD, NEW) _SHUFFLEDn(64, WORD, OLD, NEW)
|
|
|
|
#define SHUFFLED(WORD, OLD, NEW) _SHUFFLEDn(_word, WORD, OLD, NEW)
|
|
|
|
|
|
/* move a group of bits around */
|
|
#define _INSERTEDn(N, WORD, START, STOP) \
|
|
(((uint##N##_t)(WORD) << _MAKE_SHIFT(N, STOP)) & _MASKn(N, START, STOP))
|
|
|
|
#define INSERTED32(WORD, START, STOP) _INSERTEDn(32, WORD, START, STOP)
|
|
#define INSERTED64(WORD, START, STOP) _INSERTEDn(64, WORD, START, STOP)
|
|
|
|
INLINE_BITS\
|
|
(unsigned_word) INSERTED
|
|
(unsigned_word val,
|
|
unsigned start,
|
|
unsigned stop);
|
|
|
|
|
|
/* depending on MODE return a 64bit or 32bit (sign extended) value */
|
|
#if (WITH_TARGET_WORD_BITSIZE == 64)
|
|
#define EXTENDED(X) ((int64_t)(int32_t)(X))
|
|
#else
|
|
#define EXTENDED(X) (X)
|
|
#endif
|
|
|
|
|
|
/* memory alignment macro's */
|
|
#define _ALIGNa(A,X) (((X) + ((A) - 1)) & ~((A) - 1))
|
|
#define _FLOORa(A,X) ((X) & ~((A) - 1))
|
|
|
|
#define ALIGN_8(X) _ALIGNa(8, X)
|
|
#define ALIGN_16(X) _ALIGNa(16, X)
|
|
|
|
#define ALIGN_PAGE(X) _ALIGNa(0x1000, X)
|
|
#define FLOOR_PAGE(X) ((X) & ~(0x1000 - 1))
|
|
|
|
|
|
/* bit bliting macro's */
|
|
#define BLIT32(V, POS, BIT) \
|
|
do { \
|
|
if (BIT) \
|
|
V |= BIT32(POS); \
|
|
else \
|
|
V &= ~BIT32(POS); \
|
|
} while (0)
|
|
#define MBLIT32(V, LO, HI, VAL) \
|
|
do { \
|
|
(V) = (((V) & ~MASK32((LO), (HI))) \
|
|
| INSERTED32(VAL, LO, HI)); \
|
|
} while (0)
|
|
|
|
|
|
/* some rotate functions to make things easier
|
|
|
|
NOTE: These are functions not macro's as the latter tickles bugs in
|
|
gcc-2.6.3 */
|
|
|
|
#define _ROTLn(N, VAL, SHIFT) \
|
|
(((VAL) << (SHIFT)) | ((VAL) >> ((N)-(SHIFT))))
|
|
|
|
INLINE_BITS\
|
|
(uint32_t) ROTL32
|
|
(uint32_t val,
|
|
long shift);
|
|
|
|
INLINE_BITS\
|
|
(uint64_t) ROTL64
|
|
(uint64_t val,
|
|
long shift);
|
|
|
|
|
|
#if (BITS_INLINE & INCLUDE_MODULE)
|
|
#include "bits.c"
|
|
#endif
|
|
|
|
#endif /* _BITS_H_ */
|