mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
bce5a025d2
During a -r (or --emit-relocs) link, if two sections had the same name but different section types, gold would put relocations for both sections into the same relocation section even though the data sections remained separate. For .eh_frame sections, when one section is PROGBITS and another is X86_64_UNWIND, we really should be using the UNWIND section type and combining the sections anyway. For other sections, we should be creating one relocation section for each output data section. gold/ PR gold/23016 * incremental.cc (can_incremental_update): Check for unwind section type. * layout.h (Layout::layout): Add sh_type parameter. * layout.cc (Layout::layout): Likewise. (Layout::layout_reloc): Create new output reloc section if data section does not already have one. (Layout::layout_eh_frame): Check for unwind section type. (Layout::make_eh_frame_section): Use unwind section type for .eh_frame and .eh_frame_hdr. * object.h (Sized_relobj_file::Shdr_write): New typedef. (Sized_relobj_file::layout_section): Add sh_type parameter. (Sized_relobj_file::Deferred_layout::Deferred_layout): Add sh_type parameter. * object.cc (Sized_relobj_file::check_eh_frame_flags): Check for unwind section type. (Sized_relobj_file::layout_section): Add sh_type parameter; pass it to Layout::layout. (Sized_relobj_file::do_layout): Make local copy of sh_type. Force .eh_frame sections to unwind section type. Pass sh_type to layout_section. (Sized_relobj_file<size, big_endian>::do_layout_deferred_sections): Pass sh_type to layout_section. * output.cc (Output_section::Output_section): Initialize reloc_section_. * output.h (Output_section::reloc_section): New method. (Output_section::set_reloc_section): New method. (Output_section::reloc_section_): New data member. * target.h (Target::unwind_section_type): New method. (Target::Target_info::unwind_section_type): New data member. * aarch64.cc (aarch64_info): Add unwind_section_type. * arm.cc (arm_info, arm_nacl_info): Likewise. * i386.cc (i386_info, i386_nacl_info, iamcu_info): Likewise. * mips.cc (mips_info, mips_nacl_info): Likewise. * powerpc.cc (powerpc_info): Likewise. * s390.cc (s390_info): Likewise. * sparc.cc (sparc_info): Likewise. * tilegx.cc (tilegx_info): Likewise. * x86_64.cc (x86_64_info, x86_64_nacl_info): Likewise. * testsuite/Makefile.am (pr23016_1, pr23016_2): New test cases. * testsuite/Makefile.in: Regenerate. * testsuite/testfile.cc: Add unwind_section_type. * testsuite/pr23016_1.sh: New test script. * testsuite/pr23016_1a.s: New source file. * testsuite/pr23016_1b.s: New source file. * testsuite/pr23016_2.sh: New test script. * testsuite/pr23016_2a.s: New source file. * testsuite/pr23016_2b.s: New source file.
4945 lines
146 KiB
C++
4945 lines
146 KiB
C++
// output.h -- manage the output file for gold -*- C++ -*-
|
|
|
|
// Copyright (C) 2006-2018 Free Software Foundation, Inc.
|
|
// Written by Ian Lance Taylor <iant@google.com>.
|
|
|
|
// This file is part of gold.
|
|
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
// MA 02110-1301, USA.
|
|
|
|
#ifndef GOLD_OUTPUT_H
|
|
#define GOLD_OUTPUT_H
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <vector>
|
|
|
|
#include "elfcpp.h"
|
|
#include "mapfile.h"
|
|
#include "layout.h"
|
|
#include "reloc-types.h"
|
|
|
|
namespace gold
|
|
{
|
|
|
|
class General_options;
|
|
class Object;
|
|
class Symbol;
|
|
class Output_merge_base;
|
|
class Output_section;
|
|
class Relocatable_relocs;
|
|
class Target;
|
|
template<int size, bool big_endian>
|
|
class Sized_target;
|
|
template<int size, bool big_endian>
|
|
class Sized_relobj;
|
|
template<int size, bool big_endian>
|
|
class Sized_relobj_file;
|
|
|
|
// This class represents the output file.
|
|
|
|
class Output_file
|
|
{
|
|
public:
|
|
Output_file(const char* name);
|
|
|
|
// Indicate that this is a temporary file which should not be
|
|
// output.
|
|
void
|
|
set_is_temporary()
|
|
{ this->is_temporary_ = true; }
|
|
|
|
// Try to open an existing file. Returns false if the file doesn't
|
|
// exist, has a size of 0 or can't be mmaped. This method is
|
|
// thread-unsafe. If BASE_NAME is not NULL, use the contents of
|
|
// that file as the base for incremental linking.
|
|
bool
|
|
open_base_file(const char* base_name, bool writable);
|
|
|
|
// Open the output file. FILE_SIZE is the final size of the file.
|
|
// If the file already exists, it is deleted/truncated. This method
|
|
// is thread-unsafe.
|
|
void
|
|
open(off_t file_size);
|
|
|
|
// Resize the output file. This method is thread-unsafe.
|
|
void
|
|
resize(off_t file_size);
|
|
|
|
// Close the output file (flushing all buffered data) and make sure
|
|
// there are no errors. This method is thread-unsafe.
|
|
void
|
|
close();
|
|
|
|
// Return the size of this file.
|
|
off_t
|
|
filesize()
|
|
{ return this->file_size_; }
|
|
|
|
// Return the name of this file.
|
|
const char*
|
|
filename()
|
|
{ return this->name_; }
|
|
|
|
// We currently always use mmap which makes the view handling quite
|
|
// simple. In the future we may support other approaches.
|
|
|
|
// Write data to the output file.
|
|
void
|
|
write(off_t offset, const void* data, size_t len)
|
|
{ memcpy(this->base_ + offset, data, len); }
|
|
|
|
// Get a buffer to use to write to the file, given the offset into
|
|
// the file and the size.
|
|
unsigned char*
|
|
get_output_view(off_t start, size_t size)
|
|
{
|
|
gold_assert(start >= 0
|
|
&& start + static_cast<off_t>(size) <= this->file_size_);
|
|
return this->base_ + start;
|
|
}
|
|
|
|
// VIEW must have been returned by get_output_view. Write the
|
|
// buffer to the file, passing in the offset and the size.
|
|
void
|
|
write_output_view(off_t, size_t, unsigned char*)
|
|
{ }
|
|
|
|
// Get a read/write buffer. This is used when we want to write part
|
|
// of the file, read it in, and write it again.
|
|
unsigned char*
|
|
get_input_output_view(off_t start, size_t size)
|
|
{ return this->get_output_view(start, size); }
|
|
|
|
// Write a read/write buffer back to the file.
|
|
void
|
|
write_input_output_view(off_t, size_t, unsigned char*)
|
|
{ }
|
|
|
|
// Get a read buffer. This is used when we just want to read part
|
|
// of the file back it in.
|
|
const unsigned char*
|
|
get_input_view(off_t start, size_t size)
|
|
{ return this->get_output_view(start, size); }
|
|
|
|
// Release a read bfufer.
|
|
void
|
|
free_input_view(off_t, size_t, const unsigned char*)
|
|
{ }
|
|
|
|
private:
|
|
// Map the file into memory or, if that fails, allocate anonymous
|
|
// memory.
|
|
void
|
|
map();
|
|
|
|
// Allocate anonymous memory for the file.
|
|
bool
|
|
map_anonymous();
|
|
|
|
// Map the file into memory.
|
|
bool
|
|
map_no_anonymous(bool);
|
|
|
|
// Unmap the file from memory (and flush to disk buffers).
|
|
void
|
|
unmap();
|
|
|
|
// File name.
|
|
const char* name_;
|
|
// File descriptor.
|
|
int o_;
|
|
// File size.
|
|
off_t file_size_;
|
|
// Base of file mapped into memory.
|
|
unsigned char* base_;
|
|
// True iff base_ points to a memory buffer rather than an output file.
|
|
bool map_is_anonymous_;
|
|
// True if base_ was allocated using new rather than mmap.
|
|
bool map_is_allocated_;
|
|
// True if this is a temporary file which should not be output.
|
|
bool is_temporary_;
|
|
};
|
|
|
|
// An abtract class for data which has to go into the output file.
|
|
|
|
class Output_data
|
|
{
|
|
public:
|
|
explicit Output_data()
|
|
: address_(0), data_size_(0), offset_(-1),
|
|
is_address_valid_(false), is_data_size_valid_(false),
|
|
is_offset_valid_(false), is_data_size_fixed_(false),
|
|
has_dynamic_reloc_(false)
|
|
{ }
|
|
|
|
virtual
|
|
~Output_data();
|
|
|
|
// Return the address. For allocated sections, this is only valid
|
|
// after Layout::finalize is finished.
|
|
uint64_t
|
|
address() const
|
|
{
|
|
gold_assert(this->is_address_valid_);
|
|
return this->address_;
|
|
}
|
|
|
|
// Return the size of the data. For allocated sections, this must
|
|
// be valid after Layout::finalize calls set_address, but need not
|
|
// be valid before then.
|
|
off_t
|
|
data_size() const
|
|
{
|
|
gold_assert(this->is_data_size_valid_);
|
|
return this->data_size_;
|
|
}
|
|
|
|
// Get the current data size.
|
|
off_t
|
|
current_data_size() const
|
|
{ return this->current_data_size_for_child(); }
|
|
|
|
// Return true if data size is fixed.
|
|
bool
|
|
is_data_size_fixed() const
|
|
{ return this->is_data_size_fixed_; }
|
|
|
|
// Return the file offset. This is only valid after
|
|
// Layout::finalize is finished. For some non-allocated sections,
|
|
// it may not be valid until near the end of the link.
|
|
off_t
|
|
offset() const
|
|
{
|
|
gold_assert(this->is_offset_valid_);
|
|
return this->offset_;
|
|
}
|
|
|
|
// Reset the address, file offset and data size. This essentially
|
|
// disables the sanity testing about duplicate and unknown settings.
|
|
void
|
|
reset_address_and_file_offset()
|
|
{
|
|
this->is_address_valid_ = false;
|
|
this->is_offset_valid_ = false;
|
|
if (!this->is_data_size_fixed_)
|
|
this->is_data_size_valid_ = false;
|
|
this->do_reset_address_and_file_offset();
|
|
}
|
|
|
|
// As above, but just for data size.
|
|
void
|
|
reset_data_size()
|
|
{
|
|
if (!this->is_data_size_fixed_)
|
|
this->is_data_size_valid_ = false;
|
|
}
|
|
|
|
// Return true if address and file offset already have reset values. In
|
|
// other words, calling reset_address_and_file_offset will not change them.
|
|
bool
|
|
address_and_file_offset_have_reset_values() const
|
|
{ return this->do_address_and_file_offset_have_reset_values(); }
|
|
|
|
// Return the required alignment.
|
|
uint64_t
|
|
addralign() const
|
|
{ return this->do_addralign(); }
|
|
|
|
// Return whether this has a load address.
|
|
bool
|
|
has_load_address() const
|
|
{ return this->do_has_load_address(); }
|
|
|
|
// Return the load address.
|
|
uint64_t
|
|
load_address() const
|
|
{ return this->do_load_address(); }
|
|
|
|
// Return whether this is an Output_section.
|
|
bool
|
|
is_section() const
|
|
{ return this->do_is_section(); }
|
|
|
|
// Return whether this is an Output_section of the specified type.
|
|
bool
|
|
is_section_type(elfcpp::Elf_Word stt) const
|
|
{ return this->do_is_section_type(stt); }
|
|
|
|
// Return whether this is an Output_section with the specified flag
|
|
// set.
|
|
bool
|
|
is_section_flag_set(elfcpp::Elf_Xword shf) const
|
|
{ return this->do_is_section_flag_set(shf); }
|
|
|
|
// Return the output section that this goes in, if there is one.
|
|
Output_section*
|
|
output_section()
|
|
{ return this->do_output_section(); }
|
|
|
|
const Output_section*
|
|
output_section() const
|
|
{ return this->do_output_section(); }
|
|
|
|
// Return the output section index, if there is an output section.
|
|
unsigned int
|
|
out_shndx() const
|
|
{ return this->do_out_shndx(); }
|
|
|
|
// Set the output section index, if this is an output section.
|
|
void
|
|
set_out_shndx(unsigned int shndx)
|
|
{ this->do_set_out_shndx(shndx); }
|
|
|
|
// Set the address and file offset of this data, and finalize the
|
|
// size of the data. This is called during Layout::finalize for
|
|
// allocated sections.
|
|
void
|
|
set_address_and_file_offset(uint64_t addr, off_t off)
|
|
{
|
|
this->set_address(addr);
|
|
this->set_file_offset(off);
|
|
this->finalize_data_size();
|
|
}
|
|
|
|
// Set the address.
|
|
void
|
|
set_address(uint64_t addr)
|
|
{
|
|
gold_assert(!this->is_address_valid_);
|
|
this->address_ = addr;
|
|
this->is_address_valid_ = true;
|
|
}
|
|
|
|
// Set the file offset.
|
|
void
|
|
set_file_offset(off_t off)
|
|
{
|
|
gold_assert(!this->is_offset_valid_);
|
|
this->offset_ = off;
|
|
this->is_offset_valid_ = true;
|
|
}
|
|
|
|
// Update the data size without finalizing it.
|
|
void
|
|
pre_finalize_data_size()
|
|
{
|
|
if (!this->is_data_size_valid_)
|
|
{
|
|
// Tell the child class to update the data size.
|
|
this->update_data_size();
|
|
}
|
|
}
|
|
|
|
// Finalize the data size.
|
|
void
|
|
finalize_data_size()
|
|
{
|
|
if (!this->is_data_size_valid_)
|
|
{
|
|
// Tell the child class to set the data size.
|
|
this->set_final_data_size();
|
|
gold_assert(this->is_data_size_valid_);
|
|
}
|
|
}
|
|
|
|
// Set the TLS offset. Called only for SHT_TLS sections.
|
|
void
|
|
set_tls_offset(uint64_t tls_base)
|
|
{ this->do_set_tls_offset(tls_base); }
|
|
|
|
// Return the TLS offset, relative to the base of the TLS segment.
|
|
// Valid only for SHT_TLS sections.
|
|
uint64_t
|
|
tls_offset() const
|
|
{ return this->do_tls_offset(); }
|
|
|
|
// Write the data to the output file. This is called after
|
|
// Layout::finalize is complete.
|
|
void
|
|
write(Output_file* file)
|
|
{ this->do_write(file); }
|
|
|
|
// This is called by Layout::finalize to note that the sizes of
|
|
// allocated sections must now be fixed.
|
|
static void
|
|
layout_complete()
|
|
{ Output_data::allocated_sizes_are_fixed = true; }
|
|
|
|
// Used to check that layout has been done.
|
|
static bool
|
|
is_layout_complete()
|
|
{ return Output_data::allocated_sizes_are_fixed; }
|
|
|
|
// Note that a dynamic reloc has been applied to this data.
|
|
void
|
|
add_dynamic_reloc()
|
|
{ this->has_dynamic_reloc_ = true; }
|
|
|
|
// Return whether a dynamic reloc has been applied.
|
|
bool
|
|
has_dynamic_reloc() const
|
|
{ return this->has_dynamic_reloc_; }
|
|
|
|
// Whether the address is valid.
|
|
bool
|
|
is_address_valid() const
|
|
{ return this->is_address_valid_; }
|
|
|
|
// Whether the file offset is valid.
|
|
bool
|
|
is_offset_valid() const
|
|
{ return this->is_offset_valid_; }
|
|
|
|
// Whether the data size is valid.
|
|
bool
|
|
is_data_size_valid() const
|
|
{ return this->is_data_size_valid_; }
|
|
|
|
// Print information to the map file.
|
|
void
|
|
print_to_mapfile(Mapfile* mapfile) const
|
|
{ return this->do_print_to_mapfile(mapfile); }
|
|
|
|
protected:
|
|
// Functions that child classes may or in some cases must implement.
|
|
|
|
// Write the data to the output file.
|
|
virtual void
|
|
do_write(Output_file*) = 0;
|
|
|
|
// Return the required alignment.
|
|
virtual uint64_t
|
|
do_addralign() const = 0;
|
|
|
|
// Return whether this has a load address.
|
|
virtual bool
|
|
do_has_load_address() const
|
|
{ return false; }
|
|
|
|
// Return the load address.
|
|
virtual uint64_t
|
|
do_load_address() const
|
|
{ gold_unreachable(); }
|
|
|
|
// Return whether this is an Output_section.
|
|
virtual bool
|
|
do_is_section() const
|
|
{ return false; }
|
|
|
|
// Return whether this is an Output_section of the specified type.
|
|
// This only needs to be implement by Output_section.
|
|
virtual bool
|
|
do_is_section_type(elfcpp::Elf_Word) const
|
|
{ return false; }
|
|
|
|
// Return whether this is an Output_section with the specific flag
|
|
// set. This only needs to be implemented by Output_section.
|
|
virtual bool
|
|
do_is_section_flag_set(elfcpp::Elf_Xword) const
|
|
{ return false; }
|
|
|
|
// Return the output section, if there is one.
|
|
virtual Output_section*
|
|
do_output_section()
|
|
{ return NULL; }
|
|
|
|
virtual const Output_section*
|
|
do_output_section() const
|
|
{ return NULL; }
|
|
|
|
// Return the output section index, if there is an output section.
|
|
virtual unsigned int
|
|
do_out_shndx() const
|
|
{ gold_unreachable(); }
|
|
|
|
// Set the output section index, if this is an output section.
|
|
virtual void
|
|
do_set_out_shndx(unsigned int)
|
|
{ gold_unreachable(); }
|
|
|
|
// This is a hook for derived classes to set the preliminary data size.
|
|
// This is called by pre_finalize_data_size, normally called during
|
|
// Layout::finalize, before the section address is set, and is used
|
|
// during an incremental update, when we need to know the size of a
|
|
// section before allocating space in the output file. For classes
|
|
// where the current data size is up to date, this default version of
|
|
// the method can be inherited.
|
|
virtual void
|
|
update_data_size()
|
|
{ }
|
|
|
|
// This is a hook for derived classes to set the data size. This is
|
|
// called by finalize_data_size, normally called during
|
|
// Layout::finalize, when the section address is set.
|
|
virtual void
|
|
set_final_data_size()
|
|
{ gold_unreachable(); }
|
|
|
|
// A hook for resetting the address and file offset.
|
|
virtual void
|
|
do_reset_address_and_file_offset()
|
|
{ }
|
|
|
|
// Return true if address and file offset already have reset values. In
|
|
// other words, calling reset_address_and_file_offset will not change them.
|
|
// A child class overriding do_reset_address_and_file_offset may need to
|
|
// also override this.
|
|
virtual bool
|
|
do_address_and_file_offset_have_reset_values() const
|
|
{ return !this->is_address_valid_ && !this->is_offset_valid_; }
|
|
|
|
// Set the TLS offset. Called only for SHT_TLS sections.
|
|
virtual void
|
|
do_set_tls_offset(uint64_t)
|
|
{ gold_unreachable(); }
|
|
|
|
// Return the TLS offset, relative to the base of the TLS segment.
|
|
// Valid only for SHT_TLS sections.
|
|
virtual uint64_t
|
|
do_tls_offset() const
|
|
{ gold_unreachable(); }
|
|
|
|
// Print to the map file. This only needs to be implemented by
|
|
// classes which may appear in a PT_LOAD segment.
|
|
virtual void
|
|
do_print_to_mapfile(Mapfile*) const
|
|
{ gold_unreachable(); }
|
|
|
|
// Functions that child classes may call.
|
|
|
|
// Reset the address. The Output_section class needs this when an
|
|
// SHF_ALLOC input section is added to an output section which was
|
|
// formerly not SHF_ALLOC.
|
|
void
|
|
mark_address_invalid()
|
|
{ this->is_address_valid_ = false; }
|
|
|
|
// Set the size of the data.
|
|
void
|
|
set_data_size(off_t data_size)
|
|
{
|
|
gold_assert(!this->is_data_size_valid_
|
|
&& !this->is_data_size_fixed_);
|
|
this->data_size_ = data_size;
|
|
this->is_data_size_valid_ = true;
|
|
}
|
|
|
|
// Fix the data size. Once it is fixed, it cannot be changed
|
|
// and the data size remains always valid.
|
|
void
|
|
fix_data_size()
|
|
{
|
|
gold_assert(this->is_data_size_valid_);
|
|
this->is_data_size_fixed_ = true;
|
|
}
|
|
|
|
// Get the current data size--this is for the convenience of
|
|
// sections which build up their size over time.
|
|
off_t
|
|
current_data_size_for_child() const
|
|
{ return this->data_size_; }
|
|
|
|
// Set the current data size--this is for the convenience of
|
|
// sections which build up their size over time.
|
|
void
|
|
set_current_data_size_for_child(off_t data_size)
|
|
{
|
|
gold_assert(!this->is_data_size_valid_);
|
|
this->data_size_ = data_size;
|
|
}
|
|
|
|
// Return default alignment for the target size.
|
|
static uint64_t
|
|
default_alignment();
|
|
|
|
// Return default alignment for a specified size--32 or 64.
|
|
static uint64_t
|
|
default_alignment_for_size(int size);
|
|
|
|
private:
|
|
Output_data(const Output_data&);
|
|
Output_data& operator=(const Output_data&);
|
|
|
|
// This is used for verification, to make sure that we don't try to
|
|
// change any sizes of allocated sections after we set the section
|
|
// addresses.
|
|
static bool allocated_sizes_are_fixed;
|
|
|
|
// Memory address in output file.
|
|
uint64_t address_;
|
|
// Size of data in output file.
|
|
off_t data_size_;
|
|
// File offset of contents in output file.
|
|
off_t offset_;
|
|
// Whether address_ is valid.
|
|
bool is_address_valid_ : 1;
|
|
// Whether data_size_ is valid.
|
|
bool is_data_size_valid_ : 1;
|
|
// Whether offset_ is valid.
|
|
bool is_offset_valid_ : 1;
|
|
// Whether data size is fixed.
|
|
bool is_data_size_fixed_ : 1;
|
|
// Whether any dynamic relocs have been applied to this section.
|
|
bool has_dynamic_reloc_ : 1;
|
|
};
|
|
|
|
// Output the section headers.
|
|
|
|
class Output_section_headers : public Output_data
|
|
{
|
|
public:
|
|
Output_section_headers(const Layout*,
|
|
const Layout::Segment_list*,
|
|
const Layout::Section_list*,
|
|
const Layout::Section_list*,
|
|
const Stringpool*,
|
|
const Output_section*);
|
|
|
|
protected:
|
|
// Write the data to the file.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Return the required alignment.
|
|
uint64_t
|
|
do_addralign() const
|
|
{ return Output_data::default_alignment(); }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** section headers")); }
|
|
|
|
// Update the data size.
|
|
void
|
|
update_data_size()
|
|
{ this->set_data_size(this->do_size()); }
|
|
|
|
// Set final data size.
|
|
void
|
|
set_final_data_size()
|
|
{ this->set_data_size(this->do_size()); }
|
|
|
|
private:
|
|
// Write the data to the file with the right size and endianness.
|
|
template<int size, bool big_endian>
|
|
void
|
|
do_sized_write(Output_file*);
|
|
|
|
// Compute data size.
|
|
off_t
|
|
do_size() const;
|
|
|
|
const Layout* layout_;
|
|
const Layout::Segment_list* segment_list_;
|
|
const Layout::Section_list* section_list_;
|
|
const Layout::Section_list* unattached_section_list_;
|
|
const Stringpool* secnamepool_;
|
|
const Output_section* shstrtab_section_;
|
|
};
|
|
|
|
// Output the segment headers.
|
|
|
|
class Output_segment_headers : public Output_data
|
|
{
|
|
public:
|
|
Output_segment_headers(const Layout::Segment_list& segment_list);
|
|
|
|
protected:
|
|
// Write the data to the file.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Return the required alignment.
|
|
uint64_t
|
|
do_addralign() const
|
|
{ return Output_data::default_alignment(); }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** segment headers")); }
|
|
|
|
// Set final data size.
|
|
void
|
|
set_final_data_size()
|
|
{ this->set_data_size(this->do_size()); }
|
|
|
|
private:
|
|
// Write the data to the file with the right size and endianness.
|
|
template<int size, bool big_endian>
|
|
void
|
|
do_sized_write(Output_file*);
|
|
|
|
// Compute the current size.
|
|
off_t
|
|
do_size() const;
|
|
|
|
const Layout::Segment_list& segment_list_;
|
|
};
|
|
|
|
// Output the ELF file header.
|
|
|
|
class Output_file_header : public Output_data
|
|
{
|
|
public:
|
|
Output_file_header(Target*,
|
|
const Symbol_table*,
|
|
const Output_segment_headers*);
|
|
|
|
// Add information about the section headers. We lay out the ELF
|
|
// file header before we create the section headers.
|
|
void set_section_info(const Output_section_headers*,
|
|
const Output_section* shstrtab);
|
|
|
|
protected:
|
|
// Write the data to the file.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Return the required alignment.
|
|
uint64_t
|
|
do_addralign() const
|
|
{ return Output_data::default_alignment(); }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** file header")); }
|
|
|
|
// Set final data size.
|
|
void
|
|
set_final_data_size(void)
|
|
{ this->set_data_size(this->do_size()); }
|
|
|
|
private:
|
|
// Write the data to the file with the right size and endianness.
|
|
template<int size, bool big_endian>
|
|
void
|
|
do_sized_write(Output_file*);
|
|
|
|
// Return the value to use for the entry address.
|
|
template<int size>
|
|
typename elfcpp::Elf_types<size>::Elf_Addr
|
|
entry();
|
|
|
|
// Compute the current data size.
|
|
off_t
|
|
do_size() const;
|
|
|
|
Target* target_;
|
|
const Symbol_table* symtab_;
|
|
const Output_segment_headers* segment_header_;
|
|
const Output_section_headers* section_header_;
|
|
const Output_section* shstrtab_;
|
|
};
|
|
|
|
// Output sections are mainly comprised of input sections. However,
|
|
// there are cases where we have data to write out which is not in an
|
|
// input section. Output_section_data is used in such cases. This is
|
|
// an abstract base class.
|
|
|
|
class Output_section_data : public Output_data
|
|
{
|
|
public:
|
|
Output_section_data(off_t data_size, uint64_t addralign,
|
|
bool is_data_size_fixed)
|
|
: Output_data(), output_section_(NULL), addralign_(addralign)
|
|
{
|
|
this->set_data_size(data_size);
|
|
if (is_data_size_fixed)
|
|
this->fix_data_size();
|
|
}
|
|
|
|
Output_section_data(uint64_t addralign)
|
|
: Output_data(), output_section_(NULL), addralign_(addralign)
|
|
{ }
|
|
|
|
// Return the output section.
|
|
Output_section*
|
|
output_section()
|
|
{ return this->output_section_; }
|
|
|
|
const Output_section*
|
|
output_section() const
|
|
{ return this->output_section_; }
|
|
|
|
// Record the output section.
|
|
void
|
|
set_output_section(Output_section* os);
|
|
|
|
// Add an input section, for SHF_MERGE sections. This returns true
|
|
// if the section was handled.
|
|
bool
|
|
add_input_section(Relobj* object, unsigned int shndx)
|
|
{ return this->do_add_input_section(object, shndx); }
|
|
|
|
// Given an input OBJECT, an input section index SHNDX within that
|
|
// object, and an OFFSET relative to the start of that input
|
|
// section, return whether or not the corresponding offset within
|
|
// the output section is known. If this function returns true, it
|
|
// sets *POUTPUT to the output offset. The value -1 indicates that
|
|
// this input offset is being discarded.
|
|
bool
|
|
output_offset(const Relobj* object, unsigned int shndx,
|
|
section_offset_type offset,
|
|
section_offset_type* poutput) const
|
|
{ return this->do_output_offset(object, shndx, offset, poutput); }
|
|
|
|
// Write the contents to a buffer. This is used for sections which
|
|
// require postprocessing, such as compression.
|
|
void
|
|
write_to_buffer(unsigned char* buffer)
|
|
{ this->do_write_to_buffer(buffer); }
|
|
|
|
// Print merge stats to stderr. This should only be called for
|
|
// SHF_MERGE sections.
|
|
void
|
|
print_merge_stats(const char* section_name)
|
|
{ this->do_print_merge_stats(section_name); }
|
|
|
|
protected:
|
|
// The child class must implement do_write.
|
|
|
|
// The child class may implement specific adjustments to the output
|
|
// section.
|
|
virtual void
|
|
do_adjust_output_section(Output_section*)
|
|
{ }
|
|
|
|
// May be implemented by child class. Return true if the section
|
|
// was handled.
|
|
virtual bool
|
|
do_add_input_section(Relobj*, unsigned int)
|
|
{ gold_unreachable(); }
|
|
|
|
// The child class may implement output_offset.
|
|
virtual bool
|
|
do_output_offset(const Relobj*, unsigned int, section_offset_type,
|
|
section_offset_type*) const
|
|
{ return false; }
|
|
|
|
// The child class may implement write_to_buffer. Most child
|
|
// classes can not appear in a compressed section, and they do not
|
|
// implement this.
|
|
virtual void
|
|
do_write_to_buffer(unsigned char*)
|
|
{ gold_unreachable(); }
|
|
|
|
// Print merge statistics.
|
|
virtual void
|
|
do_print_merge_stats(const char*)
|
|
{ gold_unreachable(); }
|
|
|
|
// Return the required alignment.
|
|
uint64_t
|
|
do_addralign() const
|
|
{ return this->addralign_; }
|
|
|
|
// Return the output section.
|
|
Output_section*
|
|
do_output_section()
|
|
{ return this->output_section_; }
|
|
|
|
const Output_section*
|
|
do_output_section() const
|
|
{ return this->output_section_; }
|
|
|
|
// Return the section index of the output section.
|
|
unsigned int
|
|
do_out_shndx() const;
|
|
|
|
// Set the alignment.
|
|
void
|
|
set_addralign(uint64_t addralign);
|
|
|
|
private:
|
|
// The output section for this section.
|
|
Output_section* output_section_;
|
|
// The required alignment.
|
|
uint64_t addralign_;
|
|
};
|
|
|
|
// Some Output_section_data classes build up their data step by step,
|
|
// rather than all at once. This class provides an interface for
|
|
// them.
|
|
|
|
class Output_section_data_build : public Output_section_data
|
|
{
|
|
public:
|
|
Output_section_data_build(uint64_t addralign)
|
|
: Output_section_data(addralign)
|
|
{ }
|
|
|
|
Output_section_data_build(off_t data_size, uint64_t addralign)
|
|
: Output_section_data(data_size, addralign, false)
|
|
{ }
|
|
|
|
// Set the current data size.
|
|
void
|
|
set_current_data_size(off_t data_size)
|
|
{ this->set_current_data_size_for_child(data_size); }
|
|
|
|
protected:
|
|
// Set the final data size.
|
|
virtual void
|
|
set_final_data_size()
|
|
{ this->set_data_size(this->current_data_size_for_child()); }
|
|
};
|
|
|
|
// A simple case of Output_data in which we have constant data to
|
|
// output.
|
|
|
|
class Output_data_const : public Output_section_data
|
|
{
|
|
public:
|
|
Output_data_const(const std::string& data, uint64_t addralign)
|
|
: Output_section_data(data.size(), addralign, true), data_(data)
|
|
{ }
|
|
|
|
Output_data_const(const char* p, off_t len, uint64_t addralign)
|
|
: Output_section_data(len, addralign, true), data_(p, len)
|
|
{ }
|
|
|
|
Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
|
|
: Output_section_data(len, addralign, true),
|
|
data_(reinterpret_cast<const char*>(p), len)
|
|
{ }
|
|
|
|
protected:
|
|
// Write the data to the output file.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Write the data to a buffer.
|
|
void
|
|
do_write_to_buffer(unsigned char* buffer)
|
|
{ memcpy(buffer, this->data_.data(), this->data_.size()); }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** fill")); }
|
|
|
|
private:
|
|
std::string data_;
|
|
};
|
|
|
|
// Another version of Output_data with constant data, in which the
|
|
// buffer is allocated by the caller.
|
|
|
|
class Output_data_const_buffer : public Output_section_data
|
|
{
|
|
public:
|
|
Output_data_const_buffer(const unsigned char* p, off_t len,
|
|
uint64_t addralign, const char* map_name)
|
|
: Output_section_data(len, addralign, true),
|
|
p_(p), map_name_(map_name)
|
|
{ }
|
|
|
|
protected:
|
|
// Write the data the output file.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Write the data to a buffer.
|
|
void
|
|
do_write_to_buffer(unsigned char* buffer)
|
|
{ memcpy(buffer, this->p_, this->data_size()); }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _(this->map_name_)); }
|
|
|
|
private:
|
|
// The data to output.
|
|
const unsigned char* p_;
|
|
// Name to use in a map file. Maps are a rarely used feature, but
|
|
// the space usage is minor as aren't very many of these objects.
|
|
const char* map_name_;
|
|
};
|
|
|
|
// A place holder for a fixed amount of data written out via some
|
|
// other mechanism.
|
|
|
|
class Output_data_fixed_space : public Output_section_data
|
|
{
|
|
public:
|
|
Output_data_fixed_space(off_t data_size, uint64_t addralign,
|
|
const char* map_name)
|
|
: Output_section_data(data_size, addralign, true),
|
|
map_name_(map_name)
|
|
{ }
|
|
|
|
protected:
|
|
// Write out the data--the actual data must be written out
|
|
// elsewhere.
|
|
void
|
|
do_write(Output_file*)
|
|
{ }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _(this->map_name_)); }
|
|
|
|
private:
|
|
// Name to use in a map file. Maps are a rarely used feature, but
|
|
// the space usage is minor as aren't very many of these objects.
|
|
const char* map_name_;
|
|
};
|
|
|
|
// A place holder for variable sized data written out via some other
|
|
// mechanism.
|
|
|
|
class Output_data_space : public Output_section_data_build
|
|
{
|
|
public:
|
|
explicit Output_data_space(uint64_t addralign, const char* map_name)
|
|
: Output_section_data_build(addralign),
|
|
map_name_(map_name)
|
|
{ }
|
|
|
|
explicit Output_data_space(off_t data_size, uint64_t addralign,
|
|
const char* map_name)
|
|
: Output_section_data_build(data_size, addralign),
|
|
map_name_(map_name)
|
|
{ }
|
|
|
|
// Set the alignment.
|
|
void
|
|
set_space_alignment(uint64_t align)
|
|
{ this->set_addralign(align); }
|
|
|
|
protected:
|
|
// Write out the data--the actual data must be written out
|
|
// elsewhere.
|
|
void
|
|
do_write(Output_file*)
|
|
{ }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _(this->map_name_)); }
|
|
|
|
private:
|
|
// Name to use in a map file. Maps are a rarely used feature, but
|
|
// the space usage is minor as aren't very many of these objects.
|
|
const char* map_name_;
|
|
};
|
|
|
|
// Fill fixed space with zeroes. This is just like
|
|
// Output_data_fixed_space, except that the map name is known.
|
|
|
|
class Output_data_zero_fill : public Output_section_data
|
|
{
|
|
public:
|
|
Output_data_zero_fill(off_t data_size, uint64_t addralign)
|
|
: Output_section_data(data_size, addralign, true)
|
|
{ }
|
|
|
|
protected:
|
|
// There is no data to write out.
|
|
void
|
|
do_write(Output_file*)
|
|
{ }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, "** zero fill"); }
|
|
};
|
|
|
|
// A string table which goes into an output section.
|
|
|
|
class Output_data_strtab : public Output_section_data
|
|
{
|
|
public:
|
|
Output_data_strtab(Stringpool* strtab)
|
|
: Output_section_data(1), strtab_(strtab)
|
|
{ }
|
|
|
|
protected:
|
|
// This is called to update the section size prior to assigning
|
|
// the address and file offset.
|
|
void
|
|
update_data_size()
|
|
{ this->set_final_data_size(); }
|
|
|
|
// This is called to set the address and file offset. Here we make
|
|
// sure that the Stringpool is finalized.
|
|
void
|
|
set_final_data_size();
|
|
|
|
// Write out the data.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Write the data to a buffer.
|
|
void
|
|
do_write_to_buffer(unsigned char* buffer)
|
|
{ this->strtab_->write_to_buffer(buffer, this->data_size()); }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** string table")); }
|
|
|
|
private:
|
|
Stringpool* strtab_;
|
|
};
|
|
|
|
// This POD class is used to represent a single reloc in the output
|
|
// file. This could be a private class within Output_data_reloc, but
|
|
// the templatization is complex enough that I broke it out into a
|
|
// separate class. The class is templatized on either elfcpp::SHT_REL
|
|
// or elfcpp::SHT_RELA, and also on whether this is a dynamic
|
|
// relocation or an ordinary relocation.
|
|
|
|
// A relocation can be against a global symbol, a local symbol, a
|
|
// local section symbol, an output section, or the undefined symbol at
|
|
// index 0. We represent the latter by using a NULL global symbol.
|
|
|
|
template<int sh_type, bool dynamic, int size, bool big_endian>
|
|
class Output_reloc;
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
|
|
{
|
|
public:
|
|
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
|
|
typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
|
|
|
|
static const Address invalid_address = static_cast<Address>(0) - 1;
|
|
|
|
// An uninitialized entry. We need this because we want to put
|
|
// instances of this class into an STL container.
|
|
Output_reloc()
|
|
: local_sym_index_(INVALID_CODE)
|
|
{ }
|
|
|
|
// We have a bunch of different constructors. They come in pairs
|
|
// depending on how the address of the relocation is specified. It
|
|
// can either be an offset in an Output_data or an offset in an
|
|
// input section.
|
|
|
|
// A reloc against a global symbol.
|
|
|
|
Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Address address, bool is_relative, bool is_symbolless,
|
|
bool use_plt_offset);
|
|
|
|
Output_reloc(Symbol* gsym, unsigned int type,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, bool is_relative,
|
|
bool is_symbolless, bool use_plt_offset);
|
|
|
|
// A reloc against a local symbol or local section symbol.
|
|
|
|
Output_reloc(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, Address address, bool is_relative,
|
|
bool is_symbolless, bool is_section_symbol,
|
|
bool use_plt_offset);
|
|
|
|
Output_reloc(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
unsigned int shndx, Address address, bool is_relative,
|
|
bool is_symbolless, bool is_section_symbol,
|
|
bool use_plt_offset);
|
|
|
|
// A reloc against the STT_SECTION symbol of an output section.
|
|
|
|
Output_reloc(Output_section* os, unsigned int type, Output_data* od,
|
|
Address address, bool is_relative);
|
|
|
|
Output_reloc(Output_section* os, unsigned int type,
|
|
Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
|
|
Address address, bool is_relative);
|
|
|
|
// An absolute or relative relocation with no symbol.
|
|
|
|
Output_reloc(unsigned int type, Output_data* od, Address address,
|
|
bool is_relative);
|
|
|
|
Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, bool is_relative);
|
|
|
|
// A target specific relocation. The target will be called to get
|
|
// the symbol index, passing ARG. The type and offset will be set
|
|
// as for other relocation types.
|
|
|
|
Output_reloc(unsigned int type, void* arg, Output_data* od,
|
|
Address address);
|
|
|
|
Output_reloc(unsigned int type, void* arg,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address);
|
|
|
|
// Return the reloc type.
|
|
unsigned int
|
|
type() const
|
|
{ return this->type_; }
|
|
|
|
// Return whether this is a RELATIVE relocation.
|
|
bool
|
|
is_relative() const
|
|
{ return this->is_relative_; }
|
|
|
|
// Return whether this is a relocation which should not use
|
|
// a symbol, but which obtains its addend from a symbol.
|
|
bool
|
|
is_symbolless() const
|
|
{ return this->is_symbolless_; }
|
|
|
|
// Return whether this is against a local section symbol.
|
|
bool
|
|
is_local_section_symbol() const
|
|
{
|
|
return (this->local_sym_index_ != GSYM_CODE
|
|
&& this->local_sym_index_ != SECTION_CODE
|
|
&& this->local_sym_index_ != INVALID_CODE
|
|
&& this->local_sym_index_ != TARGET_CODE
|
|
&& this->is_section_symbol_);
|
|
}
|
|
|
|
// Return whether this is a target specific relocation.
|
|
bool
|
|
is_target_specific() const
|
|
{ return this->local_sym_index_ == TARGET_CODE; }
|
|
|
|
// Return the argument to pass to the target for a target specific
|
|
// relocation.
|
|
void*
|
|
target_arg() const
|
|
{
|
|
gold_assert(this->local_sym_index_ == TARGET_CODE);
|
|
return this->u1_.arg;
|
|
}
|
|
|
|
// For a local section symbol, return the offset of the input
|
|
// section within the output section. ADDEND is the addend being
|
|
// applied to the input section.
|
|
Address
|
|
local_section_offset(Addend addend) const;
|
|
|
|
// Get the value of the symbol referred to by a Rel relocation when
|
|
// we are adding the given ADDEND.
|
|
Address
|
|
symbol_value(Addend addend) const;
|
|
|
|
// If this relocation is against an input section, return the
|
|
// relocatable object containing the input section.
|
|
Sized_relobj<size, big_endian>*
|
|
get_relobj() const
|
|
{
|
|
if (this->shndx_ == INVALID_CODE)
|
|
return NULL;
|
|
return this->u2_.relobj;
|
|
}
|
|
|
|
// Write the reloc entry to an output view.
|
|
void
|
|
write(unsigned char* pov) const;
|
|
|
|
// Write the offset and info fields to Write_rel.
|
|
template<typename Write_rel>
|
|
void write_rel(Write_rel*) const;
|
|
|
|
// This is used when sorting dynamic relocs. Return -1 to sort this
|
|
// reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
|
|
int
|
|
compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
|
|
const;
|
|
|
|
// Return whether this reloc should be sorted before the argument
|
|
// when sorting dynamic relocs.
|
|
bool
|
|
sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
|
|
r2) const
|
|
{ return this->compare(r2) < 0; }
|
|
|
|
// Return the symbol index.
|
|
unsigned int
|
|
get_symbol_index() const;
|
|
|
|
// Return the output address.
|
|
Address
|
|
get_address() const;
|
|
|
|
private:
|
|
// Record that we need a dynamic symbol index.
|
|
void
|
|
set_needs_dynsym_index();
|
|
|
|
// Codes for local_sym_index_.
|
|
enum
|
|
{
|
|
// Global symbol.
|
|
GSYM_CODE = -1U,
|
|
// Output section.
|
|
SECTION_CODE = -2U,
|
|
// Target specific.
|
|
TARGET_CODE = -3U,
|
|
// Invalid uninitialized entry.
|
|
INVALID_CODE = -4U
|
|
};
|
|
|
|
union
|
|
{
|
|
// For a local symbol or local section symbol
|
|
// (this->local_sym_index_ >= 0), the object. We will never
|
|
// generate a relocation against a local symbol in a dynamic
|
|
// object; that doesn't make sense. And our callers will always
|
|
// be templatized, so we use Sized_relobj here.
|
|
Sized_relobj<size, big_endian>* relobj;
|
|
// For a global symbol (this->local_sym_index_ == GSYM_CODE, the
|
|
// symbol. If this is NULL, it indicates a relocation against the
|
|
// undefined 0 symbol.
|
|
Symbol* gsym;
|
|
// For a relocation against an output section
|
|
// (this->local_sym_index_ == SECTION_CODE), the output section.
|
|
Output_section* os;
|
|
// For a target specific relocation, an argument to pass to the
|
|
// target.
|
|
void* arg;
|
|
} u1_;
|
|
union
|
|
{
|
|
// If this->shndx_ is not INVALID CODE, the object which holds the
|
|
// input section being used to specify the reloc address.
|
|
Sized_relobj<size, big_endian>* relobj;
|
|
// If this->shndx_ is INVALID_CODE, the output data being used to
|
|
// specify the reloc address. This may be NULL if the reloc
|
|
// address is absolute.
|
|
Output_data* od;
|
|
} u2_;
|
|
// The address offset within the input section or the Output_data.
|
|
Address address_;
|
|
// This is GSYM_CODE for a global symbol, or SECTION_CODE for a
|
|
// relocation against an output section, or TARGET_CODE for a target
|
|
// specific relocation, or INVALID_CODE for an uninitialized value.
|
|
// Otherwise, for a local symbol (this->is_section_symbol_ is
|
|
// false), the local symbol index. For a local section symbol
|
|
// (this->is_section_symbol_ is true), the section index in the
|
|
// input file.
|
|
unsigned int local_sym_index_;
|
|
// The reloc type--a processor specific code.
|
|
unsigned int type_ : 28;
|
|
// True if the relocation is a RELATIVE relocation.
|
|
bool is_relative_ : 1;
|
|
// True if the relocation is one which should not use
|
|
// a symbol, but which obtains its addend from a symbol.
|
|
bool is_symbolless_ : 1;
|
|
// True if the relocation is against a section symbol.
|
|
bool is_section_symbol_ : 1;
|
|
// True if the addend should be the PLT offset.
|
|
// (Used only for RELA, but stored here for space.)
|
|
bool use_plt_offset_ : 1;
|
|
// If the reloc address is an input section in an object, the
|
|
// section index. This is INVALID_CODE if the reloc address is
|
|
// specified in some other way.
|
|
unsigned int shndx_;
|
|
};
|
|
|
|
// The SHT_RELA version of Output_reloc<>. This is just derived from
|
|
// the SHT_REL version of Output_reloc, but it adds an addend.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
|
|
{
|
|
public:
|
|
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
|
|
typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
|
|
|
|
// An uninitialized entry.
|
|
Output_reloc()
|
|
: rel_()
|
|
{ }
|
|
|
|
// A reloc against a global symbol.
|
|
|
|
Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Address address, Addend addend, bool is_relative,
|
|
bool is_symbolless, bool use_plt_offset)
|
|
: rel_(gsym, type, od, address, is_relative, is_symbolless,
|
|
use_plt_offset),
|
|
addend_(addend)
|
|
{ }
|
|
|
|
Output_reloc(Symbol* gsym, unsigned int type,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, Addend addend,
|
|
bool is_relative, bool is_symbolless, bool use_plt_offset)
|
|
: rel_(gsym, type, relobj, shndx, address, is_relative,
|
|
is_symbolless, use_plt_offset), addend_(addend)
|
|
{ }
|
|
|
|
// A reloc against a local symbol.
|
|
|
|
Output_reloc(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, Address address,
|
|
Addend addend, bool is_relative,
|
|
bool is_symbolless, bool is_section_symbol,
|
|
bool use_plt_offset)
|
|
: rel_(relobj, local_sym_index, type, od, address, is_relative,
|
|
is_symbolless, is_section_symbol, use_plt_offset),
|
|
addend_(addend)
|
|
{ }
|
|
|
|
Output_reloc(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
unsigned int shndx, Address address,
|
|
Addend addend, bool is_relative,
|
|
bool is_symbolless, bool is_section_symbol,
|
|
bool use_plt_offset)
|
|
: rel_(relobj, local_sym_index, type, shndx, address, is_relative,
|
|
is_symbolless, is_section_symbol, use_plt_offset),
|
|
addend_(addend)
|
|
{ }
|
|
|
|
// A reloc against the STT_SECTION symbol of an output section.
|
|
|
|
Output_reloc(Output_section* os, unsigned int type, Output_data* od,
|
|
Address address, Addend addend, bool is_relative)
|
|
: rel_(os, type, od, address, is_relative), addend_(addend)
|
|
{ }
|
|
|
|
Output_reloc(Output_section* os, unsigned int type,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, Addend addend,
|
|
bool is_relative)
|
|
: rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
|
|
{ }
|
|
|
|
// An absolute or relative relocation with no symbol.
|
|
|
|
Output_reloc(unsigned int type, Output_data* od, Address address,
|
|
Addend addend, bool is_relative)
|
|
: rel_(type, od, address, is_relative), addend_(addend)
|
|
{ }
|
|
|
|
Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, Addend addend,
|
|
bool is_relative)
|
|
: rel_(type, relobj, shndx, address, is_relative), addend_(addend)
|
|
{ }
|
|
|
|
// A target specific relocation. The target will be called to get
|
|
// the symbol index and the addend, passing ARG. The type and
|
|
// offset will be set as for other relocation types.
|
|
|
|
Output_reloc(unsigned int type, void* arg, Output_data* od,
|
|
Address address, Addend addend)
|
|
: rel_(type, arg, od, address), addend_(addend)
|
|
{ }
|
|
|
|
Output_reloc(unsigned int type, void* arg,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, Addend addend)
|
|
: rel_(type, arg, relobj, shndx, address), addend_(addend)
|
|
{ }
|
|
|
|
// Return whether this is a RELATIVE relocation.
|
|
bool
|
|
is_relative() const
|
|
{ return this->rel_.is_relative(); }
|
|
|
|
// Return whether this is a relocation which should not use
|
|
// a symbol, but which obtains its addend from a symbol.
|
|
bool
|
|
is_symbolless() const
|
|
{ return this->rel_.is_symbolless(); }
|
|
|
|
// If this relocation is against an input section, return the
|
|
// relocatable object containing the input section.
|
|
Sized_relobj<size, big_endian>*
|
|
get_relobj() const
|
|
{ return this->rel_.get_relobj(); }
|
|
|
|
// Write the reloc entry to an output view.
|
|
void
|
|
write(unsigned char* pov) const;
|
|
|
|
// Return whether this reloc should be sorted before the argument
|
|
// when sorting dynamic relocs.
|
|
bool
|
|
sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
|
|
r2) const
|
|
{
|
|
int i = this->rel_.compare(r2.rel_);
|
|
if (i < 0)
|
|
return true;
|
|
else if (i > 0)
|
|
return false;
|
|
else
|
|
return this->addend_ < r2.addend_;
|
|
}
|
|
|
|
private:
|
|
// The basic reloc.
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
|
|
// The addend.
|
|
Addend addend_;
|
|
};
|
|
|
|
// Output_data_reloc_generic is a non-template base class for
|
|
// Output_data_reloc_base. This gives the generic code a way to hold
|
|
// a pointer to a reloc section.
|
|
|
|
class Output_data_reloc_generic : public Output_section_data_build
|
|
{
|
|
public:
|
|
Output_data_reloc_generic(int size, bool sort_relocs)
|
|
: Output_section_data_build(Output_data::default_alignment_for_size(size)),
|
|
relative_reloc_count_(0), sort_relocs_(sort_relocs)
|
|
{ }
|
|
|
|
// Return the number of relative relocs in this section.
|
|
size_t
|
|
relative_reloc_count() const
|
|
{ return this->relative_reloc_count_; }
|
|
|
|
// Whether we should sort the relocs.
|
|
bool
|
|
sort_relocs() const
|
|
{ return this->sort_relocs_; }
|
|
|
|
// Add a reloc of type TYPE against the global symbol GSYM. The
|
|
// relocation applies to the data at offset ADDRESS within OD.
|
|
virtual void
|
|
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
|
|
uint64_t address, uint64_t addend) = 0;
|
|
|
|
// Add a reloc of type TYPE against the global symbol GSYM. The
|
|
// relocation applies to data at offset ADDRESS within section SHNDX
|
|
// of object file RELOBJ. OD is the associated output section.
|
|
virtual void
|
|
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Relobj* relobj, unsigned int shndx, uint64_t address,
|
|
uint64_t addend) = 0;
|
|
|
|
// Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
|
|
// in RELOBJ. The relocation applies to the data at offset ADDRESS
|
|
// within OD.
|
|
virtual void
|
|
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
|
|
unsigned int type, Output_data* od, uint64_t address,
|
|
uint64_t addend) = 0;
|
|
|
|
// Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
|
|
// in RELOBJ. The relocation applies to the data at offset ADDRESS
|
|
// within section SHNDX of RELOBJ. OD is the associated output
|
|
// section.
|
|
virtual void
|
|
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
|
|
unsigned int type, Output_data* od, unsigned int shndx,
|
|
uint64_t address, uint64_t addend) = 0;
|
|
|
|
// Add a reloc of type TYPE against the STT_SECTION symbol of the
|
|
// output section OS. The relocation applies to the data at offset
|
|
// ADDRESS within OD.
|
|
virtual void
|
|
add_output_section_generic(Output_section *os, unsigned int type,
|
|
Output_data* od, uint64_t address,
|
|
uint64_t addend) = 0;
|
|
|
|
// Add a reloc of type TYPE against the STT_SECTION symbol of the
|
|
// output section OS. The relocation applies to the data at offset
|
|
// ADDRESS within section SHNDX of RELOBJ. OD is the associated
|
|
// output section.
|
|
virtual void
|
|
add_output_section_generic(Output_section* os, unsigned int type,
|
|
Output_data* od, Relobj* relobj,
|
|
unsigned int shndx, uint64_t address,
|
|
uint64_t addend) = 0;
|
|
|
|
protected:
|
|
// Note that we've added another relative reloc.
|
|
void
|
|
bump_relative_reloc_count()
|
|
{ ++this->relative_reloc_count_; }
|
|
|
|
private:
|
|
// The number of relative relocs added to this section. This is to
|
|
// support DT_RELCOUNT.
|
|
size_t relative_reloc_count_;
|
|
// Whether to sort the relocations when writing them out, to make
|
|
// the dynamic linker more efficient.
|
|
bool sort_relocs_;
|
|
};
|
|
|
|
// Output_data_reloc is used to manage a section containing relocs.
|
|
// SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
|
|
// indicates whether this is a dynamic relocation or a normal
|
|
// relocation. Output_data_reloc_base is a base class.
|
|
// Output_data_reloc is the real class, which we specialize based on
|
|
// the reloc type.
|
|
|
|
template<int sh_type, bool dynamic, int size, bool big_endian>
|
|
class Output_data_reloc_base : public Output_data_reloc_generic
|
|
{
|
|
public:
|
|
typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
|
|
typedef typename Output_reloc_type::Address Address;
|
|
static const int reloc_size =
|
|
Reloc_types<sh_type, size, big_endian>::reloc_size;
|
|
|
|
// Construct the section.
|
|
Output_data_reloc_base(bool sort_relocs)
|
|
: Output_data_reloc_generic(size, sort_relocs)
|
|
{ }
|
|
|
|
protected:
|
|
// Write out the data.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Generic implementation of do_write, allowing a customized
|
|
// class for writing the output relocation (e.g., for MIPS-64).
|
|
template<class Output_reloc_writer>
|
|
void
|
|
do_write_generic(Output_file* of)
|
|
{
|
|
const off_t off = this->offset();
|
|
const off_t oview_size = this->data_size();
|
|
unsigned char* const oview = of->get_output_view(off, oview_size);
|
|
|
|
if (this->sort_relocs())
|
|
{
|
|
gold_assert(dynamic);
|
|
std::sort(this->relocs_.begin(), this->relocs_.end(),
|
|
Sort_relocs_comparison());
|
|
}
|
|
|
|
unsigned char* pov = oview;
|
|
for (typename Relocs::const_iterator p = this->relocs_.begin();
|
|
p != this->relocs_.end();
|
|
++p)
|
|
{
|
|
Output_reloc_writer::write(p, pov);
|
|
pov += reloc_size;
|
|
}
|
|
|
|
gold_assert(pov - oview == oview_size);
|
|
|
|
of->write_output_view(off, oview_size, oview);
|
|
|
|
// We no longer need the relocation entries.
|
|
this->relocs_.clear();
|
|
}
|
|
|
|
// Set the entry size and the link.
|
|
void
|
|
do_adjust_output_section(Output_section* os);
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{
|
|
mapfile->print_output_data(this,
|
|
(dynamic
|
|
? _("** dynamic relocs")
|
|
: _("** relocs")));
|
|
}
|
|
|
|
// Add a relocation entry.
|
|
void
|
|
add(Output_data* od, const Output_reloc_type& reloc)
|
|
{
|
|
this->relocs_.push_back(reloc);
|
|
this->set_current_data_size(this->relocs_.size() * reloc_size);
|
|
if (dynamic)
|
|
od->add_dynamic_reloc();
|
|
if (reloc.is_relative())
|
|
this->bump_relative_reloc_count();
|
|
Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
|
|
if (relobj != NULL)
|
|
relobj->add_dyn_reloc(this->relocs_.size() - 1);
|
|
}
|
|
|
|
private:
|
|
typedef std::vector<Output_reloc_type> Relocs;
|
|
|
|
// The class used to sort the relocations.
|
|
struct Sort_relocs_comparison
|
|
{
|
|
bool
|
|
operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
|
|
{ return r1.sort_before(r2); }
|
|
};
|
|
|
|
// The relocations in this section.
|
|
Relocs relocs_;
|
|
};
|
|
|
|
// The class which callers actually create.
|
|
|
|
template<int sh_type, bool dynamic, int size, bool big_endian>
|
|
class Output_data_reloc;
|
|
|
|
// The SHT_REL version of Output_data_reloc.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
|
|
: public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
|
|
{
|
|
private:
|
|
typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
|
|
big_endian> Base;
|
|
|
|
public:
|
|
typedef typename Base::Output_reloc_type Output_reloc_type;
|
|
typedef typename Output_reloc_type::Address Address;
|
|
|
|
Output_data_reloc(bool sr)
|
|
: Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
|
|
{ }
|
|
|
|
// Add a reloc against a global symbol.
|
|
|
|
void
|
|
add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, od, address,
|
|
false, false, false));
|
|
}
|
|
|
|
void
|
|
add_global(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
|
|
false, false, false));
|
|
}
|
|
|
|
void
|
|
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
|
|
uint64_t address, uint64_t addend)
|
|
{
|
|
gold_assert(addend == 0);
|
|
this->add(od, Output_reloc_type(gsym, type, od,
|
|
convert_types<Address, uint64_t>(address),
|
|
false, false, false));
|
|
}
|
|
|
|
void
|
|
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Relobj* relobj, unsigned int shndx, uint64_t address,
|
|
uint64_t addend)
|
|
{
|
|
gold_assert(addend == 0);
|
|
Sized_relobj<size, big_endian>* sized_relobj =
|
|
static_cast<Sized_relobj<size, big_endian>*>(relobj);
|
|
this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
|
|
convert_types<Address, uint64_t>(address),
|
|
false, false, false));
|
|
}
|
|
|
|
// Add a RELATIVE reloc against a global symbol. The final relocation
|
|
// will not reference the symbol.
|
|
|
|
void
|
|
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
|
|
false));
|
|
}
|
|
|
|
void
|
|
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
|
|
true, true, false));
|
|
}
|
|
|
|
// Add a global relocation which does not use a symbol for the relocation,
|
|
// but which gets its addend from a symbol.
|
|
|
|
void
|
|
add_symbolless_global_addend(Symbol* gsym, unsigned int type,
|
|
Output_data* od, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
|
|
false));
|
|
}
|
|
|
|
void
|
|
add_symbolless_global_addend(Symbol* gsym, unsigned int type,
|
|
Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
|
|
false, true, false));
|
|
}
|
|
|
|
// Add a reloc against a local symbol.
|
|
|
|
void
|
|
add_local(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
|
|
address, false, false, false, false));
|
|
}
|
|
|
|
void
|
|
add_local(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, unsigned int shndx, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
|
|
address, false, false, false, false));
|
|
}
|
|
|
|
void
|
|
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
|
|
unsigned int type, Output_data* od, uint64_t address,
|
|
uint64_t addend)
|
|
{
|
|
gold_assert(addend == 0);
|
|
Sized_relobj<size, big_endian>* sized_relobj =
|
|
static_cast<Sized_relobj<size, big_endian> *>(relobj);
|
|
this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
|
|
convert_types<Address, uint64_t>(address),
|
|
false, false, false, false));
|
|
}
|
|
|
|
void
|
|
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
|
|
unsigned int type, Output_data* od, unsigned int shndx,
|
|
uint64_t address, uint64_t addend)
|
|
{
|
|
gold_assert(addend == 0);
|
|
Sized_relobj<size, big_endian>* sized_relobj =
|
|
static_cast<Sized_relobj<size, big_endian>*>(relobj);
|
|
this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
|
|
convert_types<Address, uint64_t>(address),
|
|
false, false, false, false));
|
|
}
|
|
|
|
// Add a RELATIVE reloc against a local symbol.
|
|
|
|
void
|
|
add_local_relative(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
|
|
address, true, true, false, false));
|
|
}
|
|
|
|
void
|
|
add_local_relative(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, unsigned int shndx, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
|
|
address, true, true, false, false));
|
|
}
|
|
|
|
void
|
|
add_local_relative(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, unsigned int shndx, Address address,
|
|
bool use_plt_offset)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
|
|
address, true, true, false,
|
|
use_plt_offset));
|
|
}
|
|
|
|
// Add a local relocation which does not use a symbol for the relocation,
|
|
// but which gets its addend from a symbol.
|
|
|
|
void
|
|
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
|
|
address, false, true, false, false));
|
|
}
|
|
|
|
void
|
|
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, unsigned int shndx,
|
|
Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
|
|
address, false, true, false, false));
|
|
}
|
|
|
|
// Add a reloc against a local section symbol. This will be
|
|
// converted into a reloc against the STT_SECTION symbol of the
|
|
// output section.
|
|
|
|
void
|
|
add_local_section(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int input_shndx, unsigned int type,
|
|
Output_data* od, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
|
|
address, false, false, true, false));
|
|
}
|
|
|
|
void
|
|
add_local_section(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int input_shndx, unsigned int type,
|
|
Output_data* od, unsigned int shndx, Address address)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
|
|
address, false, false, true, false));
|
|
}
|
|
|
|
// A reloc against the STT_SECTION symbol of an output section.
|
|
// OS is the Output_section that the relocation refers to; OD is
|
|
// the Output_data object being relocated.
|
|
|
|
void
|
|
add_output_section(Output_section* os, unsigned int type,
|
|
Output_data* od, Address address)
|
|
{ this->add(od, Output_reloc_type(os, type, od, address, false)); }
|
|
|
|
void
|
|
add_output_section(Output_section* os, unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address)
|
|
{ this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
|
|
|
|
void
|
|
add_output_section_generic(Output_section* os, unsigned int type,
|
|
Output_data* od, uint64_t address,
|
|
uint64_t addend)
|
|
{
|
|
gold_assert(addend == 0);
|
|
this->add(od, Output_reloc_type(os, type, od,
|
|
convert_types<Address, uint64_t>(address),
|
|
false));
|
|
}
|
|
|
|
void
|
|
add_output_section_generic(Output_section* os, unsigned int type,
|
|
Output_data* od, Relobj* relobj,
|
|
unsigned int shndx, uint64_t address,
|
|
uint64_t addend)
|
|
{
|
|
gold_assert(addend == 0);
|
|
Sized_relobj<size, big_endian>* sized_relobj =
|
|
static_cast<Sized_relobj<size, big_endian>*>(relobj);
|
|
this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
|
|
convert_types<Address, uint64_t>(address),
|
|
false));
|
|
}
|
|
|
|
// As above, but the reloc TYPE is relative
|
|
|
|
void
|
|
add_output_section_relative(Output_section* os, unsigned int type,
|
|
Output_data* od, Address address)
|
|
{ this->add(od, Output_reloc_type(os, type, od, address, true)); }
|
|
|
|
void
|
|
add_output_section_relative(Output_section* os, unsigned int type,
|
|
Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address)
|
|
{ this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
|
|
|
|
// Add an absolute relocation.
|
|
|
|
void
|
|
add_absolute(unsigned int type, Output_data* od, Address address)
|
|
{ this->add(od, Output_reloc_type(type, od, address, false)); }
|
|
|
|
void
|
|
add_absolute(unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address)
|
|
{ this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
|
|
|
|
// Add a relative relocation
|
|
|
|
void
|
|
add_relative(unsigned int type, Output_data* od, Address address)
|
|
{ this->add(od, Output_reloc_type(type, od, address, true)); }
|
|
|
|
void
|
|
add_relative(unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address)
|
|
{ this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
|
|
|
|
// Add a target specific relocation. A target which calls this must
|
|
// define the reloc_symbol_index and reloc_addend virtual functions.
|
|
|
|
void
|
|
add_target_specific(unsigned int type, void* arg, Output_data* od,
|
|
Address address)
|
|
{ this->add(od, Output_reloc_type(type, arg, od, address)); }
|
|
|
|
void
|
|
add_target_specific(unsigned int type, void* arg, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address)
|
|
{ this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
|
|
};
|
|
|
|
// The SHT_RELA version of Output_data_reloc.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
|
|
: public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
|
|
{
|
|
private:
|
|
typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
|
|
big_endian> Base;
|
|
|
|
public:
|
|
typedef typename Base::Output_reloc_type Output_reloc_type;
|
|
typedef typename Output_reloc_type::Address Address;
|
|
typedef typename Output_reloc_type::Addend Addend;
|
|
|
|
Output_data_reloc(bool sr)
|
|
: Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
|
|
{ }
|
|
|
|
// Add a reloc against a global symbol.
|
|
|
|
void
|
|
add_global(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, od, address, addend,
|
|
false, false, false));
|
|
}
|
|
|
|
void
|
|
add_global(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address,
|
|
Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
|
|
addend, false, false, false));
|
|
}
|
|
|
|
void
|
|
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
|
|
uint64_t address, uint64_t addend)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, od,
|
|
convert_types<Address, uint64_t>(address),
|
|
convert_types<Addend, uint64_t>(addend),
|
|
false, false, false));
|
|
}
|
|
|
|
void
|
|
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Relobj* relobj, unsigned int shndx, uint64_t address,
|
|
uint64_t addend)
|
|
{
|
|
Sized_relobj<size, big_endian>* sized_relobj =
|
|
static_cast<Sized_relobj<size, big_endian>*>(relobj);
|
|
this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
|
|
convert_types<Address, uint64_t>(address),
|
|
convert_types<Addend, uint64_t>(addend),
|
|
false, false, false));
|
|
}
|
|
|
|
// Add a RELATIVE reloc against a global symbol. The final output
|
|
// relocation will not reference the symbol, but we must keep the symbol
|
|
// information long enough to set the addend of the relocation correctly
|
|
// when it is written.
|
|
|
|
void
|
|
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Address address, Addend addend, bool use_plt_offset)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
|
|
true, use_plt_offset));
|
|
}
|
|
|
|
void
|
|
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, Addend addend,
|
|
bool use_plt_offset)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
|
|
addend, true, true, use_plt_offset));
|
|
}
|
|
|
|
// Add a global relocation which does not use a symbol for the relocation,
|
|
// but which gets its addend from a symbol.
|
|
|
|
void
|
|
add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
|
|
Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, od, address, addend,
|
|
false, true, false));
|
|
}
|
|
|
|
void
|
|
add_symbolless_global_addend(Symbol* gsym, unsigned int type,
|
|
Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address,
|
|
Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
|
|
addend, false, true, false));
|
|
}
|
|
|
|
// Add a reloc against a local symbol.
|
|
|
|
void
|
|
add_local(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
|
|
addend, false, false, false, false));
|
|
}
|
|
|
|
void
|
|
add_local(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, unsigned int shndx, Address address,
|
|
Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
|
|
address, addend, false, false, false,
|
|
false));
|
|
}
|
|
|
|
void
|
|
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
|
|
unsigned int type, Output_data* od, uint64_t address,
|
|
uint64_t addend)
|
|
{
|
|
Sized_relobj<size, big_endian>* sized_relobj =
|
|
static_cast<Sized_relobj<size, big_endian> *>(relobj);
|
|
this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
|
|
convert_types<Address, uint64_t>(address),
|
|
convert_types<Addend, uint64_t>(addend),
|
|
false, false, false, false));
|
|
}
|
|
|
|
void
|
|
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
|
|
unsigned int type, Output_data* od, unsigned int shndx,
|
|
uint64_t address, uint64_t addend)
|
|
{
|
|
Sized_relobj<size, big_endian>* sized_relobj =
|
|
static_cast<Sized_relobj<size, big_endian>*>(relobj);
|
|
this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
|
|
convert_types<Address, uint64_t>(address),
|
|
convert_types<Addend, uint64_t>(addend),
|
|
false, false, false, false));
|
|
}
|
|
|
|
// Add a RELATIVE reloc against a local symbol.
|
|
|
|
void
|
|
add_local_relative(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, Address address, Addend addend,
|
|
bool use_plt_offset)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
|
|
addend, true, true, false,
|
|
use_plt_offset));
|
|
}
|
|
|
|
void
|
|
add_local_relative(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, unsigned int shndx, Address address,
|
|
Addend addend, bool use_plt_offset)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
|
|
address, addend, true, true, false,
|
|
use_plt_offset));
|
|
}
|
|
|
|
// Add a local relocation which does not use a symbol for the relocation,
|
|
// but which gets it's addend from a symbol.
|
|
|
|
void
|
|
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
|
|
addend, false, true, false, false));
|
|
}
|
|
|
|
void
|
|
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index, unsigned int type,
|
|
Output_data* od, unsigned int shndx,
|
|
Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
|
|
address, addend, false, true, false,
|
|
false));
|
|
}
|
|
|
|
// Add a reloc against a local section symbol. This will be
|
|
// converted into a reloc against the STT_SECTION symbol of the
|
|
// output section.
|
|
|
|
void
|
|
add_local_section(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int input_shndx, unsigned int type,
|
|
Output_data* od, Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
|
|
addend, false, false, true, false));
|
|
}
|
|
|
|
void
|
|
add_local_section(Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int input_shndx, unsigned int type,
|
|
Output_data* od, unsigned int shndx, Address address,
|
|
Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
|
|
address, addend, false, false, true,
|
|
false));
|
|
}
|
|
|
|
// A reloc against the STT_SECTION symbol of an output section.
|
|
|
|
void
|
|
add_output_section(Output_section* os, unsigned int type, Output_data* od,
|
|
Address address, Addend addend)
|
|
{ this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
|
|
|
|
void
|
|
add_output_section(Output_section* os, unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
|
|
addend, false));
|
|
}
|
|
|
|
void
|
|
add_output_section_generic(Output_section* os, unsigned int type,
|
|
Output_data* od, uint64_t address,
|
|
uint64_t addend)
|
|
{
|
|
this->add(od, Output_reloc_type(os, type, od,
|
|
convert_types<Address, uint64_t>(address),
|
|
convert_types<Addend, uint64_t>(addend),
|
|
false));
|
|
}
|
|
|
|
void
|
|
add_output_section_generic(Output_section* os, unsigned int type,
|
|
Output_data* od, Relobj* relobj,
|
|
unsigned int shndx, uint64_t address,
|
|
uint64_t addend)
|
|
{
|
|
Sized_relobj<size, big_endian>* sized_relobj =
|
|
static_cast<Sized_relobj<size, big_endian>*>(relobj);
|
|
this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
|
|
convert_types<Address, uint64_t>(address),
|
|
convert_types<Addend, uint64_t>(addend),
|
|
false));
|
|
}
|
|
|
|
// As above, but the reloc TYPE is relative
|
|
|
|
void
|
|
add_output_section_relative(Output_section* os, unsigned int type,
|
|
Output_data* od, Address address, Addend addend)
|
|
{ this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
|
|
|
|
void
|
|
add_output_section_relative(Output_section* os, unsigned int type,
|
|
Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address,
|
|
Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(os, type, relobj, shndx,
|
|
address, addend, true));
|
|
}
|
|
|
|
// Add an absolute relocation.
|
|
|
|
void
|
|
add_absolute(unsigned int type, Output_data* od, Address address,
|
|
Addend addend)
|
|
{ this->add(od, Output_reloc_type(type, od, address, addend, false)); }
|
|
|
|
void
|
|
add_absolute(unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
|
|
false));
|
|
}
|
|
|
|
// Add a relative relocation
|
|
|
|
void
|
|
add_relative(unsigned int type, Output_data* od, Address address,
|
|
Addend addend)
|
|
{ this->add(od, Output_reloc_type(type, od, address, addend, true)); }
|
|
|
|
void
|
|
add_relative(unsigned int type, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
|
|
true));
|
|
}
|
|
|
|
// Add a target specific relocation. A target which calls this must
|
|
// define the reloc_symbol_index and reloc_addend virtual functions.
|
|
|
|
void
|
|
add_target_specific(unsigned int type, void* arg, Output_data* od,
|
|
Address address, Addend addend)
|
|
{ this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
|
|
|
|
void
|
|
add_target_specific(unsigned int type, void* arg, Output_data* od,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx, Address address, Addend addend)
|
|
{
|
|
this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
|
|
addend));
|
|
}
|
|
};
|
|
|
|
// Output_relocatable_relocs represents a relocation section in a
|
|
// relocatable link. The actual data is written out in the target
|
|
// hook relocate_relocs. This just saves space for it.
|
|
|
|
template<int sh_type, int size, bool big_endian>
|
|
class Output_relocatable_relocs : public Output_section_data
|
|
{
|
|
public:
|
|
Output_relocatable_relocs(Relocatable_relocs* rr)
|
|
: Output_section_data(Output_data::default_alignment_for_size(size)),
|
|
rr_(rr)
|
|
{ }
|
|
|
|
void
|
|
set_final_data_size();
|
|
|
|
// Write out the data. There is nothing to do here.
|
|
void
|
|
do_write(Output_file*)
|
|
{ }
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** relocs")); }
|
|
|
|
private:
|
|
// The relocs associated with this input section.
|
|
Relocatable_relocs* rr_;
|
|
};
|
|
|
|
// Handle a GROUP section.
|
|
|
|
template<int size, bool big_endian>
|
|
class Output_data_group : public Output_section_data
|
|
{
|
|
public:
|
|
// The constructor clears *INPUT_SHNDXES.
|
|
Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
|
|
section_size_type entry_count,
|
|
elfcpp::Elf_Word flags,
|
|
std::vector<unsigned int>* input_shndxes);
|
|
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** group")); }
|
|
|
|
// Set final data size.
|
|
void
|
|
set_final_data_size()
|
|
{ this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
|
|
|
|
private:
|
|
// The input object.
|
|
Sized_relobj_file<size, big_endian>* relobj_;
|
|
// The group flag word.
|
|
elfcpp::Elf_Word flags_;
|
|
// The section indexes of the input sections in this group.
|
|
std::vector<unsigned int> input_shndxes_;
|
|
};
|
|
|
|
// Output_data_got is used to manage a GOT. Each entry in the GOT is
|
|
// for one symbol--either a global symbol or a local symbol in an
|
|
// object. The target specific code adds entries to the GOT as
|
|
// needed. The GOT_SIZE template parameter is the size in bits of a
|
|
// GOT entry, typically 32 or 64.
|
|
|
|
class Output_data_got_base : public Output_section_data_build
|
|
{
|
|
public:
|
|
Output_data_got_base(uint64_t align)
|
|
: Output_section_data_build(align)
|
|
{ }
|
|
|
|
Output_data_got_base(off_t data_size, uint64_t align)
|
|
: Output_section_data_build(data_size, align)
|
|
{ }
|
|
|
|
// Reserve the slot at index I in the GOT.
|
|
void
|
|
reserve_slot(unsigned int i)
|
|
{ this->do_reserve_slot(i); }
|
|
|
|
protected:
|
|
// Reserve the slot at index I in the GOT.
|
|
virtual void
|
|
do_reserve_slot(unsigned int i) = 0;
|
|
};
|
|
|
|
template<int got_size, bool big_endian>
|
|
class Output_data_got : public Output_data_got_base
|
|
{
|
|
public:
|
|
typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
|
|
|
|
Output_data_got()
|
|
: Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
|
|
entries_(), free_list_()
|
|
{ }
|
|
|
|
Output_data_got(off_t data_size)
|
|
: Output_data_got_base(data_size,
|
|
Output_data::default_alignment_for_size(got_size)),
|
|
entries_(), free_list_()
|
|
{
|
|
// For an incremental update, we have an existing GOT section.
|
|
// Initialize the list of entries and the free list.
|
|
this->entries_.resize(data_size / (got_size / 8));
|
|
this->free_list_.init(data_size, false);
|
|
}
|
|
|
|
// Add an entry for a global symbol to the GOT. Return true if this
|
|
// is a new GOT entry, false if the symbol was already in the GOT.
|
|
bool
|
|
add_global(Symbol* gsym, unsigned int got_type);
|
|
|
|
// Like add_global, but use the PLT offset of the global symbol if
|
|
// it has one.
|
|
bool
|
|
add_global_plt(Symbol* gsym, unsigned int got_type);
|
|
|
|
// Like add_global, but for a TLS symbol where the value will be
|
|
// offset using Target::tls_offset_for_global.
|
|
bool
|
|
add_global_tls(Symbol* gsym, unsigned int got_type)
|
|
{ return add_global_plt(gsym, got_type); }
|
|
|
|
// Add an entry for a global symbol to the GOT, and add a dynamic
|
|
// relocation of type R_TYPE for the GOT entry.
|
|
void
|
|
add_global_with_rel(Symbol* gsym, unsigned int got_type,
|
|
Output_data_reloc_generic* rel_dyn, unsigned int r_type);
|
|
|
|
// Add a pair of entries for a global symbol to the GOT, and add
|
|
// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
|
|
void
|
|
add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
|
|
Output_data_reloc_generic* rel_dyn,
|
|
unsigned int r_type_1, unsigned int r_type_2);
|
|
|
|
// Add an entry for a local symbol to the GOT. This returns true if
|
|
// this is a new GOT entry, false if the symbol already has a GOT
|
|
// entry.
|
|
bool
|
|
add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
|
|
|
|
// Add an entry for a local symbol plus ADDEND to the GOT. This returns
|
|
// true if this is a new GOT entry, false if the symbol already has a GOT
|
|
// entry.
|
|
bool
|
|
add_local(Relobj* object, unsigned int sym_index, unsigned int got_type,
|
|
uint64_t addend);
|
|
|
|
// Like add_local, but use the PLT offset of the local symbol if it
|
|
// has one.
|
|
bool
|
|
add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
|
|
|
|
// Like add_local, but for a TLS symbol where the value will be
|
|
// offset using Target::tls_offset_for_local.
|
|
bool
|
|
add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
|
|
{ return add_local_plt(object, sym_index, got_type); }
|
|
|
|
// Add an entry for a local symbol to the GOT, and add a dynamic
|
|
// relocation of type R_TYPE for the GOT entry.
|
|
void
|
|
add_local_with_rel(Relobj* object, unsigned int sym_index,
|
|
unsigned int got_type, Output_data_reloc_generic* rel_dyn,
|
|
unsigned int r_type);
|
|
|
|
// Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
|
|
// relocation of type R_TYPE for the GOT entry.
|
|
void
|
|
add_local_with_rel(Relobj* object, unsigned int sym_index,
|
|
unsigned int got_type, Output_data_reloc_generic* rel_dyn,
|
|
unsigned int r_type, uint64_t addend);
|
|
|
|
// Add a pair of entries for a local symbol to the GOT, and add
|
|
// a dynamic relocation of type R_TYPE using the section symbol of
|
|
// the output section to which input section SHNDX maps, on the first.
|
|
// The first got entry will have a value of zero, the second the
|
|
// value of the local symbol.
|
|
void
|
|
add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
|
|
unsigned int shndx, unsigned int got_type,
|
|
Output_data_reloc_generic* rel_dyn,
|
|
unsigned int r_type);
|
|
|
|
// Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
|
|
// a dynamic relocation of type R_TYPE using the section symbol of
|
|
// the output section to which input section SHNDX maps, on the first.
|
|
// The first got entry will have a value of zero, the second the
|
|
// value of the local symbol.
|
|
void
|
|
add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
|
|
unsigned int shndx, unsigned int got_type,
|
|
Output_data_reloc_generic* rel_dyn,
|
|
unsigned int r_type, uint64_t addend);
|
|
|
|
// Add a pair of entries for a local symbol to the GOT, and add
|
|
// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
|
|
// The first got entry will have a value of zero, the second the
|
|
// value of the local symbol offset by Target::tls_offset_for_local.
|
|
void
|
|
add_local_tls_pair(Relobj* object, unsigned int sym_index,
|
|
unsigned int got_type,
|
|
Output_data_reloc_generic* rel_dyn,
|
|
unsigned int r_type);
|
|
|
|
// Add a constant to the GOT. This returns the offset of the new
|
|
// entry from the start of the GOT.
|
|
unsigned int
|
|
add_constant(Valtype constant)
|
|
{ return this->add_got_entry(Got_entry(constant)); }
|
|
|
|
// Add a pair of constants to the GOT. This returns the offset of
|
|
// the new entry from the start of the GOT.
|
|
unsigned int
|
|
add_constant_pair(Valtype c1, Valtype c2)
|
|
{ return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
|
|
|
|
// Replace GOT entry I with a new constant.
|
|
void
|
|
replace_constant(unsigned int i, Valtype constant)
|
|
{
|
|
this->replace_got_entry(i, Got_entry(constant));
|
|
}
|
|
|
|
// Reserve a slot in the GOT for a local symbol.
|
|
void
|
|
reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
|
|
unsigned int got_type);
|
|
|
|
// Reserve a slot in the GOT for a global symbol.
|
|
void
|
|
reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
|
|
|
|
protected:
|
|
// Write out the GOT table.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** GOT")); }
|
|
|
|
// Reserve the slot at index I in the GOT.
|
|
virtual void
|
|
do_reserve_slot(unsigned int i)
|
|
{ this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
|
|
|
|
// Return the number of words in the GOT.
|
|
unsigned int
|
|
num_entries () const
|
|
{ return this->entries_.size(); }
|
|
|
|
// Return the offset into the GOT of GOT entry I.
|
|
unsigned int
|
|
got_offset(unsigned int i) const
|
|
{ return i * (got_size / 8); }
|
|
|
|
private:
|
|
// This POD class holds a single GOT entry.
|
|
class Got_entry
|
|
{
|
|
public:
|
|
// Create a zero entry.
|
|
Got_entry()
|
|
: local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false),
|
|
addend_(0)
|
|
{ this->u_.constant = 0; }
|
|
|
|
// Create a global symbol entry.
|
|
Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
|
|
: local_sym_index_(GSYM_CODE),
|
|
use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
|
|
{ this->u_.gsym = gsym; }
|
|
|
|
// Create a local symbol entry.
|
|
Got_entry(Relobj* object, unsigned int local_sym_index,
|
|
bool use_plt_or_tls_offset)
|
|
: local_sym_index_(local_sym_index),
|
|
use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
|
|
{
|
|
gold_assert(local_sym_index != GSYM_CODE
|
|
&& local_sym_index != CONSTANT_CODE
|
|
&& local_sym_index != RESERVED_CODE
|
|
&& local_sym_index == this->local_sym_index_);
|
|
this->u_.object = object;
|
|
}
|
|
|
|
// Create a local symbol entry plus addend.
|
|
Got_entry(Relobj* object, unsigned int local_sym_index,
|
|
bool use_plt_or_tls_offset, uint64_t addend)
|
|
: local_sym_index_(local_sym_index),
|
|
use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
|
|
{
|
|
gold_assert(local_sym_index != GSYM_CODE
|
|
&& local_sym_index != CONSTANT_CODE
|
|
&& local_sym_index != RESERVED_CODE
|
|
&& local_sym_index == this->local_sym_index_);
|
|
this->u_.object = object;
|
|
}
|
|
|
|
// Create a constant entry. The constant is a host value--it will
|
|
// be swapped, if necessary, when it is written out.
|
|
explicit Got_entry(Valtype constant)
|
|
: local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
|
|
{ this->u_.constant = constant; }
|
|
|
|
// Write the GOT entry to an output view.
|
|
void
|
|
write(unsigned int got_indx, unsigned char* pov) const;
|
|
|
|
private:
|
|
enum
|
|
{
|
|
GSYM_CODE = 0x7fffffff,
|
|
CONSTANT_CODE = 0x7ffffffe,
|
|
RESERVED_CODE = 0x7ffffffd
|
|
};
|
|
|
|
union
|
|
{
|
|
// For a local symbol, the object.
|
|
Relobj* object;
|
|
// For a global symbol, the symbol.
|
|
Symbol* gsym;
|
|
// For a constant, the constant.
|
|
Valtype constant;
|
|
} u_;
|
|
// For a local symbol, the local symbol index. This is GSYM_CODE
|
|
// for a global symbol, or CONSTANT_CODE for a constant.
|
|
unsigned int local_sym_index_ : 31;
|
|
// Whether to use the PLT offset of the symbol if it has one.
|
|
// For TLS symbols, whether to offset the symbol value.
|
|
bool use_plt_or_tls_offset_ : 1;
|
|
// The addend.
|
|
uint64_t addend_;
|
|
};
|
|
|
|
typedef std::vector<Got_entry> Got_entries;
|
|
|
|
// Create a new GOT entry and return its offset.
|
|
unsigned int
|
|
add_got_entry(Got_entry got_entry);
|
|
|
|
// Create a pair of new GOT entries and return the offset of the first.
|
|
unsigned int
|
|
add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
|
|
|
|
// Replace GOT entry I with a new value.
|
|
void
|
|
replace_got_entry(unsigned int i, Got_entry got_entry);
|
|
|
|
// Return the offset into the GOT of the last entry added.
|
|
unsigned int
|
|
last_got_offset() const
|
|
{ return this->got_offset(this->num_entries() - 1); }
|
|
|
|
// Set the size of the section.
|
|
void
|
|
set_got_size()
|
|
{ this->set_current_data_size(this->got_offset(this->num_entries())); }
|
|
|
|
// The list of GOT entries.
|
|
Got_entries entries_;
|
|
|
|
// List of available regions within the section, for incremental
|
|
// update links.
|
|
Free_list free_list_;
|
|
};
|
|
|
|
// Output_data_dynamic is used to hold the data in SHT_DYNAMIC
|
|
// section.
|
|
|
|
class Output_data_dynamic : public Output_section_data
|
|
{
|
|
public:
|
|
Output_data_dynamic(Stringpool* pool)
|
|
: Output_section_data(Output_data::default_alignment()),
|
|
entries_(), pool_(pool)
|
|
{ }
|
|
|
|
// Add a new dynamic entry with a fixed numeric value.
|
|
void
|
|
add_constant(elfcpp::DT tag, unsigned int val)
|
|
{ this->add_entry(Dynamic_entry(tag, val)); }
|
|
|
|
// Add a new dynamic entry with the address of output data.
|
|
void
|
|
add_section_address(elfcpp::DT tag, const Output_data* od)
|
|
{ this->add_entry(Dynamic_entry(tag, od, false)); }
|
|
|
|
// Add a new dynamic entry with the address of output data
|
|
// plus a constant offset.
|
|
void
|
|
add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
|
|
unsigned int offset)
|
|
{ this->add_entry(Dynamic_entry(tag, od, offset)); }
|
|
|
|
// Add a new dynamic entry with the size of output data.
|
|
void
|
|
add_section_size(elfcpp::DT tag, const Output_data* od)
|
|
{ this->add_entry(Dynamic_entry(tag, od, true)); }
|
|
|
|
// Add a new dynamic entry with the total size of two output datas.
|
|
void
|
|
add_section_size(elfcpp::DT tag, const Output_data* od,
|
|
const Output_data* od2)
|
|
{ this->add_entry(Dynamic_entry(tag, od, od2)); }
|
|
|
|
// Add a new dynamic entry with the address of a symbol.
|
|
void
|
|
add_symbol(elfcpp::DT tag, const Symbol* sym)
|
|
{ this->add_entry(Dynamic_entry(tag, sym)); }
|
|
|
|
// Add a new dynamic entry with a string.
|
|
void
|
|
add_string(elfcpp::DT tag, const char* str)
|
|
{ this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
|
|
|
|
void
|
|
add_string(elfcpp::DT tag, const std::string& str)
|
|
{ this->add_string(tag, str.c_str()); }
|
|
|
|
// Add a new dynamic entry with custom value.
|
|
void
|
|
add_custom(elfcpp::DT tag)
|
|
{ this->add_entry(Dynamic_entry(tag)); }
|
|
|
|
// Get a dynamic entry offset.
|
|
unsigned int
|
|
get_entry_offset(elfcpp::DT tag) const;
|
|
|
|
protected:
|
|
// Adjust the output section to set the entry size.
|
|
void
|
|
do_adjust_output_section(Output_section*);
|
|
|
|
// Set the final data size.
|
|
void
|
|
set_final_data_size();
|
|
|
|
// Write out the dynamic entries.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** dynamic")); }
|
|
|
|
private:
|
|
// This POD class holds a single dynamic entry.
|
|
class Dynamic_entry
|
|
{
|
|
public:
|
|
// Create an entry with a fixed numeric value.
|
|
Dynamic_entry(elfcpp::DT tag, unsigned int val)
|
|
: tag_(tag), offset_(DYNAMIC_NUMBER)
|
|
{ this->u_.val = val; }
|
|
|
|
// Create an entry with the size or address of a section.
|
|
Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
|
|
: tag_(tag),
|
|
offset_(section_size
|
|
? DYNAMIC_SECTION_SIZE
|
|
: DYNAMIC_SECTION_ADDRESS)
|
|
{
|
|
this->u_.od = od;
|
|
this->od2 = NULL;
|
|
}
|
|
|
|
// Create an entry with the size of two sections.
|
|
Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
|
|
: tag_(tag),
|
|
offset_(DYNAMIC_SECTION_SIZE)
|
|
{
|
|
this->u_.od = od;
|
|
this->od2 = od2;
|
|
}
|
|
|
|
// Create an entry with the address of a section plus a constant offset.
|
|
Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
|
|
: tag_(tag),
|
|
offset_(offset)
|
|
{ this->u_.od = od; }
|
|
|
|
// Create an entry with the address of a symbol.
|
|
Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
|
|
: tag_(tag), offset_(DYNAMIC_SYMBOL)
|
|
{ this->u_.sym = sym; }
|
|
|
|
// Create an entry with a string.
|
|
Dynamic_entry(elfcpp::DT tag, const char* str)
|
|
: tag_(tag), offset_(DYNAMIC_STRING)
|
|
{ this->u_.str = str; }
|
|
|
|
// Create an entry with a custom value.
|
|
Dynamic_entry(elfcpp::DT tag)
|
|
: tag_(tag), offset_(DYNAMIC_CUSTOM)
|
|
{ }
|
|
|
|
// Return the tag of this entry.
|
|
elfcpp::DT
|
|
tag() const
|
|
{ return this->tag_; }
|
|
|
|
// Write the dynamic entry to an output view.
|
|
template<int size, bool big_endian>
|
|
void
|
|
write(unsigned char* pov, const Stringpool*) const;
|
|
|
|
private:
|
|
// Classification is encoded in the OFFSET field.
|
|
enum Classification
|
|
{
|
|
// Section address.
|
|
DYNAMIC_SECTION_ADDRESS = 0,
|
|
// Number.
|
|
DYNAMIC_NUMBER = -1U,
|
|
// Section size.
|
|
DYNAMIC_SECTION_SIZE = -2U,
|
|
// Symbol address.
|
|
DYNAMIC_SYMBOL = -3U,
|
|
// String.
|
|
DYNAMIC_STRING = -4U,
|
|
// Custom value.
|
|
DYNAMIC_CUSTOM = -5U
|
|
// Any other value indicates a section address plus OFFSET.
|
|
};
|
|
|
|
union
|
|
{
|
|
// For DYNAMIC_NUMBER.
|
|
unsigned int val;
|
|
// For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
|
|
const Output_data* od;
|
|
// For DYNAMIC_SYMBOL.
|
|
const Symbol* sym;
|
|
// For DYNAMIC_STRING.
|
|
const char* str;
|
|
} u_;
|
|
// For DYNAMIC_SYMBOL with two sections.
|
|
const Output_data* od2;
|
|
// The dynamic tag.
|
|
elfcpp::DT tag_;
|
|
// The type of entry (Classification) or offset within a section.
|
|
unsigned int offset_;
|
|
};
|
|
|
|
// Add an entry to the list.
|
|
void
|
|
add_entry(const Dynamic_entry& entry)
|
|
{ this->entries_.push_back(entry); }
|
|
|
|
// Sized version of write function.
|
|
template<int size, bool big_endian>
|
|
void
|
|
sized_write(Output_file* of);
|
|
|
|
// The type of the list of entries.
|
|
typedef std::vector<Dynamic_entry> Dynamic_entries;
|
|
|
|
// The entries.
|
|
Dynamic_entries entries_;
|
|
// The pool used for strings.
|
|
Stringpool* pool_;
|
|
};
|
|
|
|
// Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
|
|
// which may be required if the object file has more than
|
|
// SHN_LORESERVE sections.
|
|
|
|
class Output_symtab_xindex : public Output_section_data
|
|
{
|
|
public:
|
|
Output_symtab_xindex(size_t symcount)
|
|
: Output_section_data(symcount * 4, 4, true),
|
|
entries_()
|
|
{ }
|
|
|
|
// Add an entry: symbol number SYMNDX has section SHNDX.
|
|
void
|
|
add(unsigned int symndx, unsigned int shndx)
|
|
{ this->entries_.push_back(std::make_pair(symndx, shndx)); }
|
|
|
|
protected:
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** symtab xindex")); }
|
|
|
|
private:
|
|
template<bool big_endian>
|
|
void
|
|
endian_do_write(unsigned char*);
|
|
|
|
// It is likely that most symbols will not require entries. Rather
|
|
// than keep a vector for all symbols, we keep pairs of symbol index
|
|
// and section index.
|
|
typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
|
|
|
|
// The entries we need.
|
|
Xindex_entries entries_;
|
|
};
|
|
|
|
// A relaxed input section.
|
|
class Output_relaxed_input_section : public Output_section_data_build
|
|
{
|
|
public:
|
|
// We would like to call relobj->section_addralign(shndx) to get the
|
|
// alignment but we do not want the constructor to fail. So callers
|
|
// are repsonsible for ensuring that.
|
|
Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
|
|
uint64_t addralign)
|
|
: Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
|
|
{ }
|
|
|
|
// Return the Relobj of this relaxed input section.
|
|
Relobj*
|
|
relobj() const
|
|
{ return this->relobj_; }
|
|
|
|
// Return the section index of this relaxed input section.
|
|
unsigned int
|
|
shndx() const
|
|
{ return this->shndx_; }
|
|
|
|
protected:
|
|
void
|
|
set_relobj(Relobj* relobj)
|
|
{ this->relobj_ = relobj; }
|
|
|
|
void
|
|
set_shndx(unsigned int shndx)
|
|
{ this->shndx_ = shndx; }
|
|
|
|
private:
|
|
Relobj* relobj_;
|
|
unsigned int shndx_;
|
|
};
|
|
|
|
// This class describes properties of merge data sections. It is used
|
|
// as a key type for maps.
|
|
class Merge_section_properties
|
|
{
|
|
public:
|
|
Merge_section_properties(bool is_string, uint64_t entsize,
|
|
uint64_t addralign)
|
|
: is_string_(is_string), entsize_(entsize), addralign_(addralign)
|
|
{ }
|
|
|
|
// Whether this equals to another Merge_section_properties MSP.
|
|
bool
|
|
eq(const Merge_section_properties& msp) const
|
|
{
|
|
return ((this->is_string_ == msp.is_string_)
|
|
&& (this->entsize_ == msp.entsize_)
|
|
&& (this->addralign_ == msp.addralign_));
|
|
}
|
|
|
|
// Compute a hash value for this using 64-bit FNV-1a hash.
|
|
size_t
|
|
hash_value() const
|
|
{
|
|
uint64_t h = 14695981039346656037ULL; // FNV offset basis.
|
|
uint64_t prime = 1099511628211ULL;
|
|
h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
|
|
h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
|
|
h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
|
|
return h;
|
|
}
|
|
|
|
// Functors for associative containers.
|
|
struct equal_to
|
|
{
|
|
bool
|
|
operator()(const Merge_section_properties& msp1,
|
|
const Merge_section_properties& msp2) const
|
|
{ return msp1.eq(msp2); }
|
|
};
|
|
|
|
struct hash
|
|
{
|
|
size_t
|
|
operator()(const Merge_section_properties& msp) const
|
|
{ return msp.hash_value(); }
|
|
};
|
|
|
|
private:
|
|
// Whether this merge data section is for strings.
|
|
bool is_string_;
|
|
// Entsize of this merge data section.
|
|
uint64_t entsize_;
|
|
// Address alignment.
|
|
uint64_t addralign_;
|
|
};
|
|
|
|
// This class is used to speed up look up of special input sections in an
|
|
// Output_section.
|
|
|
|
class Output_section_lookup_maps
|
|
{
|
|
public:
|
|
Output_section_lookup_maps()
|
|
: is_valid_(true), merge_sections_by_properties_(),
|
|
relaxed_input_sections_by_id_()
|
|
{ }
|
|
|
|
// Whether the maps are valid.
|
|
bool
|
|
is_valid() const
|
|
{ return this->is_valid_; }
|
|
|
|
// Invalidate the maps.
|
|
void
|
|
invalidate()
|
|
{ this->is_valid_ = false; }
|
|
|
|
// Clear the maps.
|
|
void
|
|
clear()
|
|
{
|
|
this->merge_sections_by_properties_.clear();
|
|
this->relaxed_input_sections_by_id_.clear();
|
|
// A cleared map is valid.
|
|
this->is_valid_ = true;
|
|
}
|
|
|
|
// Find a merge section by merge section properties. Return NULL if none
|
|
// is found.
|
|
Output_merge_base*
|
|
find_merge_section(const Merge_section_properties& msp) const
|
|
{
|
|
gold_assert(this->is_valid_);
|
|
Merge_sections_by_properties::const_iterator p =
|
|
this->merge_sections_by_properties_.find(msp);
|
|
return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
|
|
}
|
|
|
|
// Add a merge section pointed by POMB with properties MSP.
|
|
void
|
|
add_merge_section(const Merge_section_properties& msp,
|
|
Output_merge_base* pomb)
|
|
{
|
|
std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
|
|
std::pair<Merge_sections_by_properties::iterator, bool> result =
|
|
this->merge_sections_by_properties_.insert(value);
|
|
gold_assert(result.second);
|
|
}
|
|
|
|
// Find a relaxed input section of OBJECT with index SHNDX.
|
|
Output_relaxed_input_section*
|
|
find_relaxed_input_section(const Relobj* object, unsigned int shndx) const
|
|
{
|
|
gold_assert(this->is_valid_);
|
|
Relaxed_input_sections_by_id::const_iterator p =
|
|
this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
|
|
return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
|
|
}
|
|
|
|
// Add a relaxed input section pointed by POMB and whose original input
|
|
// section is in OBJECT with index SHNDX.
|
|
void
|
|
add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
|
|
Output_relaxed_input_section* poris)
|
|
{
|
|
Const_section_id csid(relobj, shndx);
|
|
std::pair<Const_section_id, Output_relaxed_input_section*>
|
|
value(csid, poris);
|
|
std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
|
|
this->relaxed_input_sections_by_id_.insert(value);
|
|
gold_assert(result.second);
|
|
}
|
|
|
|
private:
|
|
typedef Unordered_map<Merge_section_properties, Output_merge_base*,
|
|
Merge_section_properties::hash,
|
|
Merge_section_properties::equal_to>
|
|
Merge_sections_by_properties;
|
|
|
|
typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
|
|
Const_section_id_hash>
|
|
Relaxed_input_sections_by_id;
|
|
|
|
// Whether this is valid
|
|
bool is_valid_;
|
|
// Merge sections by merge section properties.
|
|
Merge_sections_by_properties merge_sections_by_properties_;
|
|
// Relaxed sections by section IDs.
|
|
Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
|
|
};
|
|
|
|
// This abstract base class defines the interface for the
|
|
// types of methods used to fill free space left in an output
|
|
// section during an incremental link. These methods are used
|
|
// to insert dummy compilation units into debug info so that
|
|
// debug info consumers can scan the debug info serially.
|
|
|
|
class Output_fill
|
|
{
|
|
public:
|
|
Output_fill()
|
|
: is_big_endian_(parameters->target().is_big_endian())
|
|
{ }
|
|
|
|
virtual
|
|
~Output_fill()
|
|
{ }
|
|
|
|
// Return the smallest size chunk of free space that can be
|
|
// filled with a dummy compilation unit.
|
|
size_t
|
|
minimum_hole_size() const
|
|
{ return this->do_minimum_hole_size(); }
|
|
|
|
// Write a fill pattern of length LEN at offset OFF in the file.
|
|
void
|
|
write(Output_file* of, off_t off, size_t len) const
|
|
{ this->do_write(of, off, len); }
|
|
|
|
protected:
|
|
virtual size_t
|
|
do_minimum_hole_size() const = 0;
|
|
|
|
virtual void
|
|
do_write(Output_file* of, off_t off, size_t len) const = 0;
|
|
|
|
bool
|
|
is_big_endian() const
|
|
{ return this->is_big_endian_; }
|
|
|
|
private:
|
|
bool is_big_endian_;
|
|
};
|
|
|
|
// Fill method that introduces a dummy compilation unit in
|
|
// a .debug_info or .debug_types section.
|
|
|
|
class Output_fill_debug_info : public Output_fill
|
|
{
|
|
public:
|
|
Output_fill_debug_info(bool is_debug_types)
|
|
: is_debug_types_(is_debug_types)
|
|
{ }
|
|
|
|
protected:
|
|
virtual size_t
|
|
do_minimum_hole_size() const;
|
|
|
|
virtual void
|
|
do_write(Output_file* of, off_t off, size_t len) const;
|
|
|
|
private:
|
|
// Version of the header.
|
|
static const int version = 4;
|
|
// True if this is a .debug_types section.
|
|
bool is_debug_types_;
|
|
};
|
|
|
|
// Fill method that introduces a dummy compilation unit in
|
|
// a .debug_line section.
|
|
|
|
class Output_fill_debug_line : public Output_fill
|
|
{
|
|
public:
|
|
Output_fill_debug_line()
|
|
{ }
|
|
|
|
protected:
|
|
virtual size_t
|
|
do_minimum_hole_size() const;
|
|
|
|
virtual void
|
|
do_write(Output_file* of, off_t off, size_t len) const;
|
|
|
|
private:
|
|
// Version of the header. We write a DWARF-3 header because it's smaller
|
|
// and many tools have not yet been updated to understand the DWARF-4 header.
|
|
static const int version = 3;
|
|
// Length of the portion of the header that follows the header_length
|
|
// field. This includes the following fields:
|
|
// minimum_instruction_length, default_is_stmt, line_base, line_range,
|
|
// opcode_base, standard_opcode_lengths[], include_directories, filenames.
|
|
// The standard_opcode_lengths array is 12 bytes long, and the
|
|
// include_directories and filenames fields each contain only a single
|
|
// null byte.
|
|
static const size_t header_length = 19;
|
|
};
|
|
|
|
// An output section. We don't expect to have too many output
|
|
// sections, so we don't bother to do a template on the size.
|
|
|
|
class Output_section : public Output_data
|
|
{
|
|
public:
|
|
// Create an output section, giving the name, type, and flags.
|
|
Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
|
|
virtual ~Output_section();
|
|
|
|
// Add a new input section SHNDX, named NAME, with header SHDR, from
|
|
// object OBJECT. RELOC_SHNDX is the index of a relocation section
|
|
// which applies to this section, or 0 if none, or -1 if more than
|
|
// one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
|
|
// in a linker script; in that case we need to keep track of input
|
|
// sections associated with an output section. Return the offset
|
|
// within the output section.
|
|
template<int size, bool big_endian>
|
|
off_t
|
|
add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
|
|
unsigned int shndx, const char* name,
|
|
const elfcpp::Shdr<size, big_endian>& shdr,
|
|
unsigned int reloc_shndx, bool have_sections_script);
|
|
|
|
// Add generated data POSD to this output section.
|
|
void
|
|
add_output_section_data(Output_section_data* posd);
|
|
|
|
// Add a relaxed input section PORIS called NAME to this output section
|
|
// with LAYOUT.
|
|
void
|
|
add_relaxed_input_section(Layout* layout,
|
|
Output_relaxed_input_section* poris,
|
|
const std::string& name);
|
|
|
|
// Return the section name.
|
|
const char*
|
|
name() const
|
|
{ return this->name_; }
|
|
|
|
// Return the section type.
|
|
elfcpp::Elf_Word
|
|
type() const
|
|
{ return this->type_; }
|
|
|
|
// Return the section flags.
|
|
elfcpp::Elf_Xword
|
|
flags() const
|
|
{ return this->flags_; }
|
|
|
|
typedef std::map<Section_id, unsigned int> Section_layout_order;
|
|
|
|
void
|
|
update_section_layout(const Section_layout_order* order_map);
|
|
|
|
// Update the output section flags based on input section flags.
|
|
void
|
|
update_flags_for_input_section(elfcpp::Elf_Xword flags);
|
|
|
|
// Set the output section flags.
|
|
void
|
|
set_flags(elfcpp::Elf_Xword flags)
|
|
{ this->flags_ = flags; }
|
|
|
|
// Return the entsize field.
|
|
uint64_t
|
|
entsize() const
|
|
{ return this->entsize_; }
|
|
|
|
// Set the entsize field.
|
|
void
|
|
set_entsize(uint64_t v);
|
|
|
|
// Set the load address.
|
|
void
|
|
set_load_address(uint64_t load_address)
|
|
{
|
|
this->load_address_ = load_address;
|
|
this->has_load_address_ = true;
|
|
}
|
|
|
|
// Set the link field to the output section index of a section.
|
|
void
|
|
set_link_section(const Output_data* od)
|
|
{
|
|
gold_assert(this->link_ == 0
|
|
&& !this->should_link_to_symtab_
|
|
&& !this->should_link_to_dynsym_);
|
|
this->link_section_ = od;
|
|
}
|
|
|
|
// Set the link field to a constant.
|
|
void
|
|
set_link(unsigned int v)
|
|
{
|
|
gold_assert(this->link_section_ == NULL
|
|
&& !this->should_link_to_symtab_
|
|
&& !this->should_link_to_dynsym_);
|
|
this->link_ = v;
|
|
}
|
|
|
|
// Record that this section should link to the normal symbol table.
|
|
void
|
|
set_should_link_to_symtab()
|
|
{
|
|
gold_assert(this->link_section_ == NULL
|
|
&& this->link_ == 0
|
|
&& !this->should_link_to_dynsym_);
|
|
this->should_link_to_symtab_ = true;
|
|
}
|
|
|
|
// Record that this section should link to the dynamic symbol table.
|
|
void
|
|
set_should_link_to_dynsym()
|
|
{
|
|
gold_assert(this->link_section_ == NULL
|
|
&& this->link_ == 0
|
|
&& !this->should_link_to_symtab_);
|
|
this->should_link_to_dynsym_ = true;
|
|
}
|
|
|
|
// Return the info field.
|
|
unsigned int
|
|
info() const
|
|
{
|
|
gold_assert(this->info_section_ == NULL
|
|
&& this->info_symndx_ == NULL);
|
|
return this->info_;
|
|
}
|
|
|
|
// Set the info field to the output section index of a section.
|
|
void
|
|
set_info_section(const Output_section* os)
|
|
{
|
|
gold_assert((this->info_section_ == NULL
|
|
|| (this->info_section_ == os
|
|
&& this->info_uses_section_index_))
|
|
&& this->info_symndx_ == NULL
|
|
&& this->info_ == 0);
|
|
this->info_section_ = os;
|
|
this->info_uses_section_index_= true;
|
|
}
|
|
|
|
// Set the info field to the symbol table index of a symbol.
|
|
void
|
|
set_info_symndx(const Symbol* sym)
|
|
{
|
|
gold_assert(this->info_section_ == NULL
|
|
&& (this->info_symndx_ == NULL
|
|
|| this->info_symndx_ == sym)
|
|
&& this->info_ == 0);
|
|
this->info_symndx_ = sym;
|
|
}
|
|
|
|
// Set the info field to the symbol table index of a section symbol.
|
|
void
|
|
set_info_section_symndx(const Output_section* os)
|
|
{
|
|
gold_assert((this->info_section_ == NULL
|
|
|| (this->info_section_ == os
|
|
&& !this->info_uses_section_index_))
|
|
&& this->info_symndx_ == NULL
|
|
&& this->info_ == 0);
|
|
this->info_section_ = os;
|
|
this->info_uses_section_index_ = false;
|
|
}
|
|
|
|
// Set the info field to a constant.
|
|
void
|
|
set_info(unsigned int v)
|
|
{
|
|
gold_assert(this->info_section_ == NULL
|
|
&& this->info_symndx_ == NULL
|
|
&& (this->info_ == 0
|
|
|| this->info_ == v));
|
|
this->info_ = v;
|
|
}
|
|
|
|
// Set the addralign field.
|
|
void
|
|
set_addralign(uint64_t v)
|
|
{ this->addralign_ = v; }
|
|
|
|
void
|
|
checkpoint_set_addralign(uint64_t val)
|
|
{
|
|
if (this->checkpoint_ != NULL)
|
|
this->checkpoint_->set_addralign(val);
|
|
}
|
|
|
|
// Whether the output section index has been set.
|
|
bool
|
|
has_out_shndx() const
|
|
{ return this->out_shndx_ != -1U; }
|
|
|
|
// Indicate that we need a symtab index.
|
|
void
|
|
set_needs_symtab_index()
|
|
{ this->needs_symtab_index_ = true; }
|
|
|
|
// Return whether we need a symtab index.
|
|
bool
|
|
needs_symtab_index() const
|
|
{ return this->needs_symtab_index_; }
|
|
|
|
// Get the symtab index.
|
|
unsigned int
|
|
symtab_index() const
|
|
{
|
|
gold_assert(this->symtab_index_ != 0);
|
|
return this->symtab_index_;
|
|
}
|
|
|
|
// Set the symtab index.
|
|
void
|
|
set_symtab_index(unsigned int index)
|
|
{
|
|
gold_assert(index != 0);
|
|
this->symtab_index_ = index;
|
|
}
|
|
|
|
// Indicate that we need a dynsym index.
|
|
void
|
|
set_needs_dynsym_index()
|
|
{ this->needs_dynsym_index_ = true; }
|
|
|
|
// Return whether we need a dynsym index.
|
|
bool
|
|
needs_dynsym_index() const
|
|
{ return this->needs_dynsym_index_; }
|
|
|
|
// Get the dynsym index.
|
|
unsigned int
|
|
dynsym_index() const
|
|
{
|
|
gold_assert(this->dynsym_index_ != 0);
|
|
return this->dynsym_index_;
|
|
}
|
|
|
|
// Set the dynsym index.
|
|
void
|
|
set_dynsym_index(unsigned int index)
|
|
{
|
|
gold_assert(index != 0);
|
|
this->dynsym_index_ = index;
|
|
}
|
|
|
|
// Sort the attached input sections.
|
|
void
|
|
sort_attached_input_sections();
|
|
|
|
// Return whether the input sections sections attachd to this output
|
|
// section may require sorting. This is used to handle constructor
|
|
// priorities compatibly with GNU ld.
|
|
bool
|
|
may_sort_attached_input_sections() const
|
|
{ return this->may_sort_attached_input_sections_; }
|
|
|
|
// Record that the input sections attached to this output section
|
|
// may require sorting.
|
|
void
|
|
set_may_sort_attached_input_sections()
|
|
{ this->may_sort_attached_input_sections_ = true; }
|
|
|
|
// Returns true if input sections must be sorted according to the
|
|
// order in which their name appear in the --section-ordering-file.
|
|
bool
|
|
input_section_order_specified()
|
|
{ return this->input_section_order_specified_; }
|
|
|
|
// Record that input sections must be sorted as some of their names
|
|
// match the patterns specified through --section-ordering-file.
|
|
void
|
|
set_input_section_order_specified()
|
|
{ this->input_section_order_specified_ = true; }
|
|
|
|
// Return whether the input sections attached to this output section
|
|
// require sorting. This is used to handle constructor priorities
|
|
// compatibly with GNU ld.
|
|
bool
|
|
must_sort_attached_input_sections() const
|
|
{ return this->must_sort_attached_input_sections_; }
|
|
|
|
// Record that the input sections attached to this output section
|
|
// require sorting.
|
|
void
|
|
set_must_sort_attached_input_sections()
|
|
{ this->must_sort_attached_input_sections_ = true; }
|
|
|
|
// Get the order in which this section appears in the PT_LOAD output
|
|
// segment.
|
|
Output_section_order
|
|
order() const
|
|
{ return this->order_; }
|
|
|
|
// Set the order for this section.
|
|
void
|
|
set_order(Output_section_order order)
|
|
{ this->order_ = order; }
|
|
|
|
// Return whether this section holds relro data--data which has
|
|
// dynamic relocations but which may be marked read-only after the
|
|
// dynamic relocations have been completed.
|
|
bool
|
|
is_relro() const
|
|
{ return this->is_relro_; }
|
|
|
|
// Record that this section holds relro data.
|
|
void
|
|
set_is_relro()
|
|
{ this->is_relro_ = true; }
|
|
|
|
// Record that this section does not hold relro data.
|
|
void
|
|
clear_is_relro()
|
|
{ this->is_relro_ = false; }
|
|
|
|
// True if this is a small section: a section which holds small
|
|
// variables.
|
|
bool
|
|
is_small_section() const
|
|
{ return this->is_small_section_; }
|
|
|
|
// Record that this is a small section.
|
|
void
|
|
set_is_small_section()
|
|
{ this->is_small_section_ = true; }
|
|
|
|
// True if this is a large section: a section which holds large
|
|
// variables.
|
|
bool
|
|
is_large_section() const
|
|
{ return this->is_large_section_; }
|
|
|
|
// Record that this is a large section.
|
|
void
|
|
set_is_large_section()
|
|
{ this->is_large_section_ = true; }
|
|
|
|
// True if this is a large data (not BSS) section.
|
|
bool
|
|
is_large_data_section()
|
|
{ return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
|
|
|
|
// Return whether this section should be written after all the input
|
|
// sections are complete.
|
|
bool
|
|
after_input_sections() const
|
|
{ return this->after_input_sections_; }
|
|
|
|
// Record that this section should be written after all the input
|
|
// sections are complete.
|
|
void
|
|
set_after_input_sections()
|
|
{ this->after_input_sections_ = true; }
|
|
|
|
// Return whether this section requires postprocessing after all
|
|
// relocations have been applied.
|
|
bool
|
|
requires_postprocessing() const
|
|
{ return this->requires_postprocessing_; }
|
|
|
|
bool
|
|
is_unique_segment() const
|
|
{ return this->is_unique_segment_; }
|
|
|
|
void
|
|
set_is_unique_segment()
|
|
{ this->is_unique_segment_ = true; }
|
|
|
|
uint64_t extra_segment_flags() const
|
|
{ return this->extra_segment_flags_; }
|
|
|
|
void
|
|
set_extra_segment_flags(uint64_t flags)
|
|
{ this->extra_segment_flags_ = flags; }
|
|
|
|
uint64_t segment_alignment() const
|
|
{ return this->segment_alignment_; }
|
|
|
|
void
|
|
set_segment_alignment(uint64_t align)
|
|
{ this->segment_alignment_ = align; }
|
|
|
|
// If a section requires postprocessing, return the buffer to use.
|
|
unsigned char*
|
|
postprocessing_buffer() const
|
|
{
|
|
gold_assert(this->postprocessing_buffer_ != NULL);
|
|
return this->postprocessing_buffer_;
|
|
}
|
|
|
|
// If a section requires postprocessing, create the buffer to use.
|
|
void
|
|
create_postprocessing_buffer();
|
|
|
|
// If a section requires postprocessing, this is the size of the
|
|
// buffer to which relocations should be applied.
|
|
off_t
|
|
postprocessing_buffer_size() const
|
|
{ return this->current_data_size_for_child(); }
|
|
|
|
// Modify the section name. This is only permitted for an
|
|
// unallocated section, and only before the size has been finalized.
|
|
// Otherwise the name will not get into Layout::namepool_.
|
|
void
|
|
set_name(const char* newname)
|
|
{
|
|
gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
|
|
gold_assert(!this->is_data_size_valid());
|
|
this->name_ = newname;
|
|
}
|
|
|
|
// Return whether the offset OFFSET in the input section SHNDX in
|
|
// object OBJECT is being included in the link.
|
|
bool
|
|
is_input_address_mapped(const Relobj* object, unsigned int shndx,
|
|
off_t offset) const;
|
|
|
|
// Return the offset within the output section of OFFSET relative to
|
|
// the start of input section SHNDX in object OBJECT.
|
|
section_offset_type
|
|
output_offset(const Relobj* object, unsigned int shndx,
|
|
section_offset_type offset) const;
|
|
|
|
// Return the output virtual address of OFFSET relative to the start
|
|
// of input section SHNDX in object OBJECT.
|
|
uint64_t
|
|
output_address(const Relobj* object, unsigned int shndx,
|
|
off_t offset) const;
|
|
|
|
// Look for the merged section for input section SHNDX in object
|
|
// OBJECT. If found, return true, and set *ADDR to the address of
|
|
// the start of the merged section. This is not necessary the
|
|
// output offset corresponding to input offset 0 in the section,
|
|
// since the section may be mapped arbitrarily.
|
|
bool
|
|
find_starting_output_address(const Relobj* object, unsigned int shndx,
|
|
uint64_t* addr) const;
|
|
|
|
// Record that this output section was found in the SECTIONS clause
|
|
// of a linker script.
|
|
void
|
|
set_found_in_sections_clause()
|
|
{ this->found_in_sections_clause_ = true; }
|
|
|
|
// Return whether this output section was found in the SECTIONS
|
|
// clause of a linker script.
|
|
bool
|
|
found_in_sections_clause() const
|
|
{ return this->found_in_sections_clause_; }
|
|
|
|
// Write the section header into *OPHDR.
|
|
template<int size, bool big_endian>
|
|
void
|
|
write_header(const Layout*, const Stringpool*,
|
|
elfcpp::Shdr_write<size, big_endian>*) const;
|
|
|
|
// The next few calls are for linker script support.
|
|
|
|
// In some cases we need to keep a list of the input sections
|
|
// associated with this output section. We only need the list if we
|
|
// might have to change the offsets of the input section within the
|
|
// output section after we add the input section. The ordinary
|
|
// input sections will be written out when we process the object
|
|
// file, and as such we don't need to track them here. We do need
|
|
// to track Output_section_data objects here. We store instances of
|
|
// this structure in a std::vector, so it must be a POD. There can
|
|
// be many instances of this structure, so we use a union to save
|
|
// some space.
|
|
class Input_section
|
|
{
|
|
public:
|
|
Input_section()
|
|
: shndx_(0), p2align_(0)
|
|
{
|
|
this->u1_.data_size = 0;
|
|
this->u2_.object = NULL;
|
|
}
|
|
|
|
// For an ordinary input section.
|
|
Input_section(Relobj* object, unsigned int shndx, off_t data_size,
|
|
uint64_t addralign)
|
|
: shndx_(shndx),
|
|
p2align_(ffsll(static_cast<long long>(addralign))),
|
|
section_order_index_(0)
|
|
{
|
|
gold_assert(shndx != OUTPUT_SECTION_CODE
|
|
&& shndx != MERGE_DATA_SECTION_CODE
|
|
&& shndx != MERGE_STRING_SECTION_CODE
|
|
&& shndx != RELAXED_INPUT_SECTION_CODE);
|
|
this->u1_.data_size = data_size;
|
|
this->u2_.object = object;
|
|
}
|
|
|
|
// For a non-merge output section.
|
|
Input_section(Output_section_data* posd)
|
|
: shndx_(OUTPUT_SECTION_CODE), p2align_(0),
|
|
section_order_index_(0)
|
|
{
|
|
this->u1_.data_size = 0;
|
|
this->u2_.posd = posd;
|
|
}
|
|
|
|
// For a merge section.
|
|
Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
|
|
: shndx_(is_string
|
|
? MERGE_STRING_SECTION_CODE
|
|
: MERGE_DATA_SECTION_CODE),
|
|
p2align_(0),
|
|
section_order_index_(0)
|
|
{
|
|
this->u1_.entsize = entsize;
|
|
this->u2_.posd = posd;
|
|
}
|
|
|
|
// For a relaxed input section.
|
|
Input_section(Output_relaxed_input_section* psection)
|
|
: shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
|
|
section_order_index_(0)
|
|
{
|
|
this->u1_.data_size = 0;
|
|
this->u2_.poris = psection;
|
|
}
|
|
|
|
unsigned int
|
|
section_order_index() const
|
|
{
|
|
return this->section_order_index_;
|
|
}
|
|
|
|
void
|
|
set_section_order_index(unsigned int number)
|
|
{
|
|
this->section_order_index_ = number;
|
|
}
|
|
|
|
// The required alignment.
|
|
uint64_t
|
|
addralign() const
|
|
{
|
|
if (this->p2align_ != 0)
|
|
return static_cast<uint64_t>(1) << (this->p2align_ - 1);
|
|
else if (!this->is_input_section())
|
|
return this->u2_.posd->addralign();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
// Set the required alignment, which must be either 0 or a power of 2.
|
|
// For input sections that are sub-classes of Output_section_data, a
|
|
// alignment of zero means asking the underlying object for alignment.
|
|
void
|
|
set_addralign(uint64_t addralign)
|
|
{
|
|
if (addralign == 0)
|
|
this->p2align_ = 0;
|
|
else
|
|
{
|
|
gold_assert((addralign & (addralign - 1)) == 0);
|
|
this->p2align_ = ffsll(static_cast<long long>(addralign));
|
|
}
|
|
}
|
|
|
|
// Return the current required size, without finalization.
|
|
off_t
|
|
current_data_size() const;
|
|
|
|
// Return the required size.
|
|
off_t
|
|
data_size() const;
|
|
|
|
// Whether this is an input section.
|
|
bool
|
|
is_input_section() const
|
|
{
|
|
return (this->shndx_ != OUTPUT_SECTION_CODE
|
|
&& this->shndx_ != MERGE_DATA_SECTION_CODE
|
|
&& this->shndx_ != MERGE_STRING_SECTION_CODE
|
|
&& this->shndx_ != RELAXED_INPUT_SECTION_CODE);
|
|
}
|
|
|
|
// Return whether this is a merge section which matches the
|
|
// parameters.
|
|
bool
|
|
is_merge_section(bool is_string, uint64_t entsize,
|
|
uint64_t addralign) const
|
|
{
|
|
return (this->shndx_ == (is_string
|
|
? MERGE_STRING_SECTION_CODE
|
|
: MERGE_DATA_SECTION_CODE)
|
|
&& this->u1_.entsize == entsize
|
|
&& this->addralign() == addralign);
|
|
}
|
|
|
|
// Return whether this is a merge section for some input section.
|
|
bool
|
|
is_merge_section() const
|
|
{
|
|
return (this->shndx_ == MERGE_DATA_SECTION_CODE
|
|
|| this->shndx_ == MERGE_STRING_SECTION_CODE);
|
|
}
|
|
|
|
// Return whether this is a relaxed input section.
|
|
bool
|
|
is_relaxed_input_section() const
|
|
{ return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
|
|
|
|
// Return whether this is a generic Output_section_data.
|
|
bool
|
|
is_output_section_data() const
|
|
{
|
|
return this->shndx_ == OUTPUT_SECTION_CODE;
|
|
}
|
|
|
|
// Return the object for an input section.
|
|
Relobj*
|
|
relobj() const;
|
|
|
|
// Return the input section index for an input section.
|
|
unsigned int
|
|
shndx() const;
|
|
|
|
// For non-input-sections, return the associated Output_section_data
|
|
// object.
|
|
Output_section_data*
|
|
output_section_data() const
|
|
{
|
|
gold_assert(!this->is_input_section());
|
|
return this->u2_.posd;
|
|
}
|
|
|
|
// For a merge section, return the Output_merge_base pointer.
|
|
Output_merge_base*
|
|
output_merge_base() const
|
|
{
|
|
gold_assert(this->is_merge_section());
|
|
return this->u2_.pomb;
|
|
}
|
|
|
|
// Return the Output_relaxed_input_section object.
|
|
Output_relaxed_input_section*
|
|
relaxed_input_section() const
|
|
{
|
|
gold_assert(this->is_relaxed_input_section());
|
|
return this->u2_.poris;
|
|
}
|
|
|
|
// Set the output section.
|
|
void
|
|
set_output_section(Output_section* os)
|
|
{
|
|
gold_assert(!this->is_input_section());
|
|
Output_section_data* posd =
|
|
this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
|
|
posd->set_output_section(os);
|
|
}
|
|
|
|
// Set the address and file offset. This is called during
|
|
// Layout::finalize. SECTION_FILE_OFFSET is the file offset of
|
|
// the enclosing section.
|
|
void
|
|
set_address_and_file_offset(uint64_t address, off_t file_offset,
|
|
off_t section_file_offset);
|
|
|
|
// Reset the address and file offset.
|
|
void
|
|
reset_address_and_file_offset();
|
|
|
|
// Finalize the data size.
|
|
void
|
|
finalize_data_size();
|
|
|
|
// Add an input section, for SHF_MERGE sections.
|
|
bool
|
|
add_input_section(Relobj* object, unsigned int shndx)
|
|
{
|
|
gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
|
|
|| this->shndx_ == MERGE_STRING_SECTION_CODE);
|
|
return this->u2_.posd->add_input_section(object, shndx);
|
|
}
|
|
|
|
// Given an input OBJECT, an input section index SHNDX within that
|
|
// object, and an OFFSET relative to the start of that input
|
|
// section, return whether or not the output offset is known. If
|
|
// this function returns true, it sets *POUTPUT to the offset in
|
|
// the output section, relative to the start of the input section
|
|
// in the output section. *POUTPUT may be different from OFFSET
|
|
// for a merged section.
|
|
bool
|
|
output_offset(const Relobj* object, unsigned int shndx,
|
|
section_offset_type offset,
|
|
section_offset_type* poutput) const;
|
|
|
|
// Write out the data. This does nothing for an input section.
|
|
void
|
|
write(Output_file*);
|
|
|
|
// Write the data to a buffer. This does nothing for an input
|
|
// section.
|
|
void
|
|
write_to_buffer(unsigned char*);
|
|
|
|
// Print to a map file.
|
|
void
|
|
print_to_mapfile(Mapfile*) const;
|
|
|
|
// Print statistics about merge sections to stderr.
|
|
void
|
|
print_merge_stats(const char* section_name)
|
|
{
|
|
if (this->shndx_ == MERGE_DATA_SECTION_CODE
|
|
|| this->shndx_ == MERGE_STRING_SECTION_CODE)
|
|
this->u2_.posd->print_merge_stats(section_name);
|
|
}
|
|
|
|
private:
|
|
// Code values which appear in shndx_. If the value is not one of
|
|
// these codes, it is the input section index in the object file.
|
|
enum
|
|
{
|
|
// An Output_section_data.
|
|
OUTPUT_SECTION_CODE = -1U,
|
|
// An Output_section_data for an SHF_MERGE section with
|
|
// SHF_STRINGS not set.
|
|
MERGE_DATA_SECTION_CODE = -2U,
|
|
// An Output_section_data for an SHF_MERGE section with
|
|
// SHF_STRINGS set.
|
|
MERGE_STRING_SECTION_CODE = -3U,
|
|
// An Output_section_data for a relaxed input section.
|
|
RELAXED_INPUT_SECTION_CODE = -4U
|
|
};
|
|
|
|
// For an ordinary input section, this is the section index in the
|
|
// input file. For an Output_section_data, this is
|
|
// OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
|
|
// MERGE_STRING_SECTION_CODE.
|
|
unsigned int shndx_;
|
|
// The required alignment, stored as a power of 2.
|
|
unsigned int p2align_;
|
|
union
|
|
{
|
|
// For an ordinary input section, the section size.
|
|
off_t data_size;
|
|
// For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
|
|
// used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
|
|
// entity size.
|
|
uint64_t entsize;
|
|
} u1_;
|
|
union
|
|
{
|
|
// For an ordinary input section, the object which holds the
|
|
// input section.
|
|
Relobj* object;
|
|
// For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
|
|
// MERGE_STRING_SECTION_CODE, the data.
|
|
Output_section_data* posd;
|
|
Output_merge_base* pomb;
|
|
// For RELAXED_INPUT_SECTION_CODE, the data.
|
|
Output_relaxed_input_section* poris;
|
|
} u2_;
|
|
// The line number of the pattern it matches in the --section-ordering-file
|
|
// file. It is 0 if does not match any pattern.
|
|
unsigned int section_order_index_;
|
|
};
|
|
|
|
// Store the list of input sections for this Output_section into the
|
|
// list passed in. This removes the input sections, leaving only
|
|
// any Output_section_data elements. This returns the size of those
|
|
// Output_section_data elements. ADDRESS is the address of this
|
|
// output section. FILL is the fill value to use, in case there are
|
|
// any spaces between the remaining Output_section_data elements.
|
|
uint64_t
|
|
get_input_sections(uint64_t address, const std::string& fill,
|
|
std::list<Input_section>*);
|
|
|
|
// Add a script input section. A script input section can either be
|
|
// a plain input section or a sub-class of Output_section_data.
|
|
void
|
|
add_script_input_section(const Input_section& input_section);
|
|
|
|
// Set the current size of the output section.
|
|
void
|
|
set_current_data_size(off_t size)
|
|
{ this->set_current_data_size_for_child(size); }
|
|
|
|
// End of linker script support.
|
|
|
|
// Save states before doing section layout.
|
|
// This is used for relaxation.
|
|
void
|
|
save_states();
|
|
|
|
// Restore states prior to section layout.
|
|
void
|
|
restore_states();
|
|
|
|
// Discard states.
|
|
void
|
|
discard_states();
|
|
|
|
// Convert existing input sections to relaxed input sections.
|
|
void
|
|
convert_input_sections_to_relaxed_sections(
|
|
const std::vector<Output_relaxed_input_section*>& sections);
|
|
|
|
// Find a relaxed input section to an input section in OBJECT
|
|
// with index SHNDX. Return NULL if none is found.
|
|
const Output_relaxed_input_section*
|
|
find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
|
|
|
|
// Whether section offsets need adjustment due to relaxation.
|
|
bool
|
|
section_offsets_need_adjustment() const
|
|
{ return this->section_offsets_need_adjustment_; }
|
|
|
|
// Set section_offsets_need_adjustment to be true.
|
|
void
|
|
set_section_offsets_need_adjustment()
|
|
{ this->section_offsets_need_adjustment_ = true; }
|
|
|
|
// Set section_offsets_need_adjustment to be false.
|
|
void
|
|
clear_section_offsets_need_adjustment()
|
|
{ this->section_offsets_need_adjustment_ = false; }
|
|
|
|
// Adjust section offsets of input sections in this. This is
|
|
// requires if relaxation caused some input sections to change sizes.
|
|
void
|
|
adjust_section_offsets();
|
|
|
|
// Whether this is a NOLOAD section.
|
|
bool
|
|
is_noload() const
|
|
{ return this->is_noload_; }
|
|
|
|
// Set NOLOAD flag.
|
|
void
|
|
set_is_noload()
|
|
{ this->is_noload_ = true; }
|
|
|
|
// Print merge statistics to stderr.
|
|
void
|
|
print_merge_stats();
|
|
|
|
// Set a fixed layout for the section. Used for incremental update links.
|
|
void
|
|
set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
|
|
uint64_t sh_addralign);
|
|
|
|
// Return TRUE if the section has a fixed layout.
|
|
bool
|
|
has_fixed_layout() const
|
|
{ return this->has_fixed_layout_; }
|
|
|
|
// Set flag to allow patch space for this section. Used for full
|
|
// incremental links.
|
|
void
|
|
set_is_patch_space_allowed()
|
|
{ this->is_patch_space_allowed_ = true; }
|
|
|
|
// Set a fill method to use for free space left in the output section
|
|
// during incremental links.
|
|
void
|
|
set_free_space_fill(Output_fill* free_space_fill)
|
|
{
|
|
this->free_space_fill_ = free_space_fill;
|
|
this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
|
|
}
|
|
|
|
// Reserve space within the fixed layout for the section. Used for
|
|
// incremental update links.
|
|
void
|
|
reserve(uint64_t sh_offset, uint64_t sh_size);
|
|
|
|
// Allocate space from the free list for the section. Used for
|
|
// incremental update links.
|
|
off_t
|
|
allocate(off_t len, uint64_t addralign);
|
|
|
|
typedef std::vector<Input_section> Input_section_list;
|
|
|
|
// Allow access to the input sections.
|
|
const Input_section_list&
|
|
input_sections() const
|
|
{ return this->input_sections_; }
|
|
|
|
Input_section_list&
|
|
input_sections()
|
|
{ return this->input_sections_; }
|
|
|
|
// For -r and --emit-relocs, we need to keep track of the associated
|
|
// relocation section.
|
|
Output_section*
|
|
reloc_section() const
|
|
{ return this->reloc_section_; }
|
|
|
|
void
|
|
set_reloc_section(Output_section* os)
|
|
{ this->reloc_section_ = os; }
|
|
|
|
protected:
|
|
// Return the output section--i.e., the object itself.
|
|
Output_section*
|
|
do_output_section()
|
|
{ return this; }
|
|
|
|
const Output_section*
|
|
do_output_section() const
|
|
{ return this; }
|
|
|
|
// Return the section index in the output file.
|
|
unsigned int
|
|
do_out_shndx() const
|
|
{
|
|
gold_assert(this->out_shndx_ != -1U);
|
|
return this->out_shndx_;
|
|
}
|
|
|
|
// Set the output section index.
|
|
void
|
|
do_set_out_shndx(unsigned int shndx)
|
|
{
|
|
gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
|
|
this->out_shndx_ = shndx;
|
|
}
|
|
|
|
// Update the data size of the Output_section. For a typical
|
|
// Output_section, there is nothing to do, but if there are any
|
|
// Output_section_data objects we need to do a trial layout
|
|
// here.
|
|
virtual void
|
|
update_data_size();
|
|
|
|
// Set the final data size of the Output_section. For a typical
|
|
// Output_section, there is nothing to do, but if there are any
|
|
// Output_section_data objects we need to set their final addresses
|
|
// here.
|
|
virtual void
|
|
set_final_data_size();
|
|
|
|
// Reset the address and file offset.
|
|
void
|
|
do_reset_address_and_file_offset();
|
|
|
|
// Return true if address and file offset already have reset values. In
|
|
// other words, calling reset_address_and_file_offset will not change them.
|
|
bool
|
|
do_address_and_file_offset_have_reset_values() const;
|
|
|
|
// Write the data to the file. For a typical Output_section, this
|
|
// does nothing: the data is written out by calling Object::Relocate
|
|
// on each input object. But if there are any Output_section_data
|
|
// objects we do need to write them out here.
|
|
virtual void
|
|
do_write(Output_file*);
|
|
|
|
// Return the address alignment--function required by parent class.
|
|
uint64_t
|
|
do_addralign() const
|
|
{ return this->addralign_; }
|
|
|
|
// Return whether there is a load address.
|
|
bool
|
|
do_has_load_address() const
|
|
{ return this->has_load_address_; }
|
|
|
|
// Return the load address.
|
|
uint64_t
|
|
do_load_address() const
|
|
{
|
|
gold_assert(this->has_load_address_);
|
|
return this->load_address_;
|
|
}
|
|
|
|
// Return whether this is an Output_section.
|
|
bool
|
|
do_is_section() const
|
|
{ return true; }
|
|
|
|
// Return whether this is a section of the specified type.
|
|
bool
|
|
do_is_section_type(elfcpp::Elf_Word type) const
|
|
{ return this->type_ == type; }
|
|
|
|
// Return whether the specified section flag is set.
|
|
bool
|
|
do_is_section_flag_set(elfcpp::Elf_Xword flag) const
|
|
{ return (this->flags_ & flag) != 0; }
|
|
|
|
// Set the TLS offset. Called only for SHT_TLS sections.
|
|
void
|
|
do_set_tls_offset(uint64_t tls_base);
|
|
|
|
// Return the TLS offset, relative to the base of the TLS segment.
|
|
// Valid only for SHT_TLS sections.
|
|
uint64_t
|
|
do_tls_offset() const
|
|
{ return this->tls_offset_; }
|
|
|
|
// This may be implemented by a child class.
|
|
virtual void
|
|
do_finalize_name(Layout*)
|
|
{ }
|
|
|
|
// Print to the map file.
|
|
virtual void
|
|
do_print_to_mapfile(Mapfile*) const;
|
|
|
|
// Record that this section requires postprocessing after all
|
|
// relocations have been applied. This is called by a child class.
|
|
void
|
|
set_requires_postprocessing()
|
|
{
|
|
this->requires_postprocessing_ = true;
|
|
this->after_input_sections_ = true;
|
|
}
|
|
|
|
// Write all the data of an Output_section into the postprocessing
|
|
// buffer.
|
|
void
|
|
write_to_postprocessing_buffer();
|
|
|
|
// Whether this always keeps an input section list
|
|
bool
|
|
always_keeps_input_sections() const
|
|
{ return this->always_keeps_input_sections_; }
|
|
|
|
// Always keep an input section list.
|
|
void
|
|
set_always_keeps_input_sections()
|
|
{
|
|
gold_assert(this->current_data_size_for_child() == 0);
|
|
this->always_keeps_input_sections_ = true;
|
|
}
|
|
|
|
private:
|
|
// We only save enough information to undo the effects of section layout.
|
|
class Checkpoint_output_section
|
|
{
|
|
public:
|
|
Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
|
|
const Input_section_list& input_sections,
|
|
off_t first_input_offset,
|
|
bool attached_input_sections_are_sorted)
|
|
: addralign_(addralign), flags_(flags),
|
|
input_sections_(input_sections),
|
|
input_sections_size_(input_sections_.size()),
|
|
input_sections_copy_(), first_input_offset_(first_input_offset),
|
|
attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
|
|
{ }
|
|
|
|
virtual
|
|
~Checkpoint_output_section()
|
|
{ }
|
|
|
|
// Return the address alignment.
|
|
uint64_t
|
|
addralign() const
|
|
{ return this->addralign_; }
|
|
|
|
void
|
|
set_addralign(uint64_t val)
|
|
{ this->addralign_ = val; }
|
|
|
|
// Return the section flags.
|
|
elfcpp::Elf_Xword
|
|
flags() const
|
|
{ return this->flags_; }
|
|
|
|
// Return a reference to the input section list copy.
|
|
Input_section_list*
|
|
input_sections()
|
|
{ return &this->input_sections_copy_; }
|
|
|
|
// Return the size of input_sections at the time when checkpoint is
|
|
// taken.
|
|
size_t
|
|
input_sections_size() const
|
|
{ return this->input_sections_size_; }
|
|
|
|
// Whether input sections are copied.
|
|
bool
|
|
input_sections_saved() const
|
|
{ return this->input_sections_copy_.size() == this->input_sections_size_; }
|
|
|
|
off_t
|
|
first_input_offset() const
|
|
{ return this->first_input_offset_; }
|
|
|
|
bool
|
|
attached_input_sections_are_sorted() const
|
|
{ return this->attached_input_sections_are_sorted_; }
|
|
|
|
// Save input sections.
|
|
void
|
|
save_input_sections()
|
|
{
|
|
this->input_sections_copy_.reserve(this->input_sections_size_);
|
|
this->input_sections_copy_.clear();
|
|
Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
gold_assert(this->input_sections_size_ >= this->input_sections_.size());
|
|
for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
|
|
this->input_sections_copy_.push_back(*p);
|
|
}
|
|
|
|
private:
|
|
// The section alignment.
|
|
uint64_t addralign_;
|
|
// The section flags.
|
|
elfcpp::Elf_Xword flags_;
|
|
// Reference to the input sections to be checkpointed.
|
|
const Input_section_list& input_sections_;
|
|
// Size of the checkpointed portion of input_sections_;
|
|
size_t input_sections_size_;
|
|
// Copy of input sections.
|
|
Input_section_list input_sections_copy_;
|
|
// The offset of the first entry in input_sections_.
|
|
off_t first_input_offset_;
|
|
// True if the input sections attached to this output section have
|
|
// already been sorted.
|
|
bool attached_input_sections_are_sorted_;
|
|
};
|
|
|
|
// This class is used to sort the input sections.
|
|
class Input_section_sort_entry;
|
|
|
|
// This is the sort comparison function for ctors and dtors.
|
|
struct Input_section_sort_compare
|
|
{
|
|
bool
|
|
operator()(const Input_section_sort_entry&,
|
|
const Input_section_sort_entry&) const;
|
|
};
|
|
|
|
// This is the sort comparison function for .init_array and .fini_array.
|
|
struct Input_section_sort_init_fini_compare
|
|
{
|
|
bool
|
|
operator()(const Input_section_sort_entry&,
|
|
const Input_section_sort_entry&) const;
|
|
};
|
|
|
|
// This is the sort comparison function when a section order is specified
|
|
// from an input file.
|
|
struct Input_section_sort_section_order_index_compare
|
|
{
|
|
bool
|
|
operator()(const Input_section_sort_entry&,
|
|
const Input_section_sort_entry&) const;
|
|
};
|
|
|
|
// This is the sort comparison function for .text to sort sections with
|
|
// prefixes .text.{unlikely,exit,startup,hot} before other sections.
|
|
struct Input_section_sort_section_prefix_special_ordering_compare
|
|
{
|
|
bool
|
|
operator()(const Input_section_sort_entry&,
|
|
const Input_section_sort_entry&) const;
|
|
};
|
|
|
|
// This is the sort comparison function for sorting sections by name.
|
|
struct Input_section_sort_section_name_compare
|
|
{
|
|
bool
|
|
operator()(const Input_section_sort_entry&,
|
|
const Input_section_sort_entry&) const;
|
|
};
|
|
|
|
// Fill data. This is used to fill in data between input sections.
|
|
// It is also used for data statements (BYTE, WORD, etc.) in linker
|
|
// scripts. When we have to keep track of the input sections, we
|
|
// can use an Output_data_const, but we don't want to have to keep
|
|
// track of input sections just to implement fills.
|
|
class Fill
|
|
{
|
|
public:
|
|
Fill(off_t section_offset, off_t length)
|
|
: section_offset_(section_offset),
|
|
length_(convert_to_section_size_type(length))
|
|
{ }
|
|
|
|
// Return section offset.
|
|
off_t
|
|
section_offset() const
|
|
{ return this->section_offset_; }
|
|
|
|
// Return fill length.
|
|
section_size_type
|
|
length() const
|
|
{ return this->length_; }
|
|
|
|
private:
|
|
// The offset within the output section.
|
|
off_t section_offset_;
|
|
// The length of the space to fill.
|
|
section_size_type length_;
|
|
};
|
|
|
|
typedef std::vector<Fill> Fill_list;
|
|
|
|
// Map used during relaxation of existing sections. This map
|
|
// a section id an input section list index. We assume that
|
|
// Input_section_list is a vector.
|
|
typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
|
|
|
|
// Add a new output section by Input_section.
|
|
void
|
|
add_output_section_data(Input_section*);
|
|
|
|
// Add an SHF_MERGE input section. Returns true if the section was
|
|
// handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
|
|
// stores information about the merged input sections.
|
|
bool
|
|
add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
|
|
uint64_t entsize, uint64_t addralign,
|
|
bool keeps_input_sections);
|
|
|
|
// Add an output SHF_MERGE section POSD to this output section.
|
|
// IS_STRING indicates whether it is a SHF_STRINGS section, and
|
|
// ENTSIZE is the entity size. This returns the entry added to
|
|
// input_sections_.
|
|
void
|
|
add_output_merge_section(Output_section_data* posd, bool is_string,
|
|
uint64_t entsize);
|
|
|
|
// Find the merge section into which an input section with index SHNDX in
|
|
// OBJECT has been added. Return NULL if none found.
|
|
const Output_section_data*
|
|
find_merge_section(const Relobj* object, unsigned int shndx) const;
|
|
|
|
// Build a relaxation map.
|
|
void
|
|
build_relaxation_map(
|
|
const Input_section_list& input_sections,
|
|
size_t limit,
|
|
Relaxation_map* map) const;
|
|
|
|
// Convert input sections in an input section list into relaxed sections.
|
|
void
|
|
convert_input_sections_in_list_to_relaxed_sections(
|
|
const std::vector<Output_relaxed_input_section*>& relaxed_sections,
|
|
const Relaxation_map& map,
|
|
Input_section_list* input_sections);
|
|
|
|
// Build the lookup maps for merge and relaxed input sections.
|
|
void
|
|
build_lookup_maps() const;
|
|
|
|
// Most of these fields are only valid after layout.
|
|
|
|
// The name of the section. This will point into a Stringpool.
|
|
const char* name_;
|
|
// The section address is in the parent class.
|
|
// The section alignment.
|
|
uint64_t addralign_;
|
|
// The section entry size.
|
|
uint64_t entsize_;
|
|
// The load address. This is only used when using a linker script
|
|
// with a SECTIONS clause. The has_load_address_ field indicates
|
|
// whether this field is valid.
|
|
uint64_t load_address_;
|
|
// The file offset is in the parent class.
|
|
// Set the section link field to the index of this section.
|
|
const Output_data* link_section_;
|
|
// If link_section_ is NULL, this is the link field.
|
|
unsigned int link_;
|
|
// Set the section info field to the index of this section.
|
|
const Output_section* info_section_;
|
|
// If info_section_ is NULL, set the info field to the symbol table
|
|
// index of this symbol.
|
|
const Symbol* info_symndx_;
|
|
// If info_section_ and info_symndx_ are NULL, this is the section
|
|
// info field.
|
|
unsigned int info_;
|
|
// The section type.
|
|
const elfcpp::Elf_Word type_;
|
|
// The section flags.
|
|
elfcpp::Elf_Xword flags_;
|
|
// The order of this section in the output segment.
|
|
Output_section_order order_;
|
|
// The section index.
|
|
unsigned int out_shndx_;
|
|
// If there is a STT_SECTION for this output section in the normal
|
|
// symbol table, this is the symbol index. This starts out as zero.
|
|
// It is initialized in Layout::finalize() to be the index, or -1U
|
|
// if there isn't one.
|
|
unsigned int symtab_index_;
|
|
// If there is a STT_SECTION for this output section in the dynamic
|
|
// symbol table, this is the symbol index. This starts out as zero.
|
|
// It is initialized in Layout::finalize() to be the index, or -1U
|
|
// if there isn't one.
|
|
unsigned int dynsym_index_;
|
|
// The input sections. This will be empty in cases where we don't
|
|
// need to keep track of them.
|
|
Input_section_list input_sections_;
|
|
// The offset of the first entry in input_sections_.
|
|
off_t first_input_offset_;
|
|
// The fill data. This is separate from input_sections_ because we
|
|
// often will need fill sections without needing to keep track of
|
|
// input sections.
|
|
Fill_list fills_;
|
|
// If the section requires postprocessing, this buffer holds the
|
|
// section contents during relocation.
|
|
unsigned char* postprocessing_buffer_;
|
|
// Whether this output section needs a STT_SECTION symbol in the
|
|
// normal symbol table. This will be true if there is a relocation
|
|
// which needs it.
|
|
bool needs_symtab_index_ : 1;
|
|
// Whether this output section needs a STT_SECTION symbol in the
|
|
// dynamic symbol table. This will be true if there is a dynamic
|
|
// relocation which needs it.
|
|
bool needs_dynsym_index_ : 1;
|
|
// Whether the link field of this output section should point to the
|
|
// normal symbol table.
|
|
bool should_link_to_symtab_ : 1;
|
|
// Whether the link field of this output section should point to the
|
|
// dynamic symbol table.
|
|
bool should_link_to_dynsym_ : 1;
|
|
// Whether this section should be written after all the input
|
|
// sections are complete.
|
|
bool after_input_sections_ : 1;
|
|
// Whether this section requires post processing after all
|
|
// relocations have been applied.
|
|
bool requires_postprocessing_ : 1;
|
|
// Whether an input section was mapped to this output section
|
|
// because of a SECTIONS clause in a linker script.
|
|
bool found_in_sections_clause_ : 1;
|
|
// Whether this section has an explicitly specified load address.
|
|
bool has_load_address_ : 1;
|
|
// True if the info_section_ field means the section index of the
|
|
// section, false if it means the symbol index of the corresponding
|
|
// section symbol.
|
|
bool info_uses_section_index_ : 1;
|
|
// True if input sections attached to this output section have to be
|
|
// sorted according to a specified order.
|
|
bool input_section_order_specified_ : 1;
|
|
// True if the input sections attached to this output section may
|
|
// need sorting.
|
|
bool may_sort_attached_input_sections_ : 1;
|
|
// True if the input sections attached to this output section must
|
|
// be sorted.
|
|
bool must_sort_attached_input_sections_ : 1;
|
|
// True if the input sections attached to this output section have
|
|
// already been sorted.
|
|
bool attached_input_sections_are_sorted_ : 1;
|
|
// True if this section holds relro data.
|
|
bool is_relro_ : 1;
|
|
// True if this is a small section.
|
|
bool is_small_section_ : 1;
|
|
// True if this is a large section.
|
|
bool is_large_section_ : 1;
|
|
// Whether code-fills are generated at write.
|
|
bool generate_code_fills_at_write_ : 1;
|
|
// Whether the entry size field should be zero.
|
|
bool is_entsize_zero_ : 1;
|
|
// Whether section offsets need adjustment due to relaxation.
|
|
bool section_offsets_need_adjustment_ : 1;
|
|
// Whether this is a NOLOAD section.
|
|
bool is_noload_ : 1;
|
|
// Whether this always keeps input section.
|
|
bool always_keeps_input_sections_ : 1;
|
|
// Whether this section has a fixed layout, for incremental update links.
|
|
bool has_fixed_layout_ : 1;
|
|
// True if we can add patch space to this section.
|
|
bool is_patch_space_allowed_ : 1;
|
|
// True if this output section goes into a unique segment.
|
|
bool is_unique_segment_ : 1;
|
|
// For SHT_TLS sections, the offset of this section relative to the base
|
|
// of the TLS segment.
|
|
uint64_t tls_offset_;
|
|
// Additional segment flags, specified via linker plugin, when mapping some
|
|
// input sections to unique segments.
|
|
uint64_t extra_segment_flags_;
|
|
// Segment alignment specified via linker plugin, when mapping some
|
|
// input sections to unique segments.
|
|
uint64_t segment_alignment_;
|
|
// Saved checkpoint.
|
|
Checkpoint_output_section* checkpoint_;
|
|
// Fast lookup maps for merged and relaxed input sections.
|
|
Output_section_lookup_maps* lookup_maps_;
|
|
// List of available regions within the section, for incremental
|
|
// update links.
|
|
Free_list free_list_;
|
|
// Method for filling chunks of free space.
|
|
Output_fill* free_space_fill_;
|
|
// Amount added as patch space for incremental linking.
|
|
off_t patch_space_;
|
|
// Associated relocation section, when emitting relocations.
|
|
Output_section* reloc_section_;
|
|
};
|
|
|
|
// An output segment. PT_LOAD segments are built from collections of
|
|
// output sections. Other segments typically point within PT_LOAD
|
|
// segments, and are built directly as needed.
|
|
//
|
|
// NOTE: We want to use the copy constructor for this class. During
|
|
// relaxation, we may try built the segments multiple times. We do
|
|
// that by copying the original segment list before lay-out, doing
|
|
// a trial lay-out and roll-back to the saved copied if we need to
|
|
// to the lay-out again.
|
|
|
|
class Output_segment
|
|
{
|
|
public:
|
|
// Create an output segment, specifying the type and flags.
|
|
Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
|
|
|
|
// Return the virtual address.
|
|
uint64_t
|
|
vaddr() const
|
|
{ return this->vaddr_; }
|
|
|
|
// Return the physical address.
|
|
uint64_t
|
|
paddr() const
|
|
{ return this->paddr_; }
|
|
|
|
// Return the segment type.
|
|
elfcpp::Elf_Word
|
|
type() const
|
|
{ return this->type_; }
|
|
|
|
// Return the segment flags.
|
|
elfcpp::Elf_Word
|
|
flags() const
|
|
{ return this->flags_; }
|
|
|
|
// Return the memory size.
|
|
uint64_t
|
|
memsz() const
|
|
{ return this->memsz_; }
|
|
|
|
// Return the file size.
|
|
off_t
|
|
filesz() const
|
|
{ return this->filesz_; }
|
|
|
|
// Return the file offset.
|
|
off_t
|
|
offset() const
|
|
{ return this->offset_; }
|
|
|
|
// Whether this is a segment created to hold large data sections.
|
|
bool
|
|
is_large_data_segment() const
|
|
{ return this->is_large_data_segment_; }
|
|
|
|
// Record that this is a segment created to hold large data
|
|
// sections.
|
|
void
|
|
set_is_large_data_segment()
|
|
{ this->is_large_data_segment_ = true; }
|
|
|
|
bool
|
|
is_unique_segment() const
|
|
{ return this->is_unique_segment_; }
|
|
|
|
// Mark segment as unique, happens when linker plugins request that
|
|
// certain input sections be mapped to unique segments.
|
|
void
|
|
set_is_unique_segment()
|
|
{ this->is_unique_segment_ = true; }
|
|
|
|
// Return the maximum alignment of the Output_data.
|
|
uint64_t
|
|
maximum_alignment();
|
|
|
|
// Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
|
|
// the segment flags to use.
|
|
void
|
|
add_output_section_to_load(Layout* layout, Output_section* os,
|
|
elfcpp::Elf_Word seg_flags);
|
|
|
|
// Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
|
|
// is the segment flags to use.
|
|
void
|
|
add_output_section_to_nonload(Output_section* os,
|
|
elfcpp::Elf_Word seg_flags);
|
|
|
|
// Remove an Output_section from this segment. It is an error if it
|
|
// is not present.
|
|
void
|
|
remove_output_section(Output_section* os);
|
|
|
|
// Add an Output_data (which need not be an Output_section) to the
|
|
// start of this segment.
|
|
void
|
|
add_initial_output_data(Output_data*);
|
|
|
|
// Return true if this segment has any sections which hold actual
|
|
// data, rather than being a BSS section.
|
|
bool
|
|
has_any_data_sections() const;
|
|
|
|
// Whether this segment has a dynamic relocs.
|
|
bool
|
|
has_dynamic_reloc() const;
|
|
|
|
// Return the first section.
|
|
Output_section*
|
|
first_section() const;
|
|
|
|
// Return the address of the first section.
|
|
uint64_t
|
|
first_section_load_address() const
|
|
{
|
|
const Output_section* os = this->first_section();
|
|
gold_assert(os != NULL);
|
|
return os->has_load_address() ? os->load_address() : os->address();
|
|
}
|
|
|
|
// Return whether the addresses have been set already.
|
|
bool
|
|
are_addresses_set() const
|
|
{ return this->are_addresses_set_; }
|
|
|
|
// Set the addresses.
|
|
void
|
|
set_addresses(uint64_t vaddr, uint64_t paddr)
|
|
{
|
|
this->vaddr_ = vaddr;
|
|
this->paddr_ = paddr;
|
|
this->are_addresses_set_ = true;
|
|
}
|
|
|
|
// Update the flags for the flags of an output section added to this
|
|
// segment.
|
|
void
|
|
update_flags_for_output_section(elfcpp::Elf_Xword flags)
|
|
{
|
|
// The ELF ABI specifies that a PT_TLS segment should always have
|
|
// PF_R as the flags.
|
|
if (this->type() != elfcpp::PT_TLS)
|
|
this->flags_ |= flags;
|
|
}
|
|
|
|
// Set the segment flags. This is only used if we have a PHDRS
|
|
// clause which explicitly specifies the flags.
|
|
void
|
|
set_flags(elfcpp::Elf_Word flags)
|
|
{ this->flags_ = flags; }
|
|
|
|
// Set the address of the segment to ADDR and the offset to *POFF
|
|
// and set the addresses and offsets of all contained output
|
|
// sections accordingly. Set the section indexes of all contained
|
|
// output sections starting with *PSHNDX. If RESET is true, first
|
|
// reset the addresses of the contained sections. Return the
|
|
// address of the immediately following segment. Update *POFF and
|
|
// *PSHNDX. This should only be called for a PT_LOAD segment.
|
|
uint64_t
|
|
set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
|
|
unsigned int* increase_relro, bool* has_relro,
|
|
off_t* poff, unsigned int* pshndx);
|
|
|
|
// Set the minimum alignment of this segment. This may be adjusted
|
|
// upward based on the section alignments.
|
|
void
|
|
set_minimum_p_align(uint64_t align)
|
|
{
|
|
if (align > this->min_p_align_)
|
|
this->min_p_align_ = align;
|
|
}
|
|
|
|
// Set the memory size of this segment.
|
|
void
|
|
set_size(uint64_t size)
|
|
{
|
|
this->memsz_ = size;
|
|
}
|
|
|
|
// Set the offset of this segment based on the section. This should
|
|
// only be called for a non-PT_LOAD segment.
|
|
void
|
|
set_offset(unsigned int increase);
|
|
|
|
// Set the TLS offsets of the sections contained in the PT_TLS segment.
|
|
void
|
|
set_tls_offsets();
|
|
|
|
// Return the number of output sections.
|
|
unsigned int
|
|
output_section_count() const;
|
|
|
|
// Return the section attached to the list segment with the lowest
|
|
// load address. This is used when handling a PHDRS clause in a
|
|
// linker script.
|
|
Output_section*
|
|
section_with_lowest_load_address() const;
|
|
|
|
// Write the segment header into *OPHDR.
|
|
template<int size, bool big_endian>
|
|
void
|
|
write_header(elfcpp::Phdr_write<size, big_endian>*);
|
|
|
|
// Write the section headers of associated sections into V.
|
|
template<int size, bool big_endian>
|
|
unsigned char*
|
|
write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
|
|
unsigned int* pshndx) const;
|
|
|
|
// Print the output sections in the map file.
|
|
void
|
|
print_sections_to_mapfile(Mapfile*) const;
|
|
|
|
private:
|
|
typedef std::vector<Output_data*> Output_data_list;
|
|
|
|
// Find the maximum alignment in an Output_data_list.
|
|
static uint64_t
|
|
maximum_alignment_list(const Output_data_list*);
|
|
|
|
// Return whether the first data section is a relro section.
|
|
bool
|
|
is_first_section_relro() const;
|
|
|
|
// Set the section addresses in an Output_data_list.
|
|
uint64_t
|
|
set_section_list_addresses(Layout*, bool reset, Output_data_list*,
|
|
uint64_t addr, off_t* poff, off_t* fpoff,
|
|
unsigned int* pshndx, bool* in_tls);
|
|
|
|
// Return the number of Output_sections in an Output_data_list.
|
|
unsigned int
|
|
output_section_count_list(const Output_data_list*) const;
|
|
|
|
// Return whether an Output_data_list has a dynamic reloc.
|
|
bool
|
|
has_dynamic_reloc_list(const Output_data_list*) const;
|
|
|
|
// Find the section with the lowest load address in an
|
|
// Output_data_list.
|
|
void
|
|
lowest_load_address_in_list(const Output_data_list* pdl,
|
|
Output_section** found,
|
|
uint64_t* found_lma) const;
|
|
|
|
// Find the first and last entries by address.
|
|
void
|
|
find_first_and_last_list(const Output_data_list* pdl,
|
|
const Output_data** pfirst,
|
|
const Output_data** plast) const;
|
|
|
|
// Write the section headers in the list into V.
|
|
template<int size, bool big_endian>
|
|
unsigned char*
|
|
write_section_headers_list(const Layout*, const Stringpool*,
|
|
const Output_data_list*, unsigned char* v,
|
|
unsigned int* pshdx) const;
|
|
|
|
// Print a section list to the mapfile.
|
|
void
|
|
print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
|
|
|
|
// NOTE: We want to use the copy constructor. Currently, shallow copy
|
|
// works for us so we do not need to write our own copy constructor.
|
|
|
|
// The list of output data attached to this segment.
|
|
Output_data_list output_lists_[ORDER_MAX];
|
|
// The segment virtual address.
|
|
uint64_t vaddr_;
|
|
// The segment physical address.
|
|
uint64_t paddr_;
|
|
// The size of the segment in memory.
|
|
uint64_t memsz_;
|
|
// The maximum section alignment. The is_max_align_known_ field
|
|
// indicates whether this has been finalized.
|
|
uint64_t max_align_;
|
|
// The required minimum value for the p_align field. This is used
|
|
// for PT_LOAD segments. Note that this does not mean that
|
|
// addresses should be aligned to this value; it means the p_paddr
|
|
// and p_vaddr fields must be congruent modulo this value. For
|
|
// non-PT_LOAD segments, the dynamic linker works more efficiently
|
|
// if the p_align field has the more conventional value, although it
|
|
// can align as needed.
|
|
uint64_t min_p_align_;
|
|
// The offset of the segment data within the file.
|
|
off_t offset_;
|
|
// The size of the segment data in the file.
|
|
off_t filesz_;
|
|
// The segment type;
|
|
elfcpp::Elf_Word type_;
|
|
// The segment flags.
|
|
elfcpp::Elf_Word flags_;
|
|
// Whether we have finalized max_align_.
|
|
bool is_max_align_known_ : 1;
|
|
// Whether vaddr and paddr were set by a linker script.
|
|
bool are_addresses_set_ : 1;
|
|
// Whether this segment holds large data sections.
|
|
bool is_large_data_segment_ : 1;
|
|
// Whether this was marked as a unique segment via a linker plugin.
|
|
bool is_unique_segment_ : 1;
|
|
};
|
|
|
|
} // End namespace gold.
|
|
|
|
#endif // !defined(GOLD_OUTPUT_H)
|