mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
9eb71a53bf
When --no-keep-memory is used, the input section memory may not be cached. Allocate input section memory for -z pack-relative-relocs if needed. bfd/ PR ld/29939 * elfxx-x86.c (elf_x86_size_or_finish_relative_reloc): Allocate input section memory if needed. ld/ PR ld/29939 * testsuite/ld-elf/dt-relr-2i.d: New test.
4622 lines
130 KiB
C
4622 lines
130 KiB
C
/* x86 specific support for ELF
|
|
Copyright (C) 2017-2022 Free Software Foundation, Inc.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
#include "elfxx-x86.h"
|
|
#include "elf-vxworks.h"
|
|
#include "objalloc.h"
|
|
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
|
section. */
|
|
|
|
#define ELF32_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
|
|
#define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
|
|
#define ELFX32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
|
|
|
|
bool
|
|
_bfd_x86_elf_mkobject (bfd *abfd)
|
|
{
|
|
return bfd_elf_allocate_object (abfd,
|
|
sizeof (struct elf_x86_obj_tdata),
|
|
get_elf_backend_data (abfd)->target_id);
|
|
}
|
|
|
|
/* _TLS_MODULE_BASE_ needs to be treated especially when linking
|
|
executables. Rather than setting it to the beginning of the TLS
|
|
section, we have to set it to the end. This function may be called
|
|
multiple times, it is idempotent. */
|
|
|
|
void
|
|
_bfd_x86_elf_set_tls_module_base (struct bfd_link_info *info)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
struct bfd_link_hash_entry *base;
|
|
const struct elf_backend_data *bed;
|
|
|
|
if (!bfd_link_executable (info))
|
|
return;
|
|
|
|
bed = get_elf_backend_data (info->output_bfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return;
|
|
|
|
base = htab->tls_module_base;
|
|
if (base == NULL)
|
|
return;
|
|
|
|
base->u.def.value = htab->elf.tls_size;
|
|
}
|
|
|
|
/* Return the base VMA address which should be subtracted from real addresses
|
|
when resolving @dtpoff relocation.
|
|
This is PT_TLS segment p_vaddr. */
|
|
|
|
bfd_vma
|
|
_bfd_x86_elf_dtpoff_base (struct bfd_link_info *info)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
|
return 0;
|
|
return elf_hash_table (info)->tls_sec->vma;
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
dynamic relocs. */
|
|
|
|
static bool
|
|
elf_x86_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf_x86_link_hash_table *htab;
|
|
struct elf_x86_link_hash_entry *eh;
|
|
struct elf_dyn_relocs *p;
|
|
unsigned int plt_entry_size;
|
|
bool resolved_to_zero;
|
|
const struct elf_backend_data *bed;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return true;
|
|
|
|
eh = (struct elf_x86_link_hash_entry *) h;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
bed = get_elf_backend_data (info->output_bfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return false;
|
|
|
|
plt_entry_size = htab->plt.plt_entry_size;
|
|
|
|
resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh);
|
|
|
|
/* We can't use the GOT PLT if pointer equality is needed since
|
|
finish_dynamic_symbol won't clear symbol value and the dynamic
|
|
linker won't update the GOT slot. We will get into an infinite
|
|
loop at run-time. */
|
|
if (htab->plt_got != NULL
|
|
&& h->type != STT_GNU_IFUNC
|
|
&& !h->pointer_equality_needed
|
|
&& h->plt.refcount > 0
|
|
&& h->got.refcount > 0)
|
|
{
|
|
/* Don't use the regular PLT if there are both GOT and GOTPLT
|
|
reloctions. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
|
|
/* Use the GOT PLT. */
|
|
eh->plt_got.refcount = 1;
|
|
}
|
|
|
|
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
|
|
here if it is defined and referenced in a non-shared object. */
|
|
if (h->type == STT_GNU_IFUNC
|
|
&& h->def_regular)
|
|
{
|
|
/* GOTOFF relocation needs PLT. */
|
|
if (eh->gotoff_ref)
|
|
h->plt.refcount = 1;
|
|
|
|
if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h, &h->dyn_relocs,
|
|
plt_entry_size,
|
|
(htab->plt.has_plt0
|
|
* plt_entry_size),
|
|
htab->got_entry_size,
|
|
true))
|
|
{
|
|
asection *s = htab->plt_second;
|
|
if (h->plt.offset != (bfd_vma) -1 && s != NULL)
|
|
{
|
|
/* Use the second PLT section if it is created. */
|
|
eh->plt_second.offset = s->size;
|
|
|
|
/* Make room for this entry in the second PLT section. */
|
|
s->size += htab->non_lazy_plt->plt_entry_size;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
/* Don't create the PLT entry if there are only function pointer
|
|
relocations which can be resolved at run-time. */
|
|
else if (htab->elf.dynamic_sections_created
|
|
&& (h->plt.refcount > 0
|
|
|| eh->plt_got.refcount > 0))
|
|
{
|
|
bool use_plt_got = eh->plt_got.refcount > 0;
|
|
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !resolved_to_zero
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
if (bfd_link_pic (info)
|
|
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
|
|
{
|
|
asection *s = htab->elf.splt;
|
|
asection *second_s = htab->plt_second;
|
|
asection *got_s = htab->plt_got;
|
|
bool use_plt;
|
|
|
|
/* If this is the first .plt entry, make room for the special
|
|
first entry. The .plt section is used by prelink to undo
|
|
prelinking for dynamic relocations. */
|
|
if (s->size == 0)
|
|
s->size = htab->plt.has_plt0 * plt_entry_size;
|
|
|
|
if (use_plt_got)
|
|
eh->plt_got.offset = got_s->size;
|
|
else
|
|
{
|
|
h->plt.offset = s->size;
|
|
if (second_s)
|
|
eh->plt_second.offset = second_s->size;
|
|
}
|
|
|
|
/* If this symbol is not defined in a regular file, and we are
|
|
generating PDE, then set the symbol to this location in the
|
|
.plt. This is required to make function pointers compare
|
|
as equal between PDE and the shared library.
|
|
|
|
NB: If PLT is PC-relative, we can use the .plt in PIE for
|
|
function address. */
|
|
if (h->def_regular)
|
|
use_plt = false;
|
|
else if (htab->pcrel_plt)
|
|
use_plt = ! bfd_link_dll (info);
|
|
else
|
|
use_plt = bfd_link_pde (info);
|
|
if (use_plt)
|
|
{
|
|
if (use_plt_got)
|
|
{
|
|
/* We need to make a call to the entry of the GOT PLT
|
|
instead of regular PLT entry. */
|
|
h->root.u.def.section = got_s;
|
|
h->root.u.def.value = eh->plt_got.offset;
|
|
}
|
|
else
|
|
{
|
|
if (second_s)
|
|
{
|
|
/* We need to make a call to the entry of the
|
|
second PLT instead of regular PLT entry. */
|
|
h->root.u.def.section = second_s;
|
|
h->root.u.def.value = eh->plt_second.offset;
|
|
}
|
|
else
|
|
{
|
|
h->root.u.def.section = s;
|
|
h->root.u.def.value = h->plt.offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make room for this entry. */
|
|
if (use_plt_got)
|
|
got_s->size += htab->non_lazy_plt->plt_entry_size;
|
|
else
|
|
{
|
|
s->size += plt_entry_size;
|
|
if (second_s)
|
|
second_s->size += htab->non_lazy_plt->plt_entry_size;
|
|
|
|
/* We also need to make an entry in the .got.plt section,
|
|
which will be placed in the .got section by the linker
|
|
script. */
|
|
htab->elf.sgotplt->size += htab->got_entry_size;
|
|
|
|
/* There should be no PLT relocation against resolved
|
|
undefined weak symbol in executable. */
|
|
if (!resolved_to_zero)
|
|
{
|
|
/* We also need to make an entry in the .rel.plt
|
|
section. */
|
|
htab->elf.srelplt->size += htab->sizeof_reloc;
|
|
htab->elf.srelplt->reloc_count++;
|
|
}
|
|
}
|
|
|
|
if (htab->elf.target_os == is_vxworks && !bfd_link_pic (info))
|
|
{
|
|
/* VxWorks has a second set of relocations for each PLT entry
|
|
in executables. They go in a separate relocation section,
|
|
which is processed by the kernel loader. */
|
|
|
|
/* There are two relocations for the initial PLT entry: an
|
|
R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an
|
|
R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8. */
|
|
|
|
asection *srelplt2 = htab->srelplt2;
|
|
if (h->plt.offset == plt_entry_size)
|
|
srelplt2->size += (htab->sizeof_reloc * 2);
|
|
|
|
/* There are two extra relocations for each subsequent PLT entry:
|
|
an R_386_32 relocation for the GOT entry, and an R_386_32
|
|
relocation for the PLT entry. */
|
|
|
|
srelplt2->size += (htab->sizeof_reloc * 2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
eh->plt_got.offset = (bfd_vma) -1;
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
eh->plt_got.offset = (bfd_vma) -1;
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
eh->tlsdesc_got = (bfd_vma) -1;
|
|
|
|
/* For i386, if R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the
|
|
binary, make it a R_386_TLS_LE_32 requiring no TLS entry. For
|
|
x86-64, if R_X86_64_GOTTPOFF symbol is now local to the binary,
|
|
make it a R_X86_64_TPOFF32 requiring no GOT entry. */
|
|
if (h->got.refcount > 0
|
|
&& bfd_link_executable (info)
|
|
&& h->dynindx == -1
|
|
&& (elf_x86_hash_entry (h)->tls_type & GOT_TLS_IE))
|
|
h->got.offset = (bfd_vma) -1;
|
|
else if (h->got.refcount > 0)
|
|
{
|
|
asection *s;
|
|
bool dyn;
|
|
int tls_type = elf_x86_hash_entry (h)->tls_type;
|
|
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !resolved_to_zero
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
s = htab->elf.sgot;
|
|
if (GOT_TLS_GDESC_P (tls_type))
|
|
{
|
|
eh->tlsdesc_got = htab->elf.sgotplt->size
|
|
- elf_x86_compute_jump_table_size (htab);
|
|
htab->elf.sgotplt->size += 2 * htab->got_entry_size;
|
|
h->got.offset = (bfd_vma) -2;
|
|
}
|
|
if (! GOT_TLS_GDESC_P (tls_type)
|
|
|| GOT_TLS_GD_P (tls_type))
|
|
{
|
|
h->got.offset = s->size;
|
|
s->size += htab->got_entry_size;
|
|
/* R_386_TLS_GD and R_X86_64_TLSGD need 2 consecutive GOT
|
|
slots. */
|
|
if (GOT_TLS_GD_P (tls_type) || tls_type == GOT_TLS_IE_BOTH)
|
|
s->size += htab->got_entry_size;
|
|
}
|
|
dyn = htab->elf.dynamic_sections_created;
|
|
/* R_386_TLS_IE_32 needs one dynamic relocation,
|
|
R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation,
|
|
(but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we
|
|
need two), R_386_TLS_GD and R_X86_64_TLSGD need one if local
|
|
symbol and two if global. No dynamic relocation against
|
|
resolved undefined weak symbol in executable. No dynamic
|
|
relocation against non-preemptible absolute symbol. */
|
|
if (tls_type == GOT_TLS_IE_BOTH)
|
|
htab->elf.srelgot->size += 2 * htab->sizeof_reloc;
|
|
else if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
|
|
|| (tls_type & GOT_TLS_IE))
|
|
htab->elf.srelgot->size += htab->sizeof_reloc;
|
|
else if (GOT_TLS_GD_P (tls_type))
|
|
htab->elf.srelgot->size += 2 * htab->sizeof_reloc;
|
|
else if (! GOT_TLS_GDESC_P (tls_type)
|
|
&& ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
&& !resolved_to_zero)
|
|
|| h->root.type != bfd_link_hash_undefweak)
|
|
&& ((bfd_link_pic (info)
|
|
&& !(h->dynindx == -1
|
|
&& ABS_SYMBOL_P (h)))
|
|
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
|
|
htab->elf.srelgot->size += htab->sizeof_reloc;
|
|
if (GOT_TLS_GDESC_P (tls_type))
|
|
{
|
|
htab->elf.srelplt->size += htab->sizeof_reloc;
|
|
if (bed->target_id == X86_64_ELF_DATA)
|
|
htab->elf.tlsdesc_plt = (bfd_vma) -1;
|
|
}
|
|
}
|
|
else
|
|
h->got.offset = (bfd_vma) -1;
|
|
|
|
if (h->dyn_relocs == NULL)
|
|
return true;
|
|
|
|
/* In the shared -Bsymbolic case, discard space allocated for
|
|
dynamic pc-relative relocs against symbols which turn out to be
|
|
defined in regular objects. For the normal shared case, discard
|
|
space for pc-relative relocs that have become local due to symbol
|
|
visibility changes. */
|
|
|
|
if (bfd_link_pic (info))
|
|
{
|
|
/* Relocs that use pc_count are those that appear on a call
|
|
insn, or certain REL relocs that can generated via assembly.
|
|
We want calls to protected symbols to resolve directly to the
|
|
function rather than going via the plt. If people want
|
|
function pointer comparisons to work as expected then they
|
|
should avoid writing weird assembly. */
|
|
if (SYMBOL_CALLS_LOCAL (info, h))
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
|
|
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
p->count -= p->pc_count;
|
|
p->pc_count = 0;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
|
|
if (htab->elf.target_os == is_vxworks)
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
|
|
/* Also discard relocs on undefined weak syms with non-default
|
|
visibility or in PIE. */
|
|
if (h->dyn_relocs != NULL)
|
|
{
|
|
if (h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
/* Undefined weak symbol is never bound locally in shared
|
|
library. */
|
|
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
|| resolved_to_zero)
|
|
{
|
|
if (bed->target_id == I386_ELF_DATA
|
|
&& h->non_got_ref)
|
|
{
|
|
/* Keep dynamic non-GOT/non-PLT relocation so
|
|
that we can branch to 0 without PLT. */
|
|
struct elf_dyn_relocs **pp;
|
|
|
|
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
|
|
if (p->pc_count == 0)
|
|
*pp = p->next;
|
|
else
|
|
{
|
|
/* Remove non-R_386_PC32 relocation. */
|
|
p->count = p->pc_count;
|
|
pp = &p->next;
|
|
}
|
|
|
|
/* Make sure undefined weak symbols are output
|
|
as dynamic symbols in PIEs for dynamic non-GOT
|
|
non-PLT reloations. */
|
|
if (h->dyn_relocs != NULL
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
else
|
|
h->dyn_relocs = NULL;
|
|
}
|
|
else if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
else if (bfd_link_executable (info)
|
|
&& (h->needs_copy || eh->needs_copy)
|
|
&& h->def_dynamic
|
|
&& !h->def_regular)
|
|
{
|
|
/* NB: needs_copy is set only for x86-64. For PIE,
|
|
discard space for pc-relative relocs against symbols
|
|
which turn out to need copy relocs. */
|
|
struct elf_dyn_relocs **pp;
|
|
|
|
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
if (p->pc_count != 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (ELIMINATE_COPY_RELOCS)
|
|
{
|
|
/* For the non-shared case, discard space for relocs against
|
|
symbols which turn out to need copy relocs or are not
|
|
dynamic. Keep dynamic relocations for run-time function
|
|
pointer initialization. */
|
|
|
|
if ((!h->non_got_ref
|
|
|| (h->root.type == bfd_link_hash_undefweak
|
|
&& !resolved_to_zero))
|
|
&& ((h->def_dynamic
|
|
&& !h->def_regular)
|
|
|| (htab->elf.dynamic_sections_created
|
|
&& (h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_undefined))))
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !resolved_to_zero
|
|
&& h->root.type == bfd_link_hash_undefweak
|
|
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
|
|
/* If that succeeded, we know we'll be keeping all the
|
|
relocs. */
|
|
if (h->dynindx != -1)
|
|
goto keep;
|
|
}
|
|
|
|
h->dyn_relocs = NULL;
|
|
|
|
keep: ;
|
|
}
|
|
|
|
/* Finally, allocate space. */
|
|
for (p = h->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *sreloc;
|
|
|
|
if (eh->def_protected && bfd_link_executable (info))
|
|
{
|
|
/* Disallow copy relocation against non-copyable protected
|
|
symbol. */
|
|
asection *s = p->sec->output_section;
|
|
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
|
{
|
|
info->callbacks->einfo
|
|
/* xgettext:c-format */
|
|
(_("%F%P: %pB: copy relocation against non-copyable "
|
|
"protected symbol `%s' in %pB\n"),
|
|
p->sec->owner, h->root.root.string,
|
|
h->root.u.def.section->owner);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
sreloc = elf_section_data (p->sec)->sreloc;
|
|
|
|
BFD_ASSERT (sreloc != NULL);
|
|
sreloc->size += p->count * htab->sizeof_reloc;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
local dynamic relocs. */
|
|
|
|
static int
|
|
elf_x86_allocate_local_dynreloc (void **slot, void *inf)
|
|
{
|
|
struct elf_link_hash_entry *h
|
|
= (struct elf_link_hash_entry *) *slot;
|
|
|
|
if (h->type != STT_GNU_IFUNC
|
|
|| !h->def_regular
|
|
|| !h->ref_regular
|
|
|| !h->forced_local
|
|
|| h->root.type != bfd_link_hash_defined)
|
|
abort ();
|
|
|
|
return elf_x86_allocate_dynrelocs (h, inf);
|
|
}
|
|
|
|
/* Find and/or create a hash entry for local symbol. */
|
|
|
|
struct elf_link_hash_entry *
|
|
_bfd_elf_x86_get_local_sym_hash (struct elf_x86_link_hash_table *htab,
|
|
bfd *abfd, const Elf_Internal_Rela *rel,
|
|
bool create)
|
|
{
|
|
struct elf_x86_link_hash_entry e, *ret;
|
|
asection *sec = abfd->sections;
|
|
hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
|
|
htab->r_sym (rel->r_info));
|
|
void **slot;
|
|
|
|
e.elf.indx = sec->id;
|
|
e.elf.dynstr_index = htab->r_sym (rel->r_info);
|
|
slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
|
|
create ? INSERT : NO_INSERT);
|
|
|
|
if (!slot)
|
|
return NULL;
|
|
|
|
if (*slot)
|
|
{
|
|
ret = (struct elf_x86_link_hash_entry *) *slot;
|
|
return &ret->elf;
|
|
}
|
|
|
|
ret = (struct elf_x86_link_hash_entry *)
|
|
objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
|
|
sizeof (struct elf_x86_link_hash_entry));
|
|
if (ret)
|
|
{
|
|
memset (ret, 0, sizeof (*ret));
|
|
ret->elf.indx = sec->id;
|
|
ret->elf.dynstr_index = htab->r_sym (rel->r_info);
|
|
ret->elf.dynindx = -1;
|
|
ret->plt_got.offset = (bfd_vma) -1;
|
|
*slot = ret;
|
|
}
|
|
return &ret->elf;
|
|
}
|
|
|
|
/* Create an entry in a x86 ELF linker hash table. NB: THIS MUST BE IN
|
|
SYNC WITH _bfd_elf_link_hash_newfunc. */
|
|
|
|
struct bfd_hash_entry *
|
|
_bfd_x86_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = (struct bfd_hash_entry *)
|
|
bfd_hash_allocate (table,
|
|
sizeof (struct elf_x86_link_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = _bfd_link_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf_x86_link_hash_entry *eh
|
|
= (struct elf_x86_link_hash_entry *) entry;
|
|
struct elf_link_hash_table *htab
|
|
= (struct elf_link_hash_table *) table;
|
|
|
|
memset (&eh->elf.size, 0,
|
|
(sizeof (struct elf_x86_link_hash_entry)
|
|
- offsetof (struct elf_link_hash_entry, size)));
|
|
/* Set local fields. */
|
|
eh->elf.indx = -1;
|
|
eh->elf.dynindx = -1;
|
|
eh->elf.got = htab->init_got_refcount;
|
|
eh->elf.plt = htab->init_plt_refcount;
|
|
/* Assume that we have been called by a non-ELF symbol reader.
|
|
This flag is then reset by the code which reads an ELF input
|
|
file. This ensures that a symbol created by a non-ELF symbol
|
|
reader will have the flag set correctly. */
|
|
eh->elf.non_elf = 1;
|
|
eh->plt_second.offset = (bfd_vma) -1;
|
|
eh->plt_got.offset = (bfd_vma) -1;
|
|
eh->tlsdesc_got = (bfd_vma) -1;
|
|
eh->zero_undefweak = 1;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Compute a hash of a local hash entry. We use elf_link_hash_entry
|
|
for local symbol so that we can handle local STT_GNU_IFUNC symbols
|
|
as global symbol. We reuse indx and dynstr_index for local symbol
|
|
hash since they aren't used by global symbols in this backend. */
|
|
|
|
hashval_t
|
|
_bfd_x86_elf_local_htab_hash (const void *ptr)
|
|
{
|
|
struct elf_link_hash_entry *h
|
|
= (struct elf_link_hash_entry *) ptr;
|
|
return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
|
|
}
|
|
|
|
/* Compare local hash entries. */
|
|
|
|
int
|
|
_bfd_x86_elf_local_htab_eq (const void *ptr1, const void *ptr2)
|
|
{
|
|
struct elf_link_hash_entry *h1
|
|
= (struct elf_link_hash_entry *) ptr1;
|
|
struct elf_link_hash_entry *h2
|
|
= (struct elf_link_hash_entry *) ptr2;
|
|
|
|
return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
|
|
}
|
|
|
|
/* Destroy an x86 ELF linker hash table. */
|
|
|
|
static void
|
|
elf_x86_link_hash_table_free (bfd *obfd)
|
|
{
|
|
struct elf_x86_link_hash_table *htab
|
|
= (struct elf_x86_link_hash_table *) obfd->link.hash;
|
|
|
|
if (htab->loc_hash_table)
|
|
htab_delete (htab->loc_hash_table);
|
|
if (htab->loc_hash_memory)
|
|
objalloc_free ((struct objalloc *) htab->loc_hash_memory);
|
|
_bfd_elf_link_hash_table_free (obfd);
|
|
}
|
|
|
|
static bool
|
|
elf_i386_is_reloc_section (const char *secname)
|
|
{
|
|
return startswith (secname, ".rel");
|
|
}
|
|
|
|
static bool
|
|
elf_x86_64_is_reloc_section (const char *secname)
|
|
{
|
|
return startswith (secname, ".rela");
|
|
}
|
|
|
|
/* Create an x86 ELF linker hash table. */
|
|
|
|
struct bfd_link_hash_table *
|
|
_bfd_x86_elf_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct elf_x86_link_hash_table *ret;
|
|
const struct elf_backend_data *bed;
|
|
size_t amt = sizeof (struct elf_x86_link_hash_table);
|
|
|
|
ret = (struct elf_x86_link_hash_table *) bfd_zmalloc (amt);
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
bed = get_elf_backend_data (abfd);
|
|
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
|
|
_bfd_x86_elf_link_hash_newfunc,
|
|
sizeof (struct elf_x86_link_hash_entry),
|
|
bed->target_id))
|
|
{
|
|
free (ret);
|
|
return NULL;
|
|
}
|
|
|
|
if (bed->target_id == X86_64_ELF_DATA)
|
|
{
|
|
ret->is_reloc_section = elf_x86_64_is_reloc_section;
|
|
ret->got_entry_size = 8;
|
|
ret->pcrel_plt = true;
|
|
ret->tls_get_addr = "__tls_get_addr";
|
|
ret->relative_r_type = R_X86_64_RELATIVE;
|
|
ret->relative_r_name = "R_X86_64_RELATIVE";
|
|
ret->elf_append_reloc = elf_append_rela;
|
|
ret->elf_write_addend_in_got = _bfd_elf64_write_addend;
|
|
}
|
|
if (ABI_64_P (abfd))
|
|
{
|
|
ret->sizeof_reloc = sizeof (Elf64_External_Rela);
|
|
ret->pointer_r_type = R_X86_64_64;
|
|
ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
|
|
ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
|
|
ret->elf_write_addend = _bfd_elf64_write_addend;
|
|
}
|
|
else
|
|
{
|
|
if (bed->target_id == X86_64_ELF_DATA)
|
|
{
|
|
ret->sizeof_reloc = sizeof (Elf32_External_Rela);
|
|
ret->pointer_r_type = R_X86_64_32;
|
|
ret->dynamic_interpreter = ELFX32_DYNAMIC_INTERPRETER;
|
|
ret->dynamic_interpreter_size
|
|
= sizeof ELFX32_DYNAMIC_INTERPRETER;
|
|
ret->elf_write_addend = _bfd_elf32_write_addend;
|
|
}
|
|
else
|
|
{
|
|
ret->is_reloc_section = elf_i386_is_reloc_section;
|
|
ret->sizeof_reloc = sizeof (Elf32_External_Rel);
|
|
ret->got_entry_size = 4;
|
|
ret->pcrel_plt = false;
|
|
ret->pointer_r_type = R_386_32;
|
|
ret->relative_r_type = R_386_RELATIVE;
|
|
ret->relative_r_name = "R_386_RELATIVE";
|
|
ret->elf_append_reloc = elf_append_rel;
|
|
ret->elf_write_addend = _bfd_elf32_write_addend;
|
|
ret->elf_write_addend_in_got = _bfd_elf32_write_addend;
|
|
ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
|
|
ret->dynamic_interpreter_size
|
|
= sizeof ELF32_DYNAMIC_INTERPRETER;
|
|
ret->tls_get_addr = "___tls_get_addr";
|
|
}
|
|
}
|
|
|
|
ret->loc_hash_table = htab_try_create (1024,
|
|
_bfd_x86_elf_local_htab_hash,
|
|
_bfd_x86_elf_local_htab_eq,
|
|
NULL);
|
|
ret->loc_hash_memory = objalloc_create ();
|
|
if (!ret->loc_hash_table || !ret->loc_hash_memory)
|
|
{
|
|
elf_x86_link_hash_table_free (abfd);
|
|
return NULL;
|
|
}
|
|
ret->elf.root.hash_table_free = elf_x86_link_hash_table_free;
|
|
|
|
return &ret->elf.root;
|
|
}
|
|
|
|
/* Sort relocs into address order. */
|
|
|
|
int
|
|
_bfd_x86_elf_compare_relocs (const void *ap, const void *bp)
|
|
{
|
|
const arelent *a = * (const arelent **) ap;
|
|
const arelent *b = * (const arelent **) bp;
|
|
|
|
if (a->address > b->address)
|
|
return 1;
|
|
else if (a->address < b->address)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Mark symbol, NAME, as locally defined by linker if it is referenced
|
|
and not defined in a relocatable object file. */
|
|
|
|
static void
|
|
elf_x86_linker_defined (struct bfd_link_info *info, const char *name)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
|
false, false, false);
|
|
if (h == NULL)
|
|
return;
|
|
|
|
while (h->root.type == bfd_link_hash_indirect)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
if (h->root.type == bfd_link_hash_new
|
|
|| h->root.type == bfd_link_hash_undefined
|
|
|| h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_common
|
|
|| (!h->def_regular && h->def_dynamic))
|
|
{
|
|
elf_x86_hash_entry (h)->local_ref = 2;
|
|
elf_x86_hash_entry (h)->linker_def = 1;
|
|
}
|
|
}
|
|
|
|
/* Hide a linker-defined symbol, NAME, with hidden visibility. */
|
|
|
|
static void
|
|
elf_x86_hide_linker_defined (struct bfd_link_info *info,
|
|
const char *name)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
|
false, false, false);
|
|
if (h == NULL)
|
|
return;
|
|
|
|
while (h->root.type == bfd_link_hash_indirect)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
|
|
_bfd_elf_link_hash_hide_symbol (info, h, true);
|
|
}
|
|
|
|
bool
|
|
_bfd_x86_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
if (!bfd_link_relocatable (info))
|
|
{
|
|
/* Check for __tls_get_addr reference. */
|
|
struct elf_x86_link_hash_table *htab;
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info),
|
|
htab->tls_get_addr,
|
|
false, false, false);
|
|
if (h != NULL)
|
|
{
|
|
elf_x86_hash_entry (h)->tls_get_addr = 1;
|
|
|
|
/* Check the versioned __tls_get_addr symbol. */
|
|
while (h->root.type == bfd_link_hash_indirect)
|
|
{
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
elf_x86_hash_entry (h)->tls_get_addr = 1;
|
|
}
|
|
}
|
|
|
|
/* "__ehdr_start" will be defined by linker as a hidden symbol
|
|
later if it is referenced and not defined. */
|
|
elf_x86_linker_defined (info, "__ehdr_start");
|
|
|
|
if (bfd_link_executable (info))
|
|
{
|
|
/* References to __bss_start, _end and _edata should be
|
|
locally resolved within executables. */
|
|
elf_x86_linker_defined (info, "__bss_start");
|
|
elf_x86_linker_defined (info, "_end");
|
|
elf_x86_linker_defined (info, "_edata");
|
|
}
|
|
else
|
|
{
|
|
/* Hide hidden __bss_start, _end and _edata in shared
|
|
libraries. */
|
|
elf_x86_hide_linker_defined (info, "__bss_start");
|
|
elf_x86_hide_linker_defined (info, "_end");
|
|
elf_x86_hide_linker_defined (info, "_edata");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Invoke the regular ELF backend linker to do all the work. */
|
|
return _bfd_elf_link_check_relocs (abfd, info);
|
|
}
|
|
|
|
/* Look through the relocs for a section before allocation to make the
|
|
dynamic reloc section. */
|
|
|
|
bool
|
|
_bfd_x86_elf_check_relocs (bfd *abfd,
|
|
struct bfd_link_info *info,
|
|
asection *sec,
|
|
const Elf_Internal_Rela *relocs)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
const Elf_Internal_Rela *rel;
|
|
const Elf_Internal_Rela *rel_end;
|
|
asection *sreloc;
|
|
const struct elf_backend_data *bed;
|
|
bool is_x86_64;
|
|
|
|
if (bfd_link_relocatable (info))
|
|
return true;
|
|
|
|
bed = get_elf_backend_data (abfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
{
|
|
sec->check_relocs_failed = 1;
|
|
return false;
|
|
}
|
|
|
|
is_x86_64 = bed->target_id == X86_64_ELF_DATA;
|
|
|
|
symtab_hdr = &elf_symtab_hdr (abfd);
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
|
|
rel_end = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < rel_end; rel++)
|
|
{
|
|
unsigned int r_type;
|
|
unsigned int r_symndx;
|
|
struct elf_link_hash_entry *h;
|
|
|
|
r_symndx = htab->r_sym (rel->r_info);
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
|
|
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
|
{
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%pB: bad symbol index: %d"),
|
|
abfd, r_symndx);
|
|
goto error_return;
|
|
}
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
h = NULL;
|
|
else
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
}
|
|
|
|
if (X86_NEED_DYNAMIC_RELOC_TYPE_P (is_x86_64, r_type)
|
|
&& NEED_DYNAMIC_RELOCATION_P (is_x86_64, info, true, h, sec,
|
|
r_type, htab->pointer_r_type))
|
|
{
|
|
/* We may copy these reloc types into the output file.
|
|
Create a reloc section in dynobj and make room for
|
|
this reloc. */
|
|
sreloc = _bfd_elf_make_dynamic_reloc_section
|
|
(sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
|
|
abfd, sec->use_rela_p);
|
|
|
|
if (sreloc != NULL)
|
|
return true;
|
|
|
|
error_return:
|
|
sec->check_relocs_failed = 1;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Add an entry to the relative reloc record. */
|
|
|
|
static bool
|
|
elf_x86_relative_reloc_record_add
|
|
(struct bfd_link_info *info,
|
|
struct elf_x86_relative_reloc_data *relative_reloc,
|
|
Elf_Internal_Rela *rel, asection *sec,
|
|
asection *sym_sec, struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym, bfd_vma offset)
|
|
{
|
|
bfd_size_type newidx;
|
|
|
|
if (relative_reloc->data == NULL)
|
|
{
|
|
relative_reloc->data = bfd_malloc
|
|
(sizeof (struct elf_x86_relative_reloc_record));
|
|
relative_reloc->count = 0;
|
|
relative_reloc->size = 1;
|
|
}
|
|
|
|
newidx = relative_reloc->count++;
|
|
|
|
if (relative_reloc->count > relative_reloc->size)
|
|
{
|
|
relative_reloc->size <<= 1;
|
|
relative_reloc->data = bfd_realloc
|
|
(relative_reloc->data,
|
|
(relative_reloc->size
|
|
* sizeof (struct elf_x86_relative_reloc_record)));
|
|
}
|
|
|
|
if (relative_reloc->data == NULL)
|
|
{
|
|
info->callbacks->einfo
|
|
/* xgettext:c-format */
|
|
(_("%F%P: %pB: failed to allocate relative reloc record\n"),
|
|
info->output_bfd);
|
|
return false;
|
|
}
|
|
|
|
relative_reloc->data[newidx].rel = *rel;
|
|
relative_reloc->data[newidx].sec = sec;
|
|
if (h != NULL)
|
|
{
|
|
/* Set SYM to NULL to indicate a global symbol. */
|
|
relative_reloc->data[newidx].sym = NULL;
|
|
relative_reloc->data[newidx].u.h = h;
|
|
}
|
|
else
|
|
{
|
|
relative_reloc->data[newidx].sym = sym;
|
|
relative_reloc->data[newidx].u.sym_sec = sym_sec;
|
|
}
|
|
relative_reloc->data[newidx].offset = offset;
|
|
relative_reloc->data[newidx].address = 0;
|
|
return true;
|
|
}
|
|
|
|
/* After input sections have been mapped to output sections and
|
|
addresses of output sections are set initiallly, scan input
|
|
relocations with the same logic in relocate_section to determine
|
|
if a relative relocation should be generated. Save the relative
|
|
relocation candidate information for sizing the DT_RELR section
|
|
later after all symbols addresses can be determined. */
|
|
|
|
bool
|
|
_bfd_x86_elf_link_relax_section (bfd *abfd ATTRIBUTE_UNUSED,
|
|
asection *input_section,
|
|
struct bfd_link_info *info,
|
|
bool *again)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *internal_relocs;
|
|
Elf_Internal_Rela *irel, *irelend;
|
|
Elf_Internal_Sym *isymbuf = NULL;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
const struct elf_backend_data *bed;
|
|
struct elf_x86_link_hash_table *htab;
|
|
bfd_vma *local_got_offsets;
|
|
bool is_x86_64;
|
|
bool unaligned_section;
|
|
|
|
if (bfd_link_relocatable (info))
|
|
return true;
|
|
|
|
/* Assume we're not going to change any sizes, and we'll only need
|
|
one pass. */
|
|
*again = false;
|
|
|
|
bed = get_elf_backend_data (abfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return true;
|
|
|
|
/* Nothing to do if there are no relocations or relative relocations
|
|
have been packed. */
|
|
if (input_section == htab->elf.srelrdyn
|
|
|| input_section->relative_reloc_packed
|
|
|| ((input_section->flags & (SEC_RELOC | SEC_ALLOC))
|
|
!= (SEC_RELOC | SEC_ALLOC))
|
|
|| (input_section->flags & SEC_DEBUGGING) != 0
|
|
|| input_section->reloc_count == 0)
|
|
return true;
|
|
|
|
/* Skip if the section isn't aligned. */
|
|
unaligned_section = input_section->alignment_power == 0;
|
|
|
|
is_x86_64 = bed->target_id == X86_64_ELF_DATA;
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
local_got_offsets = elf_local_got_offsets (abfd);
|
|
|
|
/* Load the relocations for this section. */
|
|
internal_relocs =
|
|
_bfd_elf_link_read_relocs (abfd, input_section, NULL,
|
|
(Elf_Internal_Rela *) NULL,
|
|
info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
return false;
|
|
|
|
irelend = internal_relocs + input_section->reloc_count;
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
|
{
|
|
unsigned int r_type;
|
|
unsigned int r_symndx;
|
|
Elf_Internal_Sym *isym;
|
|
struct elf_link_hash_entry *h;
|
|
struct elf_x86_link_hash_entry *eh;
|
|
bfd_vma offset;
|
|
bool resolved_to_zero;
|
|
bool need_copy_reloc_in_pie;
|
|
bool pc32_reloc;
|
|
asection *sec;
|
|
/* Offset must be a multiple of 2. */
|
|
bool unaligned_offset = (irel->r_offset & 1) != 0;
|
|
/* True if there is a relative relocation against a dynamic
|
|
symbol. */
|
|
bool dynamic_relative_reloc_p;
|
|
|
|
/* Get the value of the symbol referred to by the reloc. */
|
|
r_symndx = htab->r_sym (irel->r_info);
|
|
|
|
r_type = ELF32_R_TYPE (irel->r_info);
|
|
/* Clear the R_X86_64_converted_reloc_bit bit. */
|
|
r_type &= ~R_X86_64_converted_reloc_bit;
|
|
|
|
sec = NULL;
|
|
h = NULL;
|
|
dynamic_relative_reloc_p = false;
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* Read this BFD's local symbols. */
|
|
if (isymbuf == NULL)
|
|
{
|
|
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (isymbuf == NULL)
|
|
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
|
symtab_hdr->sh_info, 0,
|
|
NULL, NULL, NULL);
|
|
if (isymbuf == NULL)
|
|
goto error_return;
|
|
}
|
|
|
|
isym = isymbuf + r_symndx;
|
|
switch (isym->st_shndx)
|
|
{
|
|
case SHN_ABS:
|
|
sec = bfd_abs_section_ptr;
|
|
break;
|
|
case SHN_COMMON:
|
|
sec = bfd_com_section_ptr;
|
|
break;
|
|
case SHN_X86_64_LCOMMON:
|
|
if (!is_x86_64)
|
|
abort ();
|
|
sec = &_bfd_elf_large_com_section;
|
|
break;
|
|
default:
|
|
sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
break;
|
|
}
|
|
|
|
/* Skip relocation against local STT_GNU_IFUNC symbol. */
|
|
if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
|
|
continue;
|
|
|
|
eh = (struct elf_x86_link_hash_entry *) h;
|
|
resolved_to_zero = false;
|
|
}
|
|
else
|
|
{
|
|
/* Get H and SEC for GENERATE_DYNAMIC_RELOCATION_P below. */
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
if (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
sec = h->root.u.def.section;
|
|
|
|
/* Skip relocation against STT_GNU_IFUNC symbol. */
|
|
if (h->type == STT_GNU_IFUNC)
|
|
continue;
|
|
|
|
eh = (struct elf_x86_link_hash_entry *) h;
|
|
resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh);
|
|
|
|
/* NB: See how elf_backend_finish_dynamic_symbol is called
|
|
from elf_link_output_extsym. */
|
|
if ((h->dynindx != -1 || h->forced_local)
|
|
&& ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak)
|
|
|| !h->forced_local)
|
|
&& h->got.offset != (bfd_vma) -1
|
|
&& ! GOT_TLS_GD_ANY_P (elf_x86_hash_entry (h)->tls_type)
|
|
&& elf_x86_hash_entry (h)->tls_type != GOT_TLS_IE
|
|
&& !resolved_to_zero
|
|
&& SYMBOL_REFERENCES_LOCAL_P (info, h)
|
|
&& SYMBOL_DEFINED_NON_SHARED_P (h))
|
|
dynamic_relative_reloc_p = true;
|
|
|
|
isym = NULL;
|
|
}
|
|
|
|
if (X86_GOT_TYPE_P (is_x86_64, r_type))
|
|
{
|
|
/* Pack GOT relative relocations. There should be only a
|
|
single R_*_RELATIVE relocation in GOT. */
|
|
if (eh != NULL)
|
|
{
|
|
if (eh->got_relative_reloc_done)
|
|
continue;
|
|
|
|
if (!(dynamic_relative_reloc_p
|
|
|| (RESOLVED_LOCALLY_P (info, h, htab)
|
|
&& GENERATE_RELATIVE_RELOC_P (info, h))))
|
|
continue;
|
|
|
|
if (!dynamic_relative_reloc_p)
|
|
eh->no_finish_dynamic_symbol = 1;
|
|
eh->got_relative_reloc_done = 1;
|
|
offset = h->got.offset;
|
|
}
|
|
else
|
|
{
|
|
if (elf_x86_relative_reloc_done (abfd)[r_symndx])
|
|
continue;
|
|
|
|
if (!X86_LOCAL_GOT_RELATIVE_RELOC_P (is_x86_64, info,
|
|
isym))
|
|
continue;
|
|
|
|
elf_x86_relative_reloc_done (abfd)[r_symndx] = 1;
|
|
offset = local_got_offsets[r_symndx];
|
|
}
|
|
|
|
if (!elf_x86_relative_reloc_record_add (info,
|
|
&htab->relative_reloc,
|
|
irel, htab->elf.sgot,
|
|
sec, h, isym, offset))
|
|
goto error_return;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (is_x86_64
|
|
&& irel->r_addend == 0
|
|
&& !ABI_64_P (info->output_bfd))
|
|
{
|
|
/* For x32, if addend is zero, treat R_X86_64_64 like
|
|
R_X86_64_32 and R_X86_64_SIZE64 like R_X86_64_SIZE32. */
|
|
if (r_type == R_X86_64_64)
|
|
r_type = R_X86_64_32;
|
|
else if (r_type == R_X86_64_SIZE64)
|
|
r_type = R_X86_64_SIZE32;
|
|
}
|
|
|
|
if (!X86_RELATIVE_RELOC_TYPE_P (is_x86_64, r_type))
|
|
continue;
|
|
|
|
/* Pack non-GOT relative relocations. */
|
|
if (is_x86_64)
|
|
{
|
|
need_copy_reloc_in_pie =
|
|
(bfd_link_pie (info)
|
|
&& h != NULL
|
|
&& (h->needs_copy
|
|
|| eh->needs_copy
|
|
|| (h->root.type == bfd_link_hash_undefined))
|
|
&& (X86_PCREL_TYPE_P (true, r_type)
|
|
|| X86_SIZE_TYPE_P (true, r_type)));
|
|
pc32_reloc = false;
|
|
}
|
|
else
|
|
{
|
|
need_copy_reloc_in_pie = false;
|
|
pc32_reloc = r_type == R_386_PC32;
|
|
}
|
|
|
|
if (GENERATE_DYNAMIC_RELOCATION_P (is_x86_64, info, eh, r_type,
|
|
sec, need_copy_reloc_in_pie,
|
|
resolved_to_zero, pc32_reloc))
|
|
{
|
|
/* When generating a shared object, these relocations
|
|
are copied into the output file to be resolved at run
|
|
time. */
|
|
offset = _bfd_elf_section_offset (info->output_bfd, info,
|
|
input_section,
|
|
irel->r_offset);
|
|
if (offset == (bfd_vma) -1
|
|
|| offset == (bfd_vma) -2
|
|
|| COPY_INPUT_RELOC_P (is_x86_64, info, h, r_type))
|
|
continue;
|
|
|
|
/* This symbol is local, or marked to become local. When
|
|
relocation overflow check is disabled, we convert
|
|
R_X86_64_32 to dynamic R_X86_64_RELATIVE. */
|
|
if (is_x86_64
|
|
&& !(r_type == htab->pointer_r_type
|
|
|| (r_type == R_X86_64_32
|
|
&& htab->params->no_reloc_overflow_check)))
|
|
continue;
|
|
|
|
if (!elf_x86_relative_reloc_record_add
|
|
(info,
|
|
((unaligned_section || unaligned_offset)
|
|
? &htab->unaligned_relative_reloc
|
|
: &htab->relative_reloc),
|
|
irel, input_section, sec, h, isym, offset))
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
input_section->relative_reloc_packed = 1;
|
|
|
|
return true;
|
|
|
|
error_return:
|
|
if ((unsigned char *) isymbuf != symtab_hdr->contents)
|
|
free (isymbuf);
|
|
if (elf_section_data (input_section)->relocs != internal_relocs)
|
|
free (internal_relocs);
|
|
return false;
|
|
}
|
|
|
|
/* Add an entry to the 64-bit DT_RELR bitmap. */
|
|
|
|
static void
|
|
elf64_dt_relr_bitmap_add
|
|
(struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap,
|
|
uint64_t entry)
|
|
{
|
|
bfd_size_type newidx;
|
|
|
|
if (bitmap->u.elf64 == NULL)
|
|
{
|
|
bitmap->u.elf64 = bfd_malloc (sizeof (uint64_t));
|
|
bitmap->count = 0;
|
|
bitmap->size = 1;
|
|
}
|
|
|
|
newidx = bitmap->count++;
|
|
|
|
if (bitmap->count > bitmap->size)
|
|
{
|
|
bitmap->size <<= 1;
|
|
bitmap->u.elf64 = bfd_realloc (bitmap->u.elf64,
|
|
(bitmap->size * sizeof (uint64_t)));
|
|
}
|
|
|
|
if (bitmap->u.elf64 == NULL)
|
|
{
|
|
info->callbacks->einfo
|
|
/* xgettext:c-format */
|
|
(_("%F%P: %pB: failed to allocate 64-bit DT_RELR bitmap\n"),
|
|
info->output_bfd);
|
|
}
|
|
|
|
bitmap->u.elf64[newidx] = entry;
|
|
}
|
|
|
|
/* Add an entry to the 32-bit DT_RELR bitmap. */
|
|
|
|
static void
|
|
elf32_dt_relr_bitmap_add
|
|
(struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap,
|
|
uint32_t entry)
|
|
{
|
|
bfd_size_type newidx;
|
|
|
|
if (bitmap->u.elf32 == NULL)
|
|
{
|
|
bitmap->u.elf32 = bfd_malloc (sizeof (uint32_t));
|
|
bitmap->count = 0;
|
|
bitmap->size = 1;
|
|
}
|
|
|
|
newidx = bitmap->count++;
|
|
|
|
if (bitmap->count > bitmap->size)
|
|
{
|
|
bitmap->size <<= 1;
|
|
bitmap->u.elf32 = bfd_realloc (bitmap->u.elf32,
|
|
(bitmap->size * sizeof (uint32_t)));
|
|
}
|
|
|
|
if (bitmap->u.elf32 == NULL)
|
|
{
|
|
info->callbacks->einfo
|
|
/* xgettext:c-format */
|
|
(_("%F%P: %pB: failed to allocate 32-bit DT_RELR bitmap\n"),
|
|
info->output_bfd);
|
|
}
|
|
|
|
bitmap->u.elf32[newidx] = entry;
|
|
}
|
|
|
|
void
|
|
_bfd_elf32_write_addend (bfd *abfd, uint64_t value, void *addr)
|
|
{
|
|
bfd_put_32 (abfd, value, addr);
|
|
}
|
|
|
|
void
|
|
_bfd_elf64_write_addend (bfd *abfd, uint64_t value, void *addr)
|
|
{
|
|
bfd_put_64 (abfd, value, addr);
|
|
}
|
|
|
|
/* Size or finish relative relocations to determine the run-time
|
|
addresses for DT_RELR bitmap computation later. OUTREL is set
|
|
to NULL in the sizing phase and non-NULL in the finising phase
|
|
where the regular relative relocations will be written out. */
|
|
|
|
static void
|
|
elf_x86_size_or_finish_relative_reloc
|
|
(bool is_x86_64, struct bfd_link_info *info,
|
|
struct elf_x86_link_hash_table *htab, bool unaligned,
|
|
Elf_Internal_Rela *outrel)
|
|
{
|
|
unsigned int align_mask;
|
|
bfd_size_type i, count;
|
|
asection *sec, *srel;
|
|
struct elf_link_hash_entry *h;
|
|
bfd_vma offset;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sym_sec;
|
|
asection *sgot = htab->elf.sgot;
|
|
asection *srelgot = htab->elf.srelgot;
|
|
struct elf_x86_relative_reloc_data *relative_reloc;
|
|
|
|
if (unaligned)
|
|
{
|
|
align_mask = 0;
|
|
relative_reloc = &htab->unaligned_relative_reloc;
|
|
}
|
|
else
|
|
{
|
|
align_mask = 1;
|
|
relative_reloc = &htab->relative_reloc;
|
|
}
|
|
|
|
count = relative_reloc->count;
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
sec = relative_reloc->data[i].sec;
|
|
sym = relative_reloc->data[i].sym;
|
|
|
|
/* If SYM is NULL, it must be a global symbol. */
|
|
if (sym == NULL)
|
|
h = relative_reloc->data[i].u.h;
|
|
else
|
|
h = NULL;
|
|
|
|
if (is_x86_64)
|
|
{
|
|
bfd_vma relocation;
|
|
/* This function may be called more than once and REL may be
|
|
updated by _bfd_elf_rela_local_sym below. */
|
|
Elf_Internal_Rela rel = relative_reloc->data[i].rel;
|
|
|
|
if (h != NULL)
|
|
{
|
|
if (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = h->root.u.def.section;
|
|
relocation = (h->root.u.def.value
|
|
+ sym_sec->output_section->vma
|
|
+ sym_sec->output_offset);
|
|
}
|
|
else
|
|
{
|
|
/* Allow undefined symbol only at the sizing phase.
|
|
Otherwise skip undefined symbol here. Undefined
|
|
symbol will be reported by relocate_section. */
|
|
if (outrel == NULL)
|
|
relocation = 0;
|
|
else
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
sym_sec = relative_reloc->data[i].u.sym_sec;
|
|
relocation = _bfd_elf_rela_local_sym
|
|
(info->output_bfd, sym, &sym_sec, &rel);
|
|
}
|
|
|
|
if (outrel != NULL)
|
|
{
|
|
outrel->r_addend = relocation;
|
|
if (sec == sgot)
|
|
{
|
|
if (h != NULL && h->needs_plt)
|
|
abort ();
|
|
}
|
|
else
|
|
outrel->r_addend += rel.r_addend;
|
|
|
|
/* Write the implicit addend if ALIGN_MASK isn't 0. */
|
|
if (align_mask)
|
|
{
|
|
if (sec == sgot)
|
|
{
|
|
if (relative_reloc->data[i].offset >= sec->size)
|
|
abort ();
|
|
htab->elf_write_addend_in_got
|
|
(info->output_bfd, outrel->r_addend,
|
|
sec->contents + relative_reloc->data[i].offset);
|
|
}
|
|
else
|
|
{
|
|
bfd_byte *contents;
|
|
|
|
if (rel.r_offset >= sec->size)
|
|
abort ();
|
|
|
|
if (elf_section_data (sec)->this_hdr.contents
|
|
!= NULL)
|
|
contents
|
|
= elf_section_data (sec)->this_hdr.contents;
|
|
else
|
|
{
|
|
if (!bfd_malloc_and_get_section (sec->owner,
|
|
sec,
|
|
&contents))
|
|
info->callbacks->einfo
|
|
/* xgettext:c-format */
|
|
(_("%F%P: %pB: failed to allocate memory for section `%pA'\n"),
|
|
info->output_bfd, sec);
|
|
|
|
/* Cache the section contents for
|
|
elf_link_input_bfd. */
|
|
elf_section_data (sec)->this_hdr.contents
|
|
= contents;
|
|
}
|
|
htab->elf_write_addend
|
|
(info->output_bfd, outrel->r_addend,
|
|
contents + rel.r_offset);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sec == sgot)
|
|
srel = srelgot;
|
|
else
|
|
srel = elf_section_data (sec)->sreloc;
|
|
offset = (sec->output_section->vma + sec->output_offset
|
|
+ relative_reloc->data[i].offset);
|
|
relative_reloc->data[i].address = offset;
|
|
if (outrel != NULL)
|
|
{
|
|
outrel->r_offset = offset;
|
|
|
|
if ((outrel->r_offset & align_mask) != 0)
|
|
abort ();
|
|
|
|
if (htab->params->report_relative_reloc)
|
|
_bfd_x86_elf_link_report_relative_reloc
|
|
(info, sec, h, sym, htab->relative_r_name, outrel);
|
|
|
|
/* Generate regular relative relocation if ALIGN_MASK is 0. */
|
|
if (align_mask == 0)
|
|
htab->elf_append_reloc (info->output_bfd, srel, outrel);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute the DT_RELR section size. Set NEED_PLAYOUT to true if
|
|
the DT_RELR section size has been increased. */
|
|
|
|
static void
|
|
elf_x86_compute_dl_relr_bitmap
|
|
(struct bfd_link_info *info, struct elf_x86_link_hash_table *htab,
|
|
bool *need_layout)
|
|
{
|
|
bfd_vma base;
|
|
bfd_size_type i, count, new_count;
|
|
struct elf_x86_relative_reloc_data *relative_reloc =
|
|
&htab->relative_reloc;
|
|
/* Save the old DT_RELR bitmap count. Don't shrink the DT_RELR bitmap
|
|
if the new DT_RELR bitmap count is smaller than the old one. Pad
|
|
with trailing 1s which won't be decoded to more relocations. */
|
|
bfd_size_type dt_relr_bitmap_count = htab->dt_relr_bitmap.count;
|
|
|
|
/* Clear the DT_RELR bitmap count. */
|
|
htab->dt_relr_bitmap.count = 0;
|
|
|
|
count = relative_reloc->count;
|
|
|
|
if (ABI_64_P (info->output_bfd))
|
|
{
|
|
/* Compute the 64-bit DT_RELR bitmap. */
|
|
i = 0;
|
|
while (i < count)
|
|
{
|
|
if ((relative_reloc->data[i].address % 1) != 0)
|
|
abort ();
|
|
|
|
elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap,
|
|
relative_reloc->data[i].address);
|
|
|
|
base = relative_reloc->data[i].address + 8;
|
|
i++;
|
|
|
|
while (i < count)
|
|
{
|
|
uint64_t bitmap = 0;
|
|
for (; i < count; i++)
|
|
{
|
|
bfd_vma delta = (relative_reloc->data[i].address
|
|
- base);
|
|
/* Stop if it is too far from base. */
|
|
if (delta >= 63 * 8)
|
|
break;
|
|
/* Stop if it isn't a multiple of 8. */
|
|
if ((delta % 8) != 0)
|
|
break;
|
|
bitmap |= 1ULL << (delta / 8);
|
|
}
|
|
|
|
if (bitmap == 0)
|
|
break;
|
|
|
|
elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap,
|
|
(bitmap << 1) | 1);
|
|
|
|
base += 63 * 8;
|
|
}
|
|
}
|
|
|
|
new_count = htab->dt_relr_bitmap.count;
|
|
if (dt_relr_bitmap_count > new_count)
|
|
{
|
|
/* Don't shrink the DT_RELR section size to avoid section
|
|
layout oscillation. Instead, pad the DT_RELR bitmap with
|
|
1s which do not decode to more relocations. */
|
|
|
|
htab->dt_relr_bitmap.count = dt_relr_bitmap_count;
|
|
count = dt_relr_bitmap_count - new_count;
|
|
for (i = 0; i < count; i++)
|
|
htab->dt_relr_bitmap.u.elf64[new_count + i] = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Compute the 32-bit DT_RELR bitmap. */
|
|
i = 0;
|
|
while (i < count)
|
|
{
|
|
if ((relative_reloc->data[i].address % 1) != 0)
|
|
abort ();
|
|
|
|
elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap,
|
|
relative_reloc->data[i].address);
|
|
|
|
base = relative_reloc->data[i].address + 4;
|
|
i++;
|
|
|
|
while (i < count)
|
|
{
|
|
uint32_t bitmap = 0;
|
|
for (; i < count; i++)
|
|
{
|
|
bfd_vma delta = (relative_reloc->data[i].address
|
|
- base);
|
|
/* Stop if it is too far from base. */
|
|
if (delta >= 31 * 4)
|
|
break;
|
|
/* Stop if it isn't a multiple of 4. */
|
|
if ((delta % 4) != 0)
|
|
break;
|
|
bitmap |= 1ULL << (delta / 4);
|
|
}
|
|
|
|
if (bitmap == 0)
|
|
break;
|
|
|
|
elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap,
|
|
(bitmap << 1) | 1);
|
|
|
|
base += 31 * 4;
|
|
}
|
|
}
|
|
|
|
new_count = htab->dt_relr_bitmap.count;
|
|
if (dt_relr_bitmap_count > new_count)
|
|
{
|
|
/* Don't shrink the DT_RELR section size to avoid section
|
|
layout oscillation. Instead, pad the DT_RELR bitmap with
|
|
1s which do not decode to more relocations. */
|
|
|
|
htab->dt_relr_bitmap.count = dt_relr_bitmap_count;
|
|
count = dt_relr_bitmap_count - new_count;
|
|
for (i = 0; i < count; i++)
|
|
htab->dt_relr_bitmap.u.elf32[new_count + i] = 1;
|
|
}
|
|
}
|
|
|
|
if (htab->dt_relr_bitmap.count != dt_relr_bitmap_count)
|
|
{
|
|
if (need_layout)
|
|
{
|
|
/* The .relr.dyn section size is changed. Update the section
|
|
size and tell linker to layout sections again. */
|
|
htab->elf.srelrdyn->size =
|
|
(htab->dt_relr_bitmap.count
|
|
* (ABI_64_P (info->output_bfd) ? 8 : 4));
|
|
|
|
*need_layout = true;
|
|
}
|
|
else
|
|
info->callbacks->einfo
|
|
/* xgettext:c-format */
|
|
(_("%F%P: %pB: size of compact relative reloc section is "
|
|
"changed: new (%lu) != old (%lu)\n"),
|
|
info->output_bfd, htab->dt_relr_bitmap.count,
|
|
dt_relr_bitmap_count);
|
|
}
|
|
}
|
|
|
|
/* Write out the DT_RELR section. */
|
|
|
|
static void
|
|
elf_x86_write_dl_relr_bitmap (struct bfd_link_info *info,
|
|
struct elf_x86_link_hash_table *htab)
|
|
{
|
|
asection *sec = htab->elf.srelrdyn;
|
|
bfd_size_type size = sec->size;
|
|
bfd_size_type i;
|
|
unsigned char *contents;
|
|
|
|
contents = (unsigned char *) bfd_alloc (sec->owner, size);
|
|
if (contents == NULL)
|
|
info->callbacks->einfo
|
|
/* xgettext:c-format */
|
|
(_("%F%P: %pB: failed to allocate compact relative reloc section\n"),
|
|
info->output_bfd);
|
|
|
|
/* Cache the section contents for elf_link_input_bfd. */
|
|
sec->contents = contents;
|
|
|
|
if (ABI_64_P (info->output_bfd))
|
|
for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 8)
|
|
bfd_put_64 (info->output_bfd, htab->dt_relr_bitmap.u.elf64[i],
|
|
contents);
|
|
else
|
|
for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 4)
|
|
bfd_put_32 (info->output_bfd, htab->dt_relr_bitmap.u.elf32[i],
|
|
contents);
|
|
}
|
|
|
|
/* Sort relative relocations by address. */
|
|
|
|
static int
|
|
elf_x86_relative_reloc_compare (const void *pa, const void *pb)
|
|
{
|
|
struct elf_x86_relative_reloc_record *a =
|
|
(struct elf_x86_relative_reloc_record *) pa;
|
|
struct elf_x86_relative_reloc_record *b =
|
|
(struct elf_x86_relative_reloc_record *) pb;
|
|
if (a->address < b->address)
|
|
return -1;
|
|
if (a->address > b->address)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
enum dynobj_sframe_plt_type
|
|
{
|
|
SFRAME_PLT = 1,
|
|
SFRAME_PLT_SEC = 2
|
|
};
|
|
|
|
/* Create SFrame unwind info for the plt entries in the .plt section
|
|
of type PLT_SEC_TYPE. */
|
|
|
|
static bool
|
|
_bfd_x86_elf_create_sframe_plt (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
unsigned int plt_sec_type)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
const struct elf_backend_data *bed;
|
|
|
|
bool plt0_generated_p;
|
|
unsigned int plt0_entry_size;
|
|
unsigned char func_info;
|
|
unsigned int fre_type;
|
|
/* The dynamic plt section for which .sframe unwind information is being
|
|
created. */
|
|
asection *dpltsec;
|
|
|
|
int err = 0;
|
|
|
|
sframe_encoder_ctx **ectx = NULL;
|
|
unsigned plt_entry_size = 0;
|
|
unsigned int num_pltn_fres = 0;
|
|
unsigned int num_pltn_entries = 0;
|
|
|
|
bed = get_elf_backend_data (output_bfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
/* Whether SFrame unwind info for plt0 is to be generated. */
|
|
plt0_generated_p = htab->plt.has_plt0;
|
|
plt0_entry_size
|
|
= (plt0_generated_p) ? htab->sframe_plt->plt0_entry_size : 0;
|
|
|
|
switch (plt_sec_type)
|
|
{
|
|
case SFRAME_PLT:
|
|
{
|
|
ectx = &htab->plt_cfe_ctx;
|
|
dpltsec = htab->elf.splt;
|
|
|
|
plt_entry_size = htab->plt.plt_entry_size;
|
|
num_pltn_fres = htab->sframe_plt->pltn_num_fres;
|
|
num_pltn_entries
|
|
= (htab->elf.splt->size - plt0_entry_size) / plt_entry_size;
|
|
|
|
break;
|
|
}
|
|
case SFRAME_PLT_SEC:
|
|
{
|
|
ectx = &htab->plt_second_cfe_ctx;
|
|
/* FIXME - this or htab->plt_second_sframe ? */
|
|
dpltsec = htab->plt_second_eh_frame;
|
|
|
|
plt_entry_size = htab->sframe_plt->sec_pltn_entry_size;
|
|
num_pltn_fres = htab->sframe_plt->sec_pltn_num_fres;
|
|
num_pltn_entries
|
|
= htab->plt_second_eh_frame->size / plt_entry_size;
|
|
break;
|
|
}
|
|
default:
|
|
/* No other value is possible. */
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
*ectx = sframe_encode (SFRAME_VERSION_1,
|
|
0,
|
|
SFRAME_ABI_AMD64_ENDIAN_LITTLE,
|
|
SFRAME_CFA_FIXED_FP_INVALID,
|
|
-8, /* Fixed RA offset. */
|
|
&err);
|
|
|
|
/* FRE type is dependent on the size of the function. */
|
|
fre_type = sframe_calc_fre_type (dpltsec->size);
|
|
func_info = sframe_fde_create_func_info (fre_type, SFRAME_FDE_TYPE_PCINC);
|
|
|
|
/* Add SFrame FDE and the associated FREs for plt0 if plt0 has been
|
|
generated. */
|
|
if (plt0_generated_p)
|
|
{
|
|
/* Add SFrame FDE for plt0, the function start address is updated later
|
|
at _bfd_elf_merge_section_sframe time. */
|
|
sframe_encoder_add_funcdesc (*ectx,
|
|
0, /* func start addr. */
|
|
plt0_entry_size,
|
|
func_info,
|
|
0 /* Num FREs. */);
|
|
sframe_frame_row_entry plt0_fre;
|
|
unsigned int num_plt0_fres = htab->sframe_plt->plt0_num_fres;
|
|
for (unsigned int j = 0; j < num_plt0_fres; j++)
|
|
{
|
|
plt0_fre = *(htab->sframe_plt->plt0_fres[j]);
|
|
sframe_encoder_add_fre (*ectx, 0, &plt0_fre);
|
|
}
|
|
}
|
|
|
|
|
|
if (num_pltn_entries)
|
|
{
|
|
/* pltn entries use an SFrame FDE of type
|
|
SFRAME_FDE_TYPE_PCMASK to exploit the repetitive
|
|
pattern of the instructions in these entries. Using this SFrame FDE
|
|
type helps in keeping the unwind information for pltn entries
|
|
compact. */
|
|
func_info = sframe_fde_create_func_info (fre_type,
|
|
SFRAME_FDE_TYPE_PCMASK);
|
|
/* Add the SFrame FDE for all PCs starting at the first pltn entry (hence,
|
|
function start address = plt0_entry_size. As usual, this will be
|
|
updated later at _bfd_elf_merge_section_sframe, by when the
|
|
sections are relocated. */
|
|
sframe_encoder_add_funcdesc (*ectx,
|
|
plt0_entry_size, /* func start addr. */
|
|
dpltsec->size - plt0_entry_size,
|
|
func_info,
|
|
0 /* Num FREs. */);
|
|
|
|
sframe_frame_row_entry pltn_fre;
|
|
/* Now add the FREs for pltn. Simply adding the two FREs suffices due
|
|
to the usage of SFRAME_FDE_TYPE_PCMASK above. */
|
|
for (unsigned int j = 0; j < num_pltn_fres; j++)
|
|
{
|
|
pltn_fre = *(htab->sframe_plt->pltn_fres[j]);
|
|
sframe_encoder_add_fre (*ectx, 1, &pltn_fre);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Put contents of the .sframe section corresponding to the specified
|
|
PLT_SEC_TYPE. */
|
|
|
|
static bool
|
|
_bfd_x86_elf_write_sframe_plt (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
unsigned int plt_sec_type)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
const struct elf_backend_data *bed;
|
|
sframe_encoder_ctx *ectx;
|
|
size_t sec_size;
|
|
asection *sec;
|
|
bfd *dynobj;
|
|
|
|
int err = 0;
|
|
|
|
bed = get_elf_backend_data (output_bfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
dynobj = htab->elf.dynobj;
|
|
|
|
switch (plt_sec_type)
|
|
{
|
|
case SFRAME_PLT:
|
|
ectx = htab->plt_cfe_ctx;
|
|
sec = htab->plt_sframe;
|
|
break;
|
|
case SFRAME_PLT_SEC:
|
|
ectx = htab->plt_second_cfe_ctx;
|
|
sec = htab->plt_second_sframe;
|
|
break;
|
|
default:
|
|
/* No other value is possible. */
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
BFD_ASSERT (ectx);
|
|
|
|
void *contents = sframe_encoder_write (ectx, &sec_size, &err);
|
|
|
|
sec->size = (bfd_size_type) sec_size;
|
|
sec->contents = (unsigned char *) bfd_zalloc (dynobj, sec->size);
|
|
memcpy (sec->contents, contents, sec_size);
|
|
|
|
sframe_encoder_free (&ectx);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
_bfd_elf_x86_size_relative_relocs (struct bfd_link_info *info,
|
|
bool *need_layout)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
const struct elf_backend_data *bed;
|
|
bool is_x86_64;
|
|
bfd_size_type i, count, unaligned_count;
|
|
asection *sec, *srel;
|
|
|
|
/* Do nothing for ld -r. */
|
|
if (bfd_link_relocatable (info))
|
|
return true;
|
|
|
|
bed = get_elf_backend_data (info->output_bfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return false;
|
|
|
|
count = htab->relative_reloc.count;
|
|
unaligned_count = htab->unaligned_relative_reloc.count;
|
|
if (count == 0)
|
|
{
|
|
if (htab->generate_relative_reloc_pass == 0
|
|
&& htab->elf.srelrdyn != NULL)
|
|
{
|
|
/* Remove the empty .relr.dyn sections now. */
|
|
if (!bfd_is_abs_section (htab->elf.srelrdyn->output_section))
|
|
{
|
|
bfd_section_list_remove
|
|
(info->output_bfd, htab->elf.srelrdyn->output_section);
|
|
info->output_bfd->section_count--;
|
|
}
|
|
bfd_section_list_remove (htab->elf.srelrdyn->owner,
|
|
htab->elf.srelrdyn);
|
|
htab->elf.srelrdyn->owner->section_count--;
|
|
}
|
|
if (unaligned_count == 0)
|
|
{
|
|
htab->generate_relative_reloc_pass++;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
is_x86_64 = bed->target_id == X86_64_ELF_DATA;
|
|
|
|
/* Size relative relocations. */
|
|
if (htab->generate_relative_reloc_pass)
|
|
{
|
|
/* Reset the regular relative relocation count. */
|
|
for (i = 0; i < unaligned_count; i++)
|
|
{
|
|
sec = htab->unaligned_relative_reloc.data[i].sec;
|
|
srel = elf_section_data (sec)->sreloc;
|
|
srel->reloc_count = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Remove the reserved space for compact relative relocations. */
|
|
if (count)
|
|
{
|
|
asection *sgot = htab->elf.sgot;
|
|
asection *srelgot = htab->elf.srelgot;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
sec = htab->relative_reloc.data[i].sec;
|
|
if (sec == sgot)
|
|
srel = srelgot;
|
|
else
|
|
srel = elf_section_data (sec)->sreloc;
|
|
srel->size -= htab->sizeof_reloc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Size unaligned relative relocations. */
|
|
if (unaligned_count)
|
|
elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab,
|
|
true, NULL);
|
|
|
|
if (count)
|
|
{
|
|
elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab,
|
|
false, NULL);
|
|
|
|
/* Sort relative relocations by addresses. We only need to
|
|
sort them in the first pass since the relative positions
|
|
won't change. */
|
|
if (htab->generate_relative_reloc_pass == 0)
|
|
qsort (htab->relative_reloc.data, count,
|
|
sizeof (struct elf_x86_relative_reloc_record),
|
|
elf_x86_relative_reloc_compare);
|
|
|
|
elf_x86_compute_dl_relr_bitmap (info, htab, need_layout);
|
|
}
|
|
|
|
htab->generate_relative_reloc_pass++;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
_bfd_elf_x86_finish_relative_relocs (struct bfd_link_info *info)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
const struct elf_backend_data *bed;
|
|
Elf_Internal_Rela outrel;
|
|
bool is_x86_64;
|
|
bfd_size_type count;
|
|
|
|
/* Do nothing for ld -r. */
|
|
if (bfd_link_relocatable (info))
|
|
return true;
|
|
|
|
bed = get_elf_backend_data (info->output_bfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return false;
|
|
|
|
is_x86_64 = bed->target_id == X86_64_ELF_DATA;
|
|
|
|
outrel.r_info = htab->r_info (0, htab->relative_r_type);
|
|
|
|
if (htab->unaligned_relative_reloc.count)
|
|
elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab,
|
|
true, &outrel);
|
|
|
|
count = htab->relative_reloc.count;
|
|
if (count)
|
|
{
|
|
elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab,
|
|
false, &outrel);
|
|
|
|
elf_x86_compute_dl_relr_bitmap (info, htab, NULL);
|
|
|
|
elf_x86_write_dl_relr_bitmap (info, htab);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
_bfd_elf_x86_valid_reloc_p (asection *input_section,
|
|
struct bfd_link_info *info,
|
|
struct elf_x86_link_hash_table *htab,
|
|
const Elf_Internal_Rela *rel,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym,
|
|
Elf_Internal_Shdr *symtab_hdr,
|
|
bool *no_dynreloc_p)
|
|
{
|
|
bool valid_p = true;
|
|
|
|
*no_dynreloc_p = false;
|
|
|
|
/* Check If relocation against non-preemptible absolute symbol is
|
|
valid in PIC. FIXME: Can't use SYMBOL_REFERENCES_LOCAL_P since
|
|
it may call _bfd_elf_link_hide_sym_by_version and result in
|
|
ld-elfvers/ vers21 test failure. */
|
|
if (bfd_link_pic (info)
|
|
&& (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
|
|
{
|
|
const struct elf_backend_data *bed;
|
|
unsigned int r_type;
|
|
Elf_Internal_Rela irel;
|
|
|
|
/* Skip non-absolute symbol. */
|
|
if (h)
|
|
{
|
|
if (!ABS_SYMBOL_P (h))
|
|
return valid_p;
|
|
}
|
|
else if (sym->st_shndx != SHN_ABS)
|
|
return valid_p;
|
|
|
|
bed = get_elf_backend_data (input_section->owner);
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
irel = *rel;
|
|
|
|
/* Only allow relocations against absolute symbol, which can be
|
|
resolved as absolute value + addend. GOTPCREL and GOT32
|
|
relocations are allowed since absolute value + addend is
|
|
stored in the GOT slot. */
|
|
if (bed->target_id == X86_64_ELF_DATA)
|
|
{
|
|
r_type &= ~R_X86_64_converted_reloc_bit;
|
|
valid_p = (r_type == R_X86_64_64
|
|
|| r_type == R_X86_64_32
|
|
|| r_type == R_X86_64_32S
|
|
|| r_type == R_X86_64_16
|
|
|| r_type == R_X86_64_8
|
|
|| r_type == R_X86_64_GOTPCREL
|
|
|| r_type == R_X86_64_GOTPCRELX
|
|
|| r_type == R_X86_64_REX_GOTPCRELX);
|
|
if (!valid_p)
|
|
{
|
|
unsigned int r_symndx = htab->r_sym (rel->r_info);
|
|
irel.r_info = htab->r_info (r_symndx, r_type);
|
|
}
|
|
}
|
|
else
|
|
valid_p = (r_type == R_386_32
|
|
|| r_type == R_386_16
|
|
|| r_type == R_386_8
|
|
|| r_type == R_386_GOT32
|
|
|| r_type == R_386_GOT32X);
|
|
|
|
if (valid_p)
|
|
*no_dynreloc_p = true;
|
|
else
|
|
{
|
|
const char *name;
|
|
arelent internal_reloc;
|
|
|
|
if (!bed->elf_info_to_howto (input_section->owner,
|
|
&internal_reloc, &irel)
|
|
|| internal_reloc.howto == NULL)
|
|
abort ();
|
|
|
|
if (h)
|
|
name = h->root.root.string;
|
|
else
|
|
name = bfd_elf_sym_name (input_section->owner, symtab_hdr,
|
|
sym, NULL);
|
|
info->callbacks->einfo
|
|
/* xgettext:c-format */
|
|
(_("%F%P: %pB: relocation %s against absolute symbol "
|
|
"`%s' in section `%pA' is disallowed\n"),
|
|
input_section->owner, internal_reloc.howto->name, name,
|
|
input_section);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
}
|
|
}
|
|
|
|
return valid_p;
|
|
}
|
|
|
|
/* Set the sizes of the dynamic sections. */
|
|
|
|
bool
|
|
_bfd_x86_elf_size_dynamic_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
asection *s;
|
|
bool relocs;
|
|
bfd *ibfd;
|
|
const struct elf_backend_data *bed
|
|
= get_elf_backend_data (output_bfd);
|
|
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return false;
|
|
dynobj = htab->elf.dynobj;
|
|
if (dynobj == NULL)
|
|
abort ();
|
|
|
|
/* Set up .got offsets for local syms, and space for local dynamic
|
|
relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
|
|
{
|
|
bfd_signed_vma *local_got;
|
|
bfd_signed_vma *end_local_got;
|
|
char *local_tls_type;
|
|
bfd_vma *local_tlsdesc_gotent;
|
|
bfd_size_type locsymcount;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srel;
|
|
|
|
if (! is_x86_elf (ibfd, htab))
|
|
continue;
|
|
|
|
for (s = ibfd->sections; s != NULL; s = s->next)
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
|
|
for (p = ((struct elf_dyn_relocs *)
|
|
elf_section_data (s)->local_dynrel);
|
|
p != NULL;
|
|
p = p->next)
|
|
{
|
|
if (!bfd_is_abs_section (p->sec)
|
|
&& bfd_is_abs_section (p->sec->output_section))
|
|
{
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
}
|
|
else if (htab->elf.target_os == is_vxworks
|
|
&& strcmp (p->sec->output_section->name,
|
|
".tls_vars") == 0)
|
|
{
|
|
/* Relocations in vxworks .tls_vars sections are
|
|
handled specially by the loader. */
|
|
}
|
|
else if (p->count != 0)
|
|
{
|
|
srel = elf_section_data (p->sec)->sreloc;
|
|
srel->size += p->count * htab->sizeof_reloc;
|
|
if ((p->sec->output_section->flags & SEC_READONLY) != 0
|
|
&& (info->flags & DF_TEXTREL) == 0)
|
|
{
|
|
info->flags |= DF_TEXTREL;
|
|
if (bfd_link_textrel_check (info))
|
|
/* xgettext:c-format */
|
|
info->callbacks->einfo
|
|
(_("%P: %pB: warning: relocation "
|
|
"in read-only section `%pA'\n"),
|
|
p->sec->owner, p->sec);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
local_got = elf_local_got_refcounts (ibfd);
|
|
if (!local_got)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_symtab_hdr (ibfd);
|
|
locsymcount = symtab_hdr->sh_info;
|
|
end_local_got = local_got + locsymcount;
|
|
local_tls_type = elf_x86_local_got_tls_type (ibfd);
|
|
local_tlsdesc_gotent = elf_x86_local_tlsdesc_gotent (ibfd);
|
|
s = htab->elf.sgot;
|
|
srel = htab->elf.srelgot;
|
|
for (; local_got < end_local_got;
|
|
++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
|
|
{
|
|
*local_tlsdesc_gotent = (bfd_vma) -1;
|
|
if (*local_got > 0)
|
|
{
|
|
if (GOT_TLS_GDESC_P (*local_tls_type))
|
|
{
|
|
*local_tlsdesc_gotent = htab->elf.sgotplt->size
|
|
- elf_x86_compute_jump_table_size (htab);
|
|
htab->elf.sgotplt->size += 2 * htab->got_entry_size;
|
|
*local_got = (bfd_vma) -2;
|
|
}
|
|
if (! GOT_TLS_GDESC_P (*local_tls_type)
|
|
|| GOT_TLS_GD_P (*local_tls_type))
|
|
{
|
|
*local_got = s->size;
|
|
s->size += htab->got_entry_size;
|
|
if (GOT_TLS_GD_P (*local_tls_type)
|
|
|| *local_tls_type == GOT_TLS_IE_BOTH)
|
|
s->size += htab->got_entry_size;
|
|
}
|
|
if ((bfd_link_pic (info) && *local_tls_type != GOT_ABS)
|
|
|| GOT_TLS_GD_ANY_P (*local_tls_type)
|
|
|| (*local_tls_type & GOT_TLS_IE))
|
|
{
|
|
if (*local_tls_type == GOT_TLS_IE_BOTH)
|
|
srel->size += 2 * htab->sizeof_reloc;
|
|
else if (GOT_TLS_GD_P (*local_tls_type)
|
|
|| ! GOT_TLS_GDESC_P (*local_tls_type))
|
|
srel->size += htab->sizeof_reloc;
|
|
if (GOT_TLS_GDESC_P (*local_tls_type))
|
|
{
|
|
htab->elf.srelplt->size += htab->sizeof_reloc;
|
|
if (bed->target_id == X86_64_ELF_DATA)
|
|
htab->elf.tlsdesc_plt = (bfd_vma) -1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
*local_got = (bfd_vma) -1;
|
|
}
|
|
}
|
|
|
|
if (htab->tls_ld_or_ldm_got.refcount > 0)
|
|
{
|
|
/* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM
|
|
or R_X86_64_TLSLD relocs. */
|
|
htab->tls_ld_or_ldm_got.offset = htab->elf.sgot->size;
|
|
htab->elf.sgot->size += 2 * htab->got_entry_size;
|
|
htab->elf.srelgot->size += htab->sizeof_reloc;
|
|
}
|
|
else
|
|
htab->tls_ld_or_ldm_got.offset = -1;
|
|
|
|
/* Allocate global sym .plt and .got entries, and space for global
|
|
sym dynamic relocs. */
|
|
elf_link_hash_traverse (&htab->elf, elf_x86_allocate_dynrelocs,
|
|
info);
|
|
|
|
/* Allocate .plt and .got entries, and space for local symbols. */
|
|
htab_traverse (htab->loc_hash_table, elf_x86_allocate_local_dynreloc,
|
|
info);
|
|
|
|
/* For every jump slot reserved in the sgotplt, reloc_count is
|
|
incremented. However, when we reserve space for TLS descriptors,
|
|
it's not incremented, so in order to compute the space reserved
|
|
for them, it suffices to multiply the reloc count by the jump
|
|
slot size.
|
|
|
|
PR ld/13302: We start next_irelative_index at the end of .rela.plt
|
|
so that R_{386,X86_64}_IRELATIVE entries come last. */
|
|
if (htab->elf.srelplt)
|
|
{
|
|
htab->next_tls_desc_index = htab->elf.srelplt->reloc_count;
|
|
htab->sgotplt_jump_table_size
|
|
= elf_x86_compute_jump_table_size (htab);
|
|
htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
|
|
}
|
|
else if (htab->elf.irelplt)
|
|
htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
|
|
|
|
if (htab->elf.tlsdesc_plt)
|
|
{
|
|
/* NB: tlsdesc_plt is set only for x86-64. If we're not using
|
|
lazy TLS relocations, don't generate the PLT and GOT entries
|
|
they require. */
|
|
if ((info->flags & DF_BIND_NOW))
|
|
htab->elf.tlsdesc_plt = 0;
|
|
else
|
|
{
|
|
htab->elf.tlsdesc_got = htab->elf.sgot->size;
|
|
htab->elf.sgot->size += htab->got_entry_size;
|
|
/* Reserve room for the initial entry.
|
|
FIXME: we could probably do away with it in this case. */
|
|
if (htab->elf.splt->size == 0)
|
|
htab->elf.splt->size = htab->plt.plt_entry_size;
|
|
htab->elf.tlsdesc_plt = htab->elf.splt->size;
|
|
htab->elf.splt->size += htab->plt.plt_entry_size;
|
|
}
|
|
}
|
|
|
|
if (htab->elf.sgotplt)
|
|
{
|
|
/* Don't allocate .got.plt section if there are no GOT nor PLT
|
|
entries and there is no reference to _GLOBAL_OFFSET_TABLE_. */
|
|
if ((htab->elf.hgot == NULL
|
|
|| !htab->got_referenced)
|
|
&& (htab->elf.sgotplt->size == bed->got_header_size)
|
|
&& (htab->elf.splt == NULL
|
|
|| htab->elf.splt->size == 0)
|
|
&& (htab->elf.sgot == NULL
|
|
|| htab->elf.sgot->size == 0)
|
|
&& (htab->elf.iplt == NULL
|
|
|| htab->elf.iplt->size == 0)
|
|
&& (htab->elf.igotplt == NULL
|
|
|| htab->elf.igotplt->size == 0))
|
|
{
|
|
htab->elf.sgotplt->size = 0;
|
|
/* Solaris requires to keep _GLOBAL_OFFSET_TABLE_ even if it
|
|
isn't used. */
|
|
if (htab->elf.hgot != NULL
|
|
&& htab->elf.target_os != is_solaris)
|
|
{
|
|
/* Remove the unused _GLOBAL_OFFSET_TABLE_ from symbol
|
|
table. */
|
|
htab->elf.hgot->root.type = bfd_link_hash_undefined;
|
|
htab->elf.hgot->root.u.undef.abfd
|
|
= htab->elf.hgot->root.u.def.section->owner;
|
|
htab->elf.hgot->root.linker_def = 0;
|
|
htab->elf.hgot->ref_regular = 0;
|
|
htab->elf.hgot->def_regular = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (_bfd_elf_eh_frame_present (info))
|
|
{
|
|
if (htab->plt_eh_frame != NULL
|
|
&& htab->elf.splt != NULL
|
|
&& htab->elf.splt->size != 0
|
|
&& !bfd_is_abs_section (htab->elf.splt->output_section))
|
|
htab->plt_eh_frame->size = htab->plt.eh_frame_plt_size;
|
|
|
|
if (htab->plt_got_eh_frame != NULL
|
|
&& htab->plt_got != NULL
|
|
&& htab->plt_got->size != 0
|
|
&& !bfd_is_abs_section (htab->plt_got->output_section))
|
|
htab->plt_got_eh_frame->size
|
|
= htab->non_lazy_plt->eh_frame_plt_size;
|
|
|
|
/* Unwind info for the second PLT and .plt.got sections are
|
|
identical. */
|
|
if (htab->plt_second_eh_frame != NULL
|
|
&& htab->plt_second != NULL
|
|
&& htab->plt_second->size != 0
|
|
&& !bfd_is_abs_section (htab->plt_second->output_section))
|
|
htab->plt_second_eh_frame->size
|
|
= htab->non_lazy_plt->eh_frame_plt_size;
|
|
}
|
|
|
|
/* No need to size the .sframe section explicitly because the write-out
|
|
mechanism is different. Simply prep up the FDE/FRE for the
|
|
.plt section. */
|
|
if (_bfd_elf_sframe_present (info))
|
|
{
|
|
if (htab->plt_sframe != NULL
|
|
&& htab->elf.splt != NULL
|
|
&& htab->elf.splt->size != 0
|
|
&& !bfd_is_abs_section (htab->elf.splt->output_section))
|
|
{
|
|
_bfd_x86_elf_create_sframe_plt (output_bfd, info, SFRAME_PLT);
|
|
/* FIXME - Dirty Hack. Set the size to something non-zero for now,
|
|
so that the section does not get stripped out below. The precise
|
|
size of this section is known only when the contents are
|
|
serialized in _bfd_x86_elf_write_sframe_plt. */
|
|
htab->plt_sframe->size = sizeof (sframe_header) + 1;
|
|
}
|
|
|
|
/* FIXME - generate for .got.plt ? */
|
|
|
|
/* Unwind info for the second PLT. */
|
|
if (htab->plt_second_sframe != NULL
|
|
&& htab->plt_second != NULL
|
|
&& htab->plt_second->size != 0
|
|
&& !bfd_is_abs_section (htab->plt_second->output_section))
|
|
{
|
|
_bfd_x86_elf_create_sframe_plt (output_bfd, info,
|
|
SFRAME_PLT_SEC);
|
|
/* FIXME - Dirty Hack. Set the size to something non-zero for now,
|
|
so that the section does not get stripped out below. The precise
|
|
size of this section is known only when the contents are
|
|
serialized in _bfd_x86_elf_write_sframe_plt. */
|
|
htab->plt_second_sframe->size = sizeof (sframe_header) + 1;
|
|
}
|
|
}
|
|
|
|
/* We now have determined the sizes of the various dynamic sections.
|
|
Allocate memory for them. */
|
|
relocs = false;
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
|
{
|
|
bool strip_section = true;
|
|
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
/* The .relr.dyn section for compact relative relocation will
|
|
be filled later. */
|
|
if (s == htab->elf.srelrdyn)
|
|
continue;
|
|
|
|
if (s == htab->elf.splt
|
|
|| s == htab->elf.sgot)
|
|
{
|
|
/* Strip this section if we don't need it; see the
|
|
comment below. */
|
|
/* We'd like to strip these sections if they aren't needed, but if
|
|
we've exported dynamic symbols from them we must leave them.
|
|
It's too late to tell BFD to get rid of the symbols. */
|
|
|
|
if (htab->elf.hplt != NULL)
|
|
strip_section = false;
|
|
}
|
|
else if (s == htab->elf.sgotplt
|
|
|| s == htab->elf.iplt
|
|
|| s == htab->elf.igotplt
|
|
|| s == htab->plt_second
|
|
|| s == htab->plt_got
|
|
|| s == htab->plt_eh_frame
|
|
|| s == htab->plt_got_eh_frame
|
|
|| s == htab->plt_second_eh_frame
|
|
|| s == htab->plt_sframe
|
|
|| s == htab->plt_second_sframe
|
|
|| s == htab->elf.sdynbss
|
|
|| s == htab->elf.sdynrelro)
|
|
{
|
|
/* Strip these too. */
|
|
}
|
|
else if (htab->is_reloc_section (bfd_section_name (s)))
|
|
{
|
|
if (s->size != 0
|
|
&& s != htab->elf.srelplt
|
|
&& s != htab->srelplt2)
|
|
relocs = true;
|
|
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
if (s != htab->elf.srelplt)
|
|
s->reloc_count = 0;
|
|
}
|
|
else
|
|
{
|
|
/* It's not one of our sections, so don't allocate space. */
|
|
continue;
|
|
}
|
|
|
|
if (s->size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rel.bss and
|
|
.rel.plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
if (strip_section)
|
|
s->flags |= SEC_EXCLUDE;
|
|
continue;
|
|
}
|
|
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
|
continue;
|
|
|
|
/* Skip allocating contents for .sframe section as it is written
|
|
out differently. See below. */
|
|
if ((s == htab->plt_sframe) || (s == htab->plt_second_sframe))
|
|
continue;
|
|
|
|
/* NB: Initially, the iplt section has minimal alignment to
|
|
avoid moving dot of the following section backwards when
|
|
it is empty. Update its section alignment now since it
|
|
is non-empty. */
|
|
if (s == htab->elf.iplt)
|
|
bfd_set_section_alignment (s, htab->plt.iplt_alignment);
|
|
|
|
/* Allocate memory for the section contents. We use bfd_zalloc
|
|
here in case unused entries are not reclaimed before the
|
|
section's contents are written out. This should not happen,
|
|
but this way if it does, we get a R_386_NONE or R_X86_64_NONE
|
|
reloc instead of garbage. */
|
|
s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
|
|
if (s->contents == NULL)
|
|
return false;
|
|
}
|
|
|
|
if (htab->plt_eh_frame != NULL
|
|
&& htab->plt_eh_frame->contents != NULL)
|
|
{
|
|
memcpy (htab->plt_eh_frame->contents,
|
|
htab->plt.eh_frame_plt,
|
|
htab->plt_eh_frame->size);
|
|
bfd_put_32 (dynobj, htab->elf.splt->size,
|
|
htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
|
|
}
|
|
|
|
if (htab->plt_got_eh_frame != NULL
|
|
&& htab->plt_got_eh_frame->contents != NULL)
|
|
{
|
|
memcpy (htab->plt_got_eh_frame->contents,
|
|
htab->non_lazy_plt->eh_frame_plt,
|
|
htab->plt_got_eh_frame->size);
|
|
bfd_put_32 (dynobj, htab->plt_got->size,
|
|
(htab->plt_got_eh_frame->contents
|
|
+ PLT_FDE_LEN_OFFSET));
|
|
}
|
|
|
|
if (htab->plt_second_eh_frame != NULL
|
|
&& htab->plt_second_eh_frame->contents != NULL)
|
|
{
|
|
memcpy (htab->plt_second_eh_frame->contents,
|
|
htab->non_lazy_plt->eh_frame_plt,
|
|
htab->plt_second_eh_frame->size);
|
|
bfd_put_32 (dynobj, htab->plt_second->size,
|
|
(htab->plt_second_eh_frame->contents
|
|
+ PLT_FDE_LEN_OFFSET));
|
|
}
|
|
|
|
if (_bfd_elf_sframe_present (info))
|
|
{
|
|
if (htab->plt_sframe != NULL
|
|
&& htab->elf.splt != NULL
|
|
&& htab->elf.splt->size != 0
|
|
&& htab->plt_sframe->contents == NULL)
|
|
_bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT);
|
|
|
|
if (htab->plt_second_sframe != NULL
|
|
&& htab->elf.splt != NULL
|
|
&& htab->elf.splt->size != 0
|
|
&& htab->plt_second_sframe->contents == NULL)
|
|
_bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT_SEC);
|
|
}
|
|
|
|
return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info,
|
|
relocs);
|
|
}
|
|
|
|
/* Finish up the x86 dynamic sections. */
|
|
|
|
struct elf_x86_link_hash_table *
|
|
_bfd_x86_elf_finish_dynamic_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
const struct elf_backend_data *bed;
|
|
bfd *dynobj;
|
|
asection *sdyn;
|
|
bfd_byte *dyncon, *dynconend;
|
|
bfd_size_type sizeof_dyn;
|
|
|
|
bed = get_elf_backend_data (output_bfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return htab;
|
|
|
|
dynobj = htab->elf.dynobj;
|
|
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
|
|
|
|
/* GOT is always created in setup_gnu_properties. But it may not be
|
|
needed. .got.plt section may be needed for static IFUNC. */
|
|
if (htab->elf.sgotplt && htab->elf.sgotplt->size > 0)
|
|
{
|
|
bfd_vma dynamic_addr;
|
|
|
|
if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
|
|
{
|
|
_bfd_error_handler
|
|
(_("discarded output section: `%pA'"), htab->elf.sgotplt);
|
|
return NULL;
|
|
}
|
|
|
|
elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize
|
|
= htab->got_entry_size;
|
|
|
|
dynamic_addr = (sdyn == NULL
|
|
? (bfd_vma) 0
|
|
: sdyn->output_section->vma + sdyn->output_offset);
|
|
|
|
/* Set the first entry in the global offset table to the address
|
|
of the dynamic section. Write GOT[1] and GOT[2], needed for
|
|
the dynamic linker. */
|
|
if (htab->got_entry_size == 8)
|
|
{
|
|
bfd_put_64 (output_bfd, dynamic_addr,
|
|
htab->elf.sgotplt->contents);
|
|
bfd_put_64 (output_bfd, (bfd_vma) 0,
|
|
htab->elf.sgotplt->contents + 8);
|
|
bfd_put_64 (output_bfd, (bfd_vma) 0,
|
|
htab->elf.sgotplt->contents + 8*2);
|
|
}
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, dynamic_addr,
|
|
htab->elf.sgotplt->contents);
|
|
bfd_put_32 (output_bfd, 0,
|
|
htab->elf.sgotplt->contents + 4);
|
|
bfd_put_32 (output_bfd, 0,
|
|
htab->elf.sgotplt->contents + 4*2);
|
|
}
|
|
}
|
|
|
|
if (!htab->elf.dynamic_sections_created)
|
|
return htab;
|
|
|
|
if (sdyn == NULL || htab->elf.sgot == NULL)
|
|
abort ();
|
|
|
|
sizeof_dyn = bed->s->sizeof_dyn;
|
|
dyncon = sdyn->contents;
|
|
dynconend = sdyn->contents + sdyn->size;
|
|
for (; dyncon < dynconend; dyncon += sizeof_dyn)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
asection *s;
|
|
|
|
(*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
|
|
|
|
switch (dyn.d_tag)
|
|
{
|
|
default:
|
|
if (htab->elf.target_os == is_vxworks
|
|
&& elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
|
|
break;
|
|
continue;
|
|
|
|
case DT_PLTGOT:
|
|
s = htab->elf.sgotplt;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
|
break;
|
|
|
|
case DT_JMPREL:
|
|
dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
|
|
break;
|
|
|
|
case DT_PLTRELSZ:
|
|
s = htab->elf.srelplt->output_section;
|
|
dyn.d_un.d_val = s->size;
|
|
break;
|
|
|
|
case DT_TLSDESC_PLT:
|
|
s = htab->elf.splt;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
|
|
+ htab->elf.tlsdesc_plt;
|
|
break;
|
|
|
|
case DT_TLSDESC_GOT:
|
|
s = htab->elf.sgot;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
|
|
+ htab->elf.tlsdesc_got;
|
|
break;
|
|
}
|
|
|
|
(*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
|
|
}
|
|
|
|
if (htab->plt_got != NULL && htab->plt_got->size > 0)
|
|
elf_section_data (htab->plt_got->output_section)
|
|
->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size;
|
|
|
|
if (htab->plt_second != NULL && htab->plt_second->size > 0)
|
|
elf_section_data (htab->plt_second->output_section)
|
|
->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size;
|
|
|
|
/* Adjust .eh_frame for .plt section. */
|
|
if (htab->plt_eh_frame != NULL
|
|
&& htab->plt_eh_frame->contents != NULL)
|
|
{
|
|
if (htab->elf.splt != NULL
|
|
&& htab->elf.splt->size != 0
|
|
&& (htab->elf.splt->flags & SEC_EXCLUDE) == 0
|
|
&& htab->elf.splt->output_section != NULL
|
|
&& htab->plt_eh_frame->output_section != NULL)
|
|
{
|
|
bfd_vma plt_start = htab->elf.splt->output_section->vma;
|
|
bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
|
|
+ htab->plt_eh_frame->output_offset
|
|
+ PLT_FDE_START_OFFSET;
|
|
bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
|
|
htab->plt_eh_frame->contents
|
|
+ PLT_FDE_START_OFFSET);
|
|
}
|
|
|
|
if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
|
|
{
|
|
if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
|
|
htab->plt_eh_frame,
|
|
htab->plt_eh_frame->contents))
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Adjust .eh_frame for .plt.got section. */
|
|
if (htab->plt_got_eh_frame != NULL
|
|
&& htab->plt_got_eh_frame->contents != NULL)
|
|
{
|
|
if (htab->plt_got != NULL
|
|
&& htab->plt_got->size != 0
|
|
&& (htab->plt_got->flags & SEC_EXCLUDE) == 0
|
|
&& htab->plt_got->output_section != NULL
|
|
&& htab->plt_got_eh_frame->output_section != NULL)
|
|
{
|
|
bfd_vma plt_start = htab->plt_got->output_section->vma;
|
|
bfd_vma eh_frame_start = htab->plt_got_eh_frame->output_section->vma
|
|
+ htab->plt_got_eh_frame->output_offset
|
|
+ PLT_FDE_START_OFFSET;
|
|
bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
|
|
htab->plt_got_eh_frame->contents
|
|
+ PLT_FDE_START_OFFSET);
|
|
}
|
|
if (htab->plt_got_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
|
|
{
|
|
if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
|
|
htab->plt_got_eh_frame,
|
|
htab->plt_got_eh_frame->contents))
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Adjust .eh_frame for the second PLT section. */
|
|
if (htab->plt_second_eh_frame != NULL
|
|
&& htab->plt_second_eh_frame->contents != NULL)
|
|
{
|
|
if (htab->plt_second != NULL
|
|
&& htab->plt_second->size != 0
|
|
&& (htab->plt_second->flags & SEC_EXCLUDE) == 0
|
|
&& htab->plt_second->output_section != NULL
|
|
&& htab->plt_second_eh_frame->output_section != NULL)
|
|
{
|
|
bfd_vma plt_start = htab->plt_second->output_section->vma;
|
|
bfd_vma eh_frame_start
|
|
= (htab->plt_second_eh_frame->output_section->vma
|
|
+ htab->plt_second_eh_frame->output_offset
|
|
+ PLT_FDE_START_OFFSET);
|
|
bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
|
|
htab->plt_second_eh_frame->contents
|
|
+ PLT_FDE_START_OFFSET);
|
|
}
|
|
if (htab->plt_second_eh_frame->sec_info_type
|
|
== SEC_INFO_TYPE_EH_FRAME)
|
|
{
|
|
if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
|
|
htab->plt_second_eh_frame,
|
|
htab->plt_second_eh_frame->contents))
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Make any adjustment if necessary and merge .sframe section to
|
|
create the final .sframe section for output_bfd. */
|
|
if (htab->plt_sframe != NULL
|
|
&& htab->plt_sframe->contents != NULL)
|
|
{
|
|
if (htab->elf.splt != NULL
|
|
&& htab->elf.splt->size != 0
|
|
&& (htab->elf.splt->flags & SEC_EXCLUDE) == 0
|
|
&& htab->elf.splt->output_section != NULL
|
|
&& htab->plt_sframe->output_section != NULL)
|
|
{
|
|
bfd_vma plt_start = htab->elf.splt->output_section->vma;
|
|
bfd_vma sframe_start = htab->plt_sframe->output_section->vma
|
|
+ htab->plt_sframe->output_offset
|
|
+ PLT_SFRAME_FDE_START_OFFSET;
|
|
#if 0 /* FIXME Testing only. Remove before review. */
|
|
bfd_vma test_value = (plt_start - sframe_start)
|
|
+ htab->plt_sframe->output_section->vma
|
|
+ htab->plt_sframe->output_offset
|
|
+ PLT_SFRAME_FDE_START_OFFSET;
|
|
bfd_put_signed_32 (dynobj, test_value,
|
|
#endif
|
|
bfd_put_signed_32 (dynobj, plt_start - sframe_start,
|
|
htab->plt_sframe->contents
|
|
+ PLT_SFRAME_FDE_START_OFFSET);
|
|
}
|
|
if (htab->plt_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME)
|
|
{
|
|
if (! _bfd_elf_merge_section_sframe (output_bfd, info,
|
|
htab->plt_sframe,
|
|
htab->plt_sframe->contents))
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (htab->plt_second_sframe != NULL
|
|
&& htab->plt_second_sframe->contents != NULL)
|
|
{
|
|
if (htab->plt_second != NULL
|
|
&& htab->plt_second->size != 0
|
|
&& (htab->plt_second->flags & SEC_EXCLUDE) == 0
|
|
&& htab->plt_second->output_section != NULL
|
|
&& htab->plt_second_sframe->output_section != NULL)
|
|
{
|
|
bfd_vma plt_start = htab->plt_second->output_section->vma;
|
|
bfd_vma sframe_start
|
|
= (htab->plt_second_sframe->output_section->vma
|
|
+ htab->plt_second_sframe->output_offset
|
|
+ PLT_SFRAME_FDE_START_OFFSET);
|
|
#if 0 /* FIXME Testing only. Remove before review. */
|
|
bfd_vma test_value = (plt_start - sframe_start)
|
|
+ htab->plt_second_sframe->output_section->vma
|
|
+ htab->plt_second_sframe->output_offset
|
|
+ PLT_SFRAME_FDE_START_OFFSET;
|
|
bfd_put_signed_32 (dynobj, test_value,
|
|
#endif
|
|
bfd_put_signed_32 (dynobj, plt_start - sframe_start,
|
|
htab->plt_second_sframe->contents
|
|
+ PLT_SFRAME_FDE_START_OFFSET);
|
|
}
|
|
if (htab->plt_second_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME)
|
|
{
|
|
if (! _bfd_elf_merge_section_sframe (output_bfd, info,
|
|
htab->plt_second_sframe,
|
|
htab->plt_second_sframe->contents))
|
|
return NULL;
|
|
}
|
|
}
|
|
if (htab->elf.sgot && htab->elf.sgot->size > 0)
|
|
elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
|
|
= htab->got_entry_size;
|
|
|
|
return htab;
|
|
}
|
|
|
|
|
|
bool
|
|
_bfd_x86_elf_always_size_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
asection *tls_sec = elf_hash_table (info)->tls_sec;
|
|
|
|
if (tls_sec && !bfd_link_relocatable (info))
|
|
{
|
|
struct elf_link_hash_entry *tlsbase;
|
|
|
|
tlsbase = elf_link_hash_lookup (elf_hash_table (info),
|
|
"_TLS_MODULE_BASE_",
|
|
false, false, false);
|
|
|
|
if (tlsbase && tlsbase->type == STT_TLS)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
struct bfd_link_hash_entry *bh = NULL;
|
|
const struct elf_backend_data *bed
|
|
= get_elf_backend_data (output_bfd);
|
|
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return false;
|
|
|
|
if (!(_bfd_generic_link_add_one_symbol
|
|
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
|
|
tls_sec, 0, NULL, false,
|
|
bed->collect, &bh)))
|
|
return false;
|
|
|
|
htab->tls_module_base = bh;
|
|
|
|
tlsbase = (struct elf_link_hash_entry *)bh;
|
|
tlsbase->def_regular = 1;
|
|
tlsbase->other = STV_HIDDEN;
|
|
tlsbase->root.linker_def = 1;
|
|
(*bed->elf_backend_hide_symbol) (info, tlsbase, true);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
_bfd_x86_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
|
|
unsigned int st_other,
|
|
bool definition,
|
|
bool dynamic ATTRIBUTE_UNUSED)
|
|
{
|
|
if (definition)
|
|
{
|
|
struct elf_x86_link_hash_entry *eh
|
|
= (struct elf_x86_link_hash_entry *) h;
|
|
eh->def_protected = ELF_ST_VISIBILITY (st_other) == STV_PROTECTED;
|
|
}
|
|
}
|
|
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
|
|
|
void
|
|
_bfd_x86_elf_copy_indirect_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *dir,
|
|
struct elf_link_hash_entry *ind)
|
|
{
|
|
struct elf_x86_link_hash_entry *edir, *eind;
|
|
|
|
edir = (struct elf_x86_link_hash_entry *) dir;
|
|
eind = (struct elf_x86_link_hash_entry *) ind;
|
|
|
|
if (ind->root.type == bfd_link_hash_indirect
|
|
&& dir->got.refcount <= 0)
|
|
{
|
|
edir->tls_type = eind->tls_type;
|
|
eind->tls_type = GOT_UNKNOWN;
|
|
}
|
|
|
|
/* Copy gotoff_ref so that elf_i386_adjust_dynamic_symbol will
|
|
generate a R_386_COPY reloc. */
|
|
edir->gotoff_ref |= eind->gotoff_ref;
|
|
|
|
edir->zero_undefweak |= eind->zero_undefweak;
|
|
|
|
if (ELIMINATE_COPY_RELOCS
|
|
&& ind->root.type != bfd_link_hash_indirect
|
|
&& dir->dynamic_adjusted)
|
|
{
|
|
/* If called to transfer flags for a weakdef during processing
|
|
of elf_adjust_dynamic_symbol, don't copy non_got_ref.
|
|
We clear it ourselves for ELIMINATE_COPY_RELOCS. */
|
|
if (dir->versioned != versioned_hidden)
|
|
dir->ref_dynamic |= ind->ref_dynamic;
|
|
dir->ref_regular |= ind->ref_regular;
|
|
dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
|
|
dir->needs_plt |= ind->needs_plt;
|
|
dir->pointer_equality_needed |= ind->pointer_equality_needed;
|
|
}
|
|
else
|
|
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
|
}
|
|
|
|
/* Remove undefined weak symbol from the dynamic symbol table if it
|
|
is resolved to 0. */
|
|
|
|
bool
|
|
_bfd_x86_elf_fixup_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h)
|
|
{
|
|
if (h->dynindx != -1
|
|
&& UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, elf_x86_hash_entry (h)))
|
|
{
|
|
h->dynindx = -1;
|
|
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
|
|
h->dynstr_index);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Change the STT_GNU_IFUNC symbol defined in position-dependent
|
|
executable into the normal function symbol and set its address
|
|
to its PLT entry, which should be resolved by R_*_IRELATIVE at
|
|
run-time. */
|
|
|
|
void
|
|
_bfd_x86_elf_link_fixup_ifunc_symbol (struct bfd_link_info *info,
|
|
struct elf_x86_link_hash_table *htab,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
if (bfd_link_pde (info)
|
|
&& h->def_regular
|
|
&& h->dynindx != -1
|
|
&& h->plt.offset != (bfd_vma) -1
|
|
&& h->type == STT_GNU_IFUNC)
|
|
{
|
|
asection *plt_s;
|
|
bfd_vma plt_offset;
|
|
bfd *output_bfd = info->output_bfd;
|
|
|
|
if (htab->plt_second)
|
|
{
|
|
struct elf_x86_link_hash_entry *eh
|
|
= (struct elf_x86_link_hash_entry *) h;
|
|
|
|
plt_s = htab->plt_second;
|
|
plt_offset = eh->plt_second.offset;
|
|
}
|
|
else
|
|
{
|
|
plt_s = htab->elf.splt;
|
|
plt_offset = h->plt.offset;
|
|
}
|
|
|
|
sym->st_size = 0;
|
|
sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
|
|
sym->st_shndx
|
|
= _bfd_elf_section_from_bfd_section (output_bfd,
|
|
plt_s->output_section);
|
|
sym->st_value = (plt_s->output_section->vma
|
|
+ plt_s->output_offset + plt_offset);
|
|
}
|
|
}
|
|
|
|
/* Report relative relocation. */
|
|
|
|
void
|
|
_bfd_x86_elf_link_report_relative_reloc
|
|
(struct bfd_link_info *info, asection *asect,
|
|
struct elf_link_hash_entry *h, Elf_Internal_Sym *sym,
|
|
const char *reloc_name, const void *reloc)
|
|
{
|
|
const char *name;
|
|
bfd *abfd;
|
|
const Elf_Internal_Rela *rel = (const Elf_Internal_Rela *) reloc;
|
|
|
|
/* Use the output BFD for linker created sections. */
|
|
if ((asect->flags & SEC_LINKER_CREATED) != 0)
|
|
abfd = info->output_bfd;
|
|
else
|
|
abfd = asect->owner;
|
|
|
|
if (h != NULL && h->root.root.string != NULL)
|
|
name = h->root.root.string;
|
|
else
|
|
name = bfd_elf_sym_name (abfd, &elf_symtab_hdr (abfd), sym, NULL);
|
|
|
|
if (asect->use_rela_p)
|
|
info->callbacks->einfo
|
|
(_("%pB: %s (offset: 0x%v, info: 0x%v, addend: 0x%v) against "
|
|
"'%s' " "for section '%pA' in %pB\n"),
|
|
info->output_bfd, reloc_name, rel->r_offset, rel->r_info,
|
|
rel->r_addend, name, asect, abfd);
|
|
else
|
|
info->callbacks->einfo
|
|
(_("%pB: %s (offset: 0x%v, info: 0x%v) against '%s' for section "
|
|
"'%pA' in %pB\n"),
|
|
info->output_bfd, reloc_name, rel->r_offset, rel->r_info, name,
|
|
asect, abfd);
|
|
}
|
|
|
|
/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
|
|
|
|
bool
|
|
_bfd_x86_elf_hash_symbol (struct elf_link_hash_entry *h)
|
|
{
|
|
if (h->plt.offset != (bfd_vma) -1
|
|
&& !h->def_regular
|
|
&& !h->pointer_equality_needed)
|
|
return false;
|
|
|
|
return _bfd_elf_hash_symbol (h);
|
|
}
|
|
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
|
|
bool
|
|
_bfd_x86_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h)
|
|
{
|
|
struct elf_x86_link_hash_table *htab;
|
|
asection *s, *srel;
|
|
struct elf_x86_link_hash_entry *eh;
|
|
struct elf_dyn_relocs *p;
|
|
const struct elf_backend_data *bed
|
|
= get_elf_backend_data (info->output_bfd);
|
|
|
|
eh = (struct elf_x86_link_hash_entry *) h;
|
|
|
|
/* Clear GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS if it is turned
|
|
on by an input relocatable file and there is a non-GOT/non-PLT
|
|
reference from another relocatable file without it.
|
|
NB: There can be non-GOT reference in data sections in input with
|
|
GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS. */
|
|
if (eh->non_got_ref_without_indirect_extern_access
|
|
&& info->indirect_extern_access == 1
|
|
&& bfd_link_executable (info))
|
|
{
|
|
unsigned int needed_1;
|
|
info->indirect_extern_access = 0;
|
|
/* Turn off nocopyreloc if implied by indirect_extern_access. */
|
|
if (info->nocopyreloc == 2)
|
|
info->nocopyreloc = 0;
|
|
needed_1 = bfd_h_get_32 (info->output_bfd, info->needed_1_p);
|
|
needed_1 &= ~GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS;
|
|
bfd_h_put_32 (info->output_bfd, needed_1, info->needed_1_p);
|
|
}
|
|
|
|
/* STT_GNU_IFUNC symbol must go through PLT. */
|
|
if (h->type == STT_GNU_IFUNC)
|
|
{
|
|
/* All local STT_GNU_IFUNC references must be treate as local
|
|
calls via local PLT. */
|
|
if (h->ref_regular
|
|
&& SYMBOL_CALLS_LOCAL (info, h))
|
|
{
|
|
bfd_size_type pc_count = 0, count = 0;
|
|
struct elf_dyn_relocs **pp;
|
|
|
|
eh = (struct elf_x86_link_hash_entry *) h;
|
|
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
pc_count += p->pc_count;
|
|
p->count -= p->pc_count;
|
|
p->pc_count = 0;
|
|
count += p->count;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
|
|
if (pc_count || count)
|
|
{
|
|
h->non_got_ref = 1;
|
|
if (pc_count)
|
|
{
|
|
/* Increment PLT reference count only for PC-relative
|
|
references. */
|
|
h->needs_plt = 1;
|
|
if (h->plt.refcount <= 0)
|
|
h->plt.refcount = 1;
|
|
else
|
|
h->plt.refcount += 1;
|
|
}
|
|
}
|
|
|
|
/* GOTOFF relocation needs PLT. */
|
|
if (eh->gotoff_ref)
|
|
h->plt.refcount = 1;
|
|
}
|
|
|
|
if (h->plt.refcount <= 0)
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* If this is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later,
|
|
when we know the address of the .got section. */
|
|
if (h->type == STT_FUNC
|
|
|| h->needs_plt)
|
|
{
|
|
if (h->plt.refcount <= 0
|
|
|| SYMBOL_CALLS_LOCAL (info, h)
|
|
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
&& h->root.type == bfd_link_hash_undefweak))
|
|
{
|
|
/* This case can occur if we saw a PLT32 reloc in an input
|
|
file, but the symbol was never referred to by a dynamic
|
|
object, or if all references were garbage collected. In
|
|
such a case, we don't actually need to build a procedure
|
|
linkage table, and we can just do a PC32 reloc instead. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
/* It's possible that we incorrectly decided a .plt reloc was needed
|
|
* for an R_386_PC32/R_X86_64_PC32 reloc to a non-function sym in
|
|
check_relocs. We can't decide accurately between function and
|
|
non-function syms in check-relocs; Objects loaded later in
|
|
the link may change h->type. So fix it now. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (h->is_weakalias)
|
|
{
|
|
struct elf_link_hash_entry *def = weakdef (h);
|
|
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
|
|
h->root.u.def.section = def->root.u.def.section;
|
|
h->root.u.def.value = def->root.u.def.value;
|
|
if (ELIMINATE_COPY_RELOCS
|
|
|| info->nocopyreloc
|
|
|| SYMBOL_NO_COPYRELOC (info, eh))
|
|
{
|
|
/* NB: needs_copy is always 0 for i386. */
|
|
h->non_got_ref = def->non_got_ref;
|
|
eh->needs_copy = def->needs_copy;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
|
is not a function. */
|
|
|
|
/* If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. */
|
|
if (!bfd_link_executable (info))
|
|
return true;
|
|
|
|
/* If there are no references to this symbol that do not use the
|
|
GOT nor R_386_GOTOFF relocation, we don't need to generate a copy
|
|
reloc. NB: gotoff_ref is always 0 for x86-64. */
|
|
if (!h->non_got_ref && !eh->gotoff_ref)
|
|
return true;
|
|
|
|
/* If -z nocopyreloc was given, we won't generate them either. */
|
|
if (info->nocopyreloc || SYMBOL_NO_COPYRELOC (info, eh))
|
|
{
|
|
h->non_got_ref = 0;
|
|
return true;
|
|
}
|
|
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return false;
|
|
|
|
/* If there aren't any dynamic relocs in read-only sections nor
|
|
R_386_GOTOFF relocation, then we can keep the dynamic relocs and
|
|
avoid the copy reloc. This doesn't work on VxWorks, where we can
|
|
not have dynamic relocations (other than copy and jump slot
|
|
relocations) in an executable. */
|
|
if (ELIMINATE_COPY_RELOCS
|
|
&& (bed->target_id == X86_64_ELF_DATA
|
|
|| (!eh->gotoff_ref
|
|
&& htab->elf.target_os != is_vxworks)))
|
|
{
|
|
/* If we don't find any dynamic relocs in read-only sections,
|
|
then we'll be keeping the dynamic relocs and avoiding the copy
|
|
reloc. */
|
|
if (!_bfd_elf_readonly_dynrelocs (h))
|
|
{
|
|
h->non_got_ref = 0;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
|
|
/* We must generate a R_386_COPY/R_X86_64_COPY reloc to tell the
|
|
dynamic linker to copy the initial value out of the dynamic object
|
|
and into the runtime process image. */
|
|
if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
|
|
{
|
|
s = htab->elf.sdynrelro;
|
|
srel = htab->elf.sreldynrelro;
|
|
}
|
|
else
|
|
{
|
|
s = htab->elf.sdynbss;
|
|
srel = htab->elf.srelbss;
|
|
}
|
|
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
|
|
{
|
|
if (eh->def_protected && bfd_link_executable (info))
|
|
for (p = h->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
/* Disallow copy relocation against non-copyable protected
|
|
symbol. */
|
|
s = p->sec->output_section;
|
|
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
|
{
|
|
info->callbacks->einfo
|
|
/* xgettext:c-format */
|
|
(_("%F%P: %pB: copy relocation against non-copyable "
|
|
"protected symbol `%s' in %pB\n"),
|
|
p->sec->owner, h->root.root.string,
|
|
h->root.u.def.section->owner);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
srel->size += htab->sizeof_reloc;
|
|
h->needs_copy = 1;
|
|
}
|
|
|
|
return _bfd_elf_adjust_dynamic_copy (info, h, s);
|
|
}
|
|
|
|
void
|
|
_bfd_x86_elf_hide_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h,
|
|
bool force_local)
|
|
{
|
|
if (h->root.type == bfd_link_hash_undefweak
|
|
&& info->nointerp
|
|
&& bfd_link_pie (info))
|
|
{
|
|
/* When there is no dynamic interpreter in PIE, make the undefined
|
|
weak symbol dynamic so that PC relative branch to the undefined
|
|
weak symbol will land to address 0. */
|
|
struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h);
|
|
if (h->plt.refcount > 0
|
|
|| eh->plt_got.refcount > 0)
|
|
return;
|
|
}
|
|
|
|
_bfd_elf_link_hash_hide_symbol (info, h, force_local);
|
|
}
|
|
|
|
/* Return TRUE if a symbol is referenced locally. It is similar to
|
|
SYMBOL_REFERENCES_LOCAL, but it also checks version script. It
|
|
works in check_relocs. */
|
|
|
|
bool
|
|
_bfd_x86_elf_link_symbol_references_local (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h)
|
|
{
|
|
struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h);
|
|
struct elf_x86_link_hash_table *htab
|
|
= (struct elf_x86_link_hash_table *) info->hash;
|
|
|
|
if (eh->local_ref > 1)
|
|
return true;
|
|
|
|
if (eh->local_ref == 1)
|
|
return false;
|
|
|
|
/* Unversioned symbols defined in regular objects can be forced local
|
|
by linker version script. A weak undefined symbol is forced local
|
|
if
|
|
1. It has non-default visibility. Or
|
|
2. When building executable, there is no dynamic linker. Or
|
|
3. or "-z nodynamic-undefined-weak" is used.
|
|
*/
|
|
if (_bfd_elf_symbol_refs_local_p (h, info, 1)
|
|
|| (h->root.type == bfd_link_hash_undefweak
|
|
&& (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
|| (bfd_link_executable (info)
|
|
&& htab->interp == NULL)
|
|
|| info->dynamic_undefined_weak == 0))
|
|
|| ((h->def_regular || ELF_COMMON_DEF_P (h))
|
|
&& info->version_info != NULL
|
|
&& _bfd_elf_link_hide_sym_by_version (info, h)))
|
|
{
|
|
eh->local_ref = 2;
|
|
return true;
|
|
}
|
|
|
|
eh->local_ref = 1;
|
|
return false;
|
|
}
|
|
|
|
/* Return the section that should be marked against GC for a given
|
|
relocation. */
|
|
|
|
asection *
|
|
_bfd_x86_elf_gc_mark_hook (asection *sec,
|
|
struct bfd_link_info *info,
|
|
Elf_Internal_Rela *rel,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
/* Compiler should optimize this out. */
|
|
if (((unsigned int) R_X86_64_GNU_VTINHERIT
|
|
!= (unsigned int) R_386_GNU_VTINHERIT)
|
|
|| ((unsigned int) R_X86_64_GNU_VTENTRY
|
|
!= (unsigned int) R_386_GNU_VTENTRY))
|
|
abort ();
|
|
|
|
if (h != NULL)
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_X86_64_GNU_VTINHERIT:
|
|
case R_X86_64_GNU_VTENTRY:
|
|
return NULL;
|
|
}
|
|
|
|
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
|
}
|
|
|
|
static bfd_vma
|
|
elf_i386_get_plt_got_vma (struct elf_x86_plt *plt_p ATTRIBUTE_UNUSED,
|
|
bfd_vma off,
|
|
bfd_vma offset ATTRIBUTE_UNUSED,
|
|
bfd_vma got_addr)
|
|
{
|
|
return got_addr + off;
|
|
}
|
|
|
|
static bfd_vma
|
|
elf_x86_64_get_plt_got_vma (struct elf_x86_plt *plt_p,
|
|
bfd_vma off,
|
|
bfd_vma offset,
|
|
bfd_vma got_addr ATTRIBUTE_UNUSED)
|
|
{
|
|
return plt_p->sec->vma + offset + off + plt_p->plt_got_insn_size;
|
|
}
|
|
|
|
static bool
|
|
elf_i386_valid_plt_reloc_p (unsigned int type)
|
|
{
|
|
return (type == R_386_JUMP_SLOT
|
|
|| type == R_386_GLOB_DAT
|
|
|| type == R_386_IRELATIVE);
|
|
}
|
|
|
|
static bool
|
|
elf_x86_64_valid_plt_reloc_p (unsigned int type)
|
|
{
|
|
return (type == R_X86_64_JUMP_SLOT
|
|
|| type == R_X86_64_GLOB_DAT
|
|
|| type == R_X86_64_IRELATIVE);
|
|
}
|
|
|
|
long
|
|
_bfd_x86_elf_get_synthetic_symtab (bfd *abfd,
|
|
long count,
|
|
long relsize,
|
|
bfd_vma got_addr,
|
|
struct elf_x86_plt plts[],
|
|
asymbol **dynsyms,
|
|
asymbol **ret)
|
|
{
|
|
long size, i, n, len;
|
|
int j;
|
|
unsigned int plt_got_offset, plt_entry_size;
|
|
asymbol *s;
|
|
bfd_byte *plt_contents;
|
|
long dynrelcount;
|
|
arelent **dynrelbuf, *p;
|
|
char *names;
|
|
const struct elf_backend_data *bed;
|
|
bfd_vma (*get_plt_got_vma) (struct elf_x86_plt *, bfd_vma, bfd_vma,
|
|
bfd_vma);
|
|
bool (*valid_plt_reloc_p) (unsigned int);
|
|
|
|
dynrelbuf = NULL;
|
|
if (count == 0)
|
|
goto bad_return;
|
|
|
|
dynrelbuf = (arelent **) bfd_malloc (relsize);
|
|
if (dynrelbuf == NULL)
|
|
goto bad_return;
|
|
|
|
dynrelcount = bfd_canonicalize_dynamic_reloc (abfd, dynrelbuf,
|
|
dynsyms);
|
|
if (dynrelcount <= 0)
|
|
goto bad_return;
|
|
|
|
/* Sort the relocs by address. */
|
|
qsort (dynrelbuf, dynrelcount, sizeof (arelent *),
|
|
_bfd_x86_elf_compare_relocs);
|
|
|
|
size = count * sizeof (asymbol);
|
|
|
|
/* Allocate space for @plt suffixes. */
|
|
n = 0;
|
|
for (i = 0; i < dynrelcount; i++)
|
|
{
|
|
p = dynrelbuf[i];
|
|
size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
|
|
if (p->addend != 0)
|
|
size += sizeof ("+0x") - 1 + 8 + 8 * ABI_64_P (abfd);
|
|
}
|
|
|
|
s = *ret = (asymbol *) bfd_zmalloc (size);
|
|
if (s == NULL)
|
|
goto bad_return;
|
|
|
|
bed = get_elf_backend_data (abfd);
|
|
|
|
if (bed->target_id == X86_64_ELF_DATA)
|
|
{
|
|
get_plt_got_vma = elf_x86_64_get_plt_got_vma;
|
|
valid_plt_reloc_p = elf_x86_64_valid_plt_reloc_p;
|
|
}
|
|
else
|
|
{
|
|
get_plt_got_vma = elf_i386_get_plt_got_vma;
|
|
valid_plt_reloc_p = elf_i386_valid_plt_reloc_p;
|
|
if (got_addr)
|
|
{
|
|
/* Check .got.plt and then .got to get the _GLOBAL_OFFSET_TABLE_
|
|
address. */
|
|
asection *sec = bfd_get_section_by_name (abfd, ".got.plt");
|
|
if (sec != NULL)
|
|
got_addr = sec->vma;
|
|
else
|
|
{
|
|
sec = bfd_get_section_by_name (abfd, ".got");
|
|
if (sec != NULL)
|
|
got_addr = sec->vma;
|
|
}
|
|
|
|
if (got_addr == (bfd_vma) -1)
|
|
goto bad_return;
|
|
}
|
|
}
|
|
|
|
/* Check for each PLT section. */
|
|
names = (char *) (s + count);
|
|
size = 0;
|
|
n = 0;
|
|
for (j = 0; plts[j].name != NULL; j++)
|
|
if ((plt_contents = plts[j].contents) != NULL)
|
|
{
|
|
long k;
|
|
bfd_vma offset;
|
|
asection *plt;
|
|
struct elf_x86_plt *plt_p = &plts[j];
|
|
|
|
plt_got_offset = plt_p->plt_got_offset;
|
|
plt_entry_size = plt_p->plt_entry_size;
|
|
|
|
plt = plt_p->sec;
|
|
|
|
if ((plt_p->type & plt_lazy))
|
|
{
|
|
/* Skip PLT0 in lazy PLT. */
|
|
k = 1;
|
|
offset = plt_entry_size;
|
|
}
|
|
else
|
|
{
|
|
k = 0;
|
|
offset = 0;
|
|
}
|
|
|
|
/* Check each PLT entry against dynamic relocations. */
|
|
for (; k < plt_p->count; k++)
|
|
{
|
|
int off;
|
|
bfd_vma got_vma;
|
|
long min, max, mid;
|
|
|
|
/* Get the GOT offset for i386 or the PC-relative offset
|
|
for x86-64, a signed 32-bit integer. */
|
|
off = H_GET_32 (abfd, (plt_contents + offset
|
|
+ plt_got_offset));
|
|
got_vma = get_plt_got_vma (plt_p, off, offset, got_addr);
|
|
|
|
/* Binary search. */
|
|
p = dynrelbuf[0];
|
|
min = 0;
|
|
max = dynrelcount;
|
|
while ((min + 1) < max)
|
|
{
|
|
arelent *r;
|
|
|
|
mid = (min + max) / 2;
|
|
r = dynrelbuf[mid];
|
|
if (got_vma > r->address)
|
|
min = mid;
|
|
else if (got_vma < r->address)
|
|
max = mid;
|
|
else
|
|
{
|
|
p = r;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Skip unknown relocation. PR 17512: file: bc9d6cf5. */
|
|
if (got_vma == p->address
|
|
&& p->howto != NULL
|
|
&& valid_plt_reloc_p (p->howto->type))
|
|
{
|
|
*s = **p->sym_ptr_ptr;
|
|
/* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL
|
|
set. Since we are defining a symbol, ensure one
|
|
of them is set. */
|
|
if ((s->flags & BSF_LOCAL) == 0)
|
|
s->flags |= BSF_GLOBAL;
|
|
s->flags |= BSF_SYNTHETIC;
|
|
/* This is no longer a section symbol. */
|
|
s->flags &= ~BSF_SECTION_SYM;
|
|
s->section = plt;
|
|
s->the_bfd = plt->owner;
|
|
s->value = offset;
|
|
s->udata.p = NULL;
|
|
s->name = names;
|
|
len = strlen ((*p->sym_ptr_ptr)->name);
|
|
memcpy (names, (*p->sym_ptr_ptr)->name, len);
|
|
names += len;
|
|
if (p->addend != 0)
|
|
{
|
|
char buf[30], *a;
|
|
|
|
memcpy (names, "+0x", sizeof ("+0x") - 1);
|
|
names += sizeof ("+0x") - 1;
|
|
bfd_sprintf_vma (abfd, buf, p->addend);
|
|
for (a = buf; *a == '0'; ++a)
|
|
;
|
|
size = strlen (a);
|
|
memcpy (names, a, size);
|
|
names += size;
|
|
}
|
|
memcpy (names, "@plt", sizeof ("@plt"));
|
|
names += sizeof ("@plt");
|
|
n++;
|
|
s++;
|
|
/* There should be only one entry in PLT for a given
|
|
symbol. Set howto to NULL after processing a PLT
|
|
entry to guard against corrupted PLT. */
|
|
p->howto = NULL;
|
|
}
|
|
offset += plt_entry_size;
|
|
}
|
|
}
|
|
|
|
/* PLT entries with R_386_TLS_DESC relocations are skipped. */
|
|
if (n == 0)
|
|
{
|
|
bad_return:
|
|
count = -1;
|
|
}
|
|
else
|
|
count = n;
|
|
|
|
for (j = 0; plts[j].name != NULL; j++)
|
|
free (plts[j].contents);
|
|
|
|
free (dynrelbuf);
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Parse x86 GNU properties. */
|
|
|
|
enum elf_property_kind
|
|
_bfd_x86_elf_parse_gnu_properties (bfd *abfd, unsigned int type,
|
|
bfd_byte *ptr, unsigned int datasz)
|
|
{
|
|
elf_property *prop;
|
|
|
|
if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED
|
|
|| type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED
|
|
|| (type >= GNU_PROPERTY_X86_UINT32_AND_LO
|
|
&& type <= GNU_PROPERTY_X86_UINT32_AND_HI)
|
|
|| (type >= GNU_PROPERTY_X86_UINT32_OR_LO
|
|
&& type <= GNU_PROPERTY_X86_UINT32_OR_HI)
|
|
|| (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO
|
|
&& type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI))
|
|
{
|
|
if (datasz != 4)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %pB: <corrupt x86 property (0x%x) size: 0x%x>"),
|
|
abfd, type, datasz);
|
|
return property_corrupt;
|
|
}
|
|
prop = _bfd_elf_get_property (abfd, type, datasz);
|
|
prop->u.number |= bfd_h_get_32 (abfd, ptr);
|
|
prop->pr_kind = property_number;
|
|
return property_number;
|
|
}
|
|
|
|
return property_ignored;
|
|
}
|
|
|
|
/* Merge x86 GNU property BPROP with APROP. If APROP isn't NULL,
|
|
return TRUE if APROP is updated. Otherwise, return TRUE if BPROP
|
|
should be merged with ABFD. */
|
|
|
|
bool
|
|
_bfd_x86_elf_merge_gnu_properties (struct bfd_link_info *info,
|
|
bfd *abfd ATTRIBUTE_UNUSED,
|
|
bfd *bbfd ATTRIBUTE_UNUSED,
|
|
elf_property *aprop,
|
|
elf_property *bprop)
|
|
{
|
|
unsigned int number, features;
|
|
bool updated = false;
|
|
const struct elf_backend_data *bed;
|
|
struct elf_x86_link_hash_table *htab;
|
|
unsigned int pr_type = aprop != NULL ? aprop->pr_type : bprop->pr_type;
|
|
|
|
if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED
|
|
|| (pr_type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO
|
|
&& pr_type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI))
|
|
{
|
|
if (aprop == NULL || bprop == NULL)
|
|
{
|
|
/* Only one of APROP and BPROP can be NULL. */
|
|
if (aprop != NULL)
|
|
{
|
|
/* Remove this property since the other input file doesn't
|
|
have it. */
|
|
aprop->pr_kind = property_remove;
|
|
updated = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
number = aprop->u.number;
|
|
aprop->u.number = number | bprop->u.number;
|
|
updated = number != (unsigned int) aprop->u.number;
|
|
}
|
|
return updated;
|
|
}
|
|
else if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED
|
|
|| (pr_type >= GNU_PROPERTY_X86_UINT32_OR_LO
|
|
&& pr_type <= GNU_PROPERTY_X86_UINT32_OR_HI))
|
|
{
|
|
features = 0;
|
|
if (pr_type == GNU_PROPERTY_X86_ISA_1_NEEDED)
|
|
{
|
|
bed = get_elf_backend_data (info->output_bfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
switch (htab->params->isa_level)
|
|
{
|
|
case 0:
|
|
break;
|
|
case 2:
|
|
features = GNU_PROPERTY_X86_ISA_1_V2;
|
|
break;
|
|
case 3:
|
|
features = GNU_PROPERTY_X86_ISA_1_V3;
|
|
break;
|
|
case 4:
|
|
features = GNU_PROPERTY_X86_ISA_1_V4;
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
if (aprop != NULL && bprop != NULL)
|
|
{
|
|
number = aprop->u.number;
|
|
aprop->u.number = number | bprop->u.number | features;
|
|
/* Remove the property if all bits are empty. */
|
|
if (aprop->u.number == 0)
|
|
{
|
|
aprop->pr_kind = property_remove;
|
|
updated = true;
|
|
}
|
|
else
|
|
updated = number != (unsigned int) aprop->u.number;
|
|
}
|
|
else
|
|
{
|
|
/* Only one of APROP and BPROP can be NULL. */
|
|
if (aprop != NULL)
|
|
{
|
|
aprop->u.number |= features;
|
|
if (aprop->u.number == 0)
|
|
{
|
|
/* Remove APROP if all bits are empty. */
|
|
aprop->pr_kind = property_remove;
|
|
updated = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Return TRUE if APROP is NULL and all bits of BPROP
|
|
aren't empty to indicate that BPROP should be added
|
|
to ABFD. */
|
|
bprop->u.number |= features;
|
|
updated = bprop->u.number != 0;
|
|
}
|
|
}
|
|
return updated;
|
|
}
|
|
else if (pr_type >= GNU_PROPERTY_X86_UINT32_AND_LO
|
|
&& pr_type <= GNU_PROPERTY_X86_UINT32_AND_HI)
|
|
{
|
|
/* Only one of APROP and BPROP can be NULL:
|
|
1. APROP & BPROP when both APROP and BPROP aren't NULL.
|
|
2. If APROP is NULL, remove x86 feature.
|
|
3. Otherwise, do nothing.
|
|
*/
|
|
bed = get_elf_backend_data (info->output_bfd);
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (!htab)
|
|
abort ();
|
|
if (aprop != NULL && bprop != NULL)
|
|
{
|
|
number = aprop->u.number;
|
|
aprop->u.number = number & bprop->u.number;
|
|
if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND)
|
|
{
|
|
features = 0;
|
|
if (htab->params->ibt)
|
|
features = GNU_PROPERTY_X86_FEATURE_1_IBT;
|
|
if (htab->params->shstk)
|
|
features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK;
|
|
if (htab->params->lam_u48)
|
|
features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48
|
|
| GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
|
|
else if (htab->params->lam_u57)
|
|
features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57;
|
|
/* Add GNU_PROPERTY_X86_FEATURE_1_IBT,
|
|
GNU_PROPERTY_X86_FEATURE_1_SHSTK,
|
|
GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and
|
|
GNU_PROPERTY_X86_FEATURE_1_LAM_U57. */
|
|
aprop->u.number |= features;
|
|
}
|
|
updated = number != (unsigned int) aprop->u.number;
|
|
/* Remove the property if all feature bits are cleared. */
|
|
if (aprop->u.number == 0)
|
|
aprop->pr_kind = property_remove;
|
|
}
|
|
else
|
|
{
|
|
/* There should be no AND properties since some input doesn't
|
|
have them. Set IBT and SHSTK properties for -z ibt and -z
|
|
shstk if needed. */
|
|
features = 0;
|
|
if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND)
|
|
{
|
|
if (htab->params->ibt)
|
|
features = GNU_PROPERTY_X86_FEATURE_1_IBT;
|
|
if (htab->params->shstk)
|
|
features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK;
|
|
if (htab->params->lam_u48)
|
|
features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48
|
|
| GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
|
|
else if (htab->params->lam_u57)
|
|
features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57;
|
|
}
|
|
if (features)
|
|
{
|
|
if (aprop != NULL)
|
|
{
|
|
updated = features != (unsigned int) aprop->u.number;
|
|
aprop->u.number = features;
|
|
}
|
|
else
|
|
{
|
|
updated = true;
|
|
bprop->u.number = features;
|
|
}
|
|
}
|
|
else if (aprop != NULL)
|
|
{
|
|
aprop->pr_kind = property_remove;
|
|
updated = true;
|
|
}
|
|
}
|
|
return updated;
|
|
}
|
|
else
|
|
{
|
|
/* Never should happen. */
|
|
abort ();
|
|
}
|
|
|
|
return updated;
|
|
}
|
|
|
|
/* Set up x86 GNU properties. Return the first relocatable ELF input
|
|
with GNU properties if found. Otherwise, return NULL. */
|
|
|
|
bfd *
|
|
_bfd_x86_elf_link_setup_gnu_properties
|
|
(struct bfd_link_info *info, struct elf_x86_init_table *init_table)
|
|
{
|
|
bool normal_target;
|
|
bool lazy_plt;
|
|
asection *sec, *pltsec;
|
|
bfd *dynobj;
|
|
bool use_ibt_plt;
|
|
unsigned int plt_alignment, features, isa_level;
|
|
struct elf_x86_link_hash_table *htab;
|
|
bfd *pbfd;
|
|
bfd *ebfd = NULL;
|
|
elf_property *prop;
|
|
const struct elf_backend_data *bed;
|
|
unsigned int class_align = ABI_64_P (info->output_bfd) ? 3 : 2;
|
|
unsigned int got_align;
|
|
|
|
/* Find a normal input file with GNU property note. */
|
|
for (pbfd = info->input_bfds;
|
|
pbfd != NULL;
|
|
pbfd = pbfd->link.next)
|
|
if (bfd_get_flavour (pbfd) == bfd_target_elf_flavour
|
|
&& bfd_count_sections (pbfd) != 0)
|
|
{
|
|
ebfd = pbfd;
|
|
|
|
if (elf_properties (pbfd) != NULL)
|
|
break;
|
|
}
|
|
|
|
bed = get_elf_backend_data (info->output_bfd);
|
|
|
|
htab = elf_x86_hash_table (info, bed->target_id);
|
|
if (htab == NULL)
|
|
return pbfd;
|
|
|
|
features = 0;
|
|
if (htab->params->ibt)
|
|
{
|
|
features = GNU_PROPERTY_X86_FEATURE_1_IBT;
|
|
htab->params->cet_report &= ~prop_report_ibt;
|
|
}
|
|
if (htab->params->shstk)
|
|
{
|
|
features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK;
|
|
htab->params->cet_report &= ~prop_report_shstk;
|
|
}
|
|
if (!(htab->params->cet_report & (prop_report_ibt | prop_report_shstk)))
|
|
htab->params->cet_report = prop_report_none;
|
|
if (htab->params->lam_u48)
|
|
{
|
|
features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48
|
|
| GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
|
|
htab->params->lam_u48_report = prop_report_none;
|
|
htab->params->lam_u57_report = prop_report_none;
|
|
}
|
|
else if (htab->params->lam_u57)
|
|
{
|
|
features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57;
|
|
htab->params->lam_u57_report = prop_report_none;
|
|
}
|
|
|
|
switch (htab->params->isa_level)
|
|
{
|
|
case 0:
|
|
isa_level = 0;
|
|
break;
|
|
case 1:
|
|
isa_level = GNU_PROPERTY_X86_ISA_1_BASELINE;
|
|
break;
|
|
case 2:
|
|
isa_level = GNU_PROPERTY_X86_ISA_1_V2;
|
|
break;
|
|
case 3:
|
|
isa_level = GNU_PROPERTY_X86_ISA_1_V3;
|
|
break;
|
|
case 4:
|
|
isa_level = GNU_PROPERTY_X86_ISA_1_V4;
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
if (ebfd != NULL)
|
|
{
|
|
prop = NULL;
|
|
if (features)
|
|
{
|
|
/* If features is set, add GNU_PROPERTY_X86_FEATURE_1_IBT,
|
|
GNU_PROPERTY_X86_FEATURE_1_SHSTK,
|
|
GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and
|
|
GNU_PROPERTY_X86_FEATURE_1_LAM_U57. */
|
|
prop = _bfd_elf_get_property (ebfd,
|
|
GNU_PROPERTY_X86_FEATURE_1_AND,
|
|
4);
|
|
prop->u.number |= features;
|
|
prop->pr_kind = property_number;
|
|
}
|
|
|
|
if (isa_level)
|
|
{
|
|
/* If ISA level is set, add GNU_PROPERTY_X86_ISA_1_NEEDED. */
|
|
prop = _bfd_elf_get_property (ebfd,
|
|
GNU_PROPERTY_X86_ISA_1_NEEDED,
|
|
4);
|
|
prop->u.number |= isa_level;
|
|
prop->pr_kind = property_number;
|
|
}
|
|
|
|
/* Create the GNU property note section if needed. */
|
|
if (prop != NULL && pbfd == NULL)
|
|
{
|
|
sec = bfd_make_section_with_flags (ebfd,
|
|
NOTE_GNU_PROPERTY_SECTION_NAME,
|
|
(SEC_ALLOC
|
|
| SEC_LOAD
|
|
| SEC_IN_MEMORY
|
|
| SEC_READONLY
|
|
| SEC_HAS_CONTENTS
|
|
| SEC_DATA));
|
|
if (sec == NULL)
|
|
info->callbacks->einfo (_("%F%P: failed to create GNU property section\n"));
|
|
|
|
if (!bfd_set_section_alignment (sec, class_align))
|
|
{
|
|
error_alignment:
|
|
info->callbacks->einfo (_("%F%pA: failed to align section\n"),
|
|
sec);
|
|
}
|
|
|
|
elf_section_type (sec) = SHT_NOTE;
|
|
}
|
|
}
|
|
|
|
if (htab->params->cet_report
|
|
|| htab->params->lam_u48_report
|
|
|| htab->params->lam_u57_report)
|
|
{
|
|
/* Report missing IBT, SHSTK and LAM properties. */
|
|
bfd *abfd;
|
|
const char *warning_msg = _("%P: %pB: warning: missing %s\n");
|
|
const char *error_msg = _("%X%P: %pB: error: missing %s\n");
|
|
const char *cet_msg = NULL;
|
|
const char *lam_u48_msg = NULL;
|
|
const char *lam_u57_msg = NULL;
|
|
const char *missing;
|
|
elf_property_list *p;
|
|
bool missing_ibt, missing_shstk;
|
|
bool missing_lam_u48, missing_lam_u57;
|
|
bool check_ibt
|
|
= (htab->params->cet_report
|
|
&& (htab->params->cet_report & prop_report_ibt));
|
|
bool check_shstk
|
|
= (htab->params->cet_report
|
|
&& (htab->params->cet_report & prop_report_shstk));
|
|
|
|
if (htab->params->cet_report)
|
|
{
|
|
if ((htab->params->cet_report & prop_report_warning))
|
|
cet_msg = warning_msg;
|
|
else
|
|
cet_msg = error_msg;
|
|
}
|
|
if (htab->params->lam_u48_report)
|
|
{
|
|
if ((htab->params->lam_u48_report & prop_report_warning))
|
|
lam_u48_msg = warning_msg;
|
|
else
|
|
lam_u48_msg = error_msg;
|
|
}
|
|
if (htab->params->lam_u57_report)
|
|
{
|
|
if ((htab->params->lam_u57_report & prop_report_warning))
|
|
lam_u57_msg = warning_msg;
|
|
else
|
|
lam_u57_msg = error_msg;
|
|
}
|
|
|
|
for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
|
if (!(abfd->flags & (DYNAMIC | BFD_PLUGIN | BFD_LINKER_CREATED))
|
|
&& bfd_get_flavour (abfd) == bfd_target_elf_flavour)
|
|
{
|
|
for (p = elf_properties (abfd); p; p = p->next)
|
|
if (p->property.pr_type == GNU_PROPERTY_X86_FEATURE_1_AND)
|
|
break;
|
|
|
|
missing_ibt = check_ibt;
|
|
missing_shstk = check_shstk;
|
|
missing_lam_u48 = !!lam_u48_msg;
|
|
missing_lam_u57 = !!lam_u57_msg;
|
|
if (p)
|
|
{
|
|
missing_ibt &= !(p->property.u.number
|
|
& GNU_PROPERTY_X86_FEATURE_1_IBT);
|
|
missing_shstk &= !(p->property.u.number
|
|
& GNU_PROPERTY_X86_FEATURE_1_SHSTK);
|
|
missing_lam_u48 &= !(p->property.u.number
|
|
& GNU_PROPERTY_X86_FEATURE_1_LAM_U48);
|
|
missing_lam_u57 &= !(p->property.u.number
|
|
& GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
|
|
}
|
|
if (missing_ibt || missing_shstk)
|
|
{
|
|
if (missing_ibt && missing_shstk)
|
|
missing = _("IBT and SHSTK properties");
|
|
else if (missing_ibt)
|
|
missing = _("IBT property");
|
|
else
|
|
missing = _("SHSTK property");
|
|
info->callbacks->einfo (cet_msg, abfd, missing);
|
|
}
|
|
if (missing_lam_u48)
|
|
{
|
|
missing = _("LAM_U48 property");
|
|
info->callbacks->einfo (lam_u48_msg, abfd, missing);
|
|
}
|
|
if (missing_lam_u57)
|
|
{
|
|
missing = _("LAM_U57 property");
|
|
info->callbacks->einfo (lam_u57_msg, abfd, missing);
|
|
}
|
|
}
|
|
}
|
|
|
|
pbfd = _bfd_elf_link_setup_gnu_properties (info);
|
|
|
|
htab->r_info = init_table->r_info;
|
|
htab->r_sym = init_table->r_sym;
|
|
|
|
if (bfd_link_relocatable (info))
|
|
return pbfd;
|
|
|
|
htab->plt0_pad_byte = init_table->plt0_pad_byte;
|
|
|
|
use_ibt_plt = htab->params->ibtplt || htab->params->ibt;
|
|
if (!use_ibt_plt && pbfd != NULL)
|
|
{
|
|
/* Check if GNU_PROPERTY_X86_FEATURE_1_IBT is on. */
|
|
elf_property_list *p;
|
|
|
|
/* The property list is sorted in order of type. */
|
|
for (p = elf_properties (pbfd); p; p = p->next)
|
|
{
|
|
if (GNU_PROPERTY_X86_FEATURE_1_AND == p->property.pr_type)
|
|
{
|
|
use_ibt_plt = !!(p->property.u.number
|
|
& GNU_PROPERTY_X86_FEATURE_1_IBT);
|
|
break;
|
|
}
|
|
else if (GNU_PROPERTY_X86_FEATURE_1_AND < p->property.pr_type)
|
|
break;
|
|
}
|
|
}
|
|
|
|
dynobj = htab->elf.dynobj;
|
|
|
|
/* Set htab->elf.dynobj here so that there is no need to check and
|
|
set it in check_relocs. */
|
|
if (dynobj == NULL)
|
|
{
|
|
if (pbfd != NULL)
|
|
{
|
|
htab->elf.dynobj = pbfd;
|
|
dynobj = pbfd;
|
|
}
|
|
else
|
|
{
|
|
bfd *abfd;
|
|
|
|
/* Find a normal input file to hold linker created
|
|
sections. */
|
|
for (abfd = info->input_bfds;
|
|
abfd != NULL;
|
|
abfd = abfd->link.next)
|
|
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
|
&& (abfd->flags
|
|
& (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
|
|
&& bed->relocs_compatible (abfd->xvec,
|
|
info->output_bfd->xvec))
|
|
{
|
|
htab->elf.dynobj = abfd;
|
|
dynobj = abfd;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return if there are no normal input files. */
|
|
if (dynobj == NULL)
|
|
return pbfd;
|
|
|
|
/* Even when lazy binding is disabled by "-z now", the PLT0 entry may
|
|
still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for
|
|
canonical function address. */
|
|
htab->plt.has_plt0 = 1;
|
|
normal_target = htab->elf.target_os == is_normal;
|
|
|
|
if (normal_target)
|
|
{
|
|
if (use_ibt_plt)
|
|
{
|
|
htab->lazy_plt = init_table->lazy_ibt_plt;
|
|
htab->non_lazy_plt = init_table->non_lazy_ibt_plt;
|
|
}
|
|
else
|
|
{
|
|
htab->lazy_plt = init_table->lazy_plt;
|
|
htab->non_lazy_plt = init_table->non_lazy_plt;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
htab->lazy_plt = init_table->lazy_plt;
|
|
htab->non_lazy_plt = NULL;
|
|
}
|
|
|
|
pltsec = htab->elf.splt;
|
|
|
|
if (htab->non_lazy_plt != NULL
|
|
&& (!htab->plt.has_plt0 || pltsec == NULL))
|
|
lazy_plt = false;
|
|
else
|
|
lazy_plt = true;
|
|
|
|
if (normal_target)
|
|
{
|
|
if (use_ibt_plt)
|
|
{
|
|
if (lazy_plt)
|
|
htab->sframe_plt = init_table->sframe_lazy_ibt_plt;
|
|
else
|
|
htab->sframe_plt = init_table->sframe_non_lazy_ibt_plt;
|
|
}
|
|
else
|
|
{
|
|
if (lazy_plt)
|
|
htab->sframe_plt = init_table->sframe_lazy_plt;
|
|
else
|
|
htab->sframe_plt = init_table->sframe_non_lazy_plt;
|
|
}
|
|
}
|
|
else
|
|
htab->sframe_plt = NULL;
|
|
|
|
/* If the non-lazy PLT is available, use it for all PLT entries if
|
|
there are no PLT0 or no .plt section. */
|
|
if (!lazy_plt)
|
|
{
|
|
if (bfd_link_pic (info))
|
|
htab->plt.plt_entry = htab->non_lazy_plt->pic_plt_entry;
|
|
else
|
|
htab->plt.plt_entry = htab->non_lazy_plt->plt_entry;
|
|
htab->plt.plt_entry_size = htab->non_lazy_plt->plt_entry_size;
|
|
htab->plt.plt_got_offset = htab->non_lazy_plt->plt_got_offset;
|
|
htab->plt.plt_got_insn_size
|
|
= htab->non_lazy_plt->plt_got_insn_size;
|
|
htab->plt.eh_frame_plt_size
|
|
= htab->non_lazy_plt->eh_frame_plt_size;
|
|
htab->plt.eh_frame_plt = htab->non_lazy_plt->eh_frame_plt;
|
|
}
|
|
else
|
|
{
|
|
if (bfd_link_pic (info))
|
|
{
|
|
htab->plt.plt0_entry = htab->lazy_plt->pic_plt0_entry;
|
|
htab->plt.plt_entry = htab->lazy_plt->pic_plt_entry;
|
|
}
|
|
else
|
|
{
|
|
htab->plt.plt0_entry = htab->lazy_plt->plt0_entry;
|
|
htab->plt.plt_entry = htab->lazy_plt->plt_entry;
|
|
}
|
|
htab->plt.plt_entry_size = htab->lazy_plt->plt_entry_size;
|
|
htab->plt.plt_got_offset = htab->lazy_plt->plt_got_offset;
|
|
htab->plt.plt_got_insn_size
|
|
= htab->lazy_plt->plt_got_insn_size;
|
|
htab->plt.eh_frame_plt_size
|
|
= htab->lazy_plt->eh_frame_plt_size;
|
|
htab->plt.eh_frame_plt = htab->lazy_plt->eh_frame_plt;
|
|
}
|
|
|
|
if (htab->elf.target_os == is_vxworks
|
|
&& !elf_vxworks_create_dynamic_sections (dynobj, info,
|
|
&htab->srelplt2))
|
|
{
|
|
info->callbacks->einfo (_("%F%P: failed to create VxWorks dynamic sections\n"));
|
|
return pbfd;
|
|
}
|
|
|
|
/* Since create_dynamic_sections isn't always called, but GOT
|
|
relocations need GOT relocations, create them here so that we
|
|
don't need to do it in check_relocs. */
|
|
if (htab->elf.sgot == NULL
|
|
&& !_bfd_elf_create_got_section (dynobj, info))
|
|
info->callbacks->einfo (_("%F%P: failed to create GOT sections\n"));
|
|
|
|
got_align = (bed->target_id == X86_64_ELF_DATA) ? 3 : 2;
|
|
|
|
/* Align .got and .got.plt sections to their entry size. Do it here
|
|
instead of in create_dynamic_sections so that they are always
|
|
properly aligned even if create_dynamic_sections isn't called. */
|
|
sec = htab->elf.sgot;
|
|
if (!bfd_set_section_alignment (sec, got_align))
|
|
goto error_alignment;
|
|
|
|
sec = htab->elf.sgotplt;
|
|
if (!bfd_set_section_alignment (sec, got_align))
|
|
goto error_alignment;
|
|
|
|
/* Create the ifunc sections here so that check_relocs can be
|
|
simplified. */
|
|
if (!_bfd_elf_create_ifunc_sections (dynobj, info))
|
|
info->callbacks->einfo (_("%F%P: failed to create ifunc sections\n"));
|
|
|
|
plt_alignment = bfd_log2 (htab->plt.plt_entry_size);
|
|
|
|
if (pltsec != NULL)
|
|
{
|
|
/* Whe creating executable, set the contents of the .interp
|
|
section to the interpreter. */
|
|
if (bfd_link_executable (info) && !info->nointerp)
|
|
{
|
|
asection *s = bfd_get_linker_section (dynobj, ".interp");
|
|
if (s == NULL)
|
|
abort ();
|
|
s->size = htab->dynamic_interpreter_size;
|
|
s->contents = (unsigned char *) htab->dynamic_interpreter;
|
|
htab->interp = s;
|
|
}
|
|
|
|
if (normal_target)
|
|
{
|
|
flagword pltflags = (bed->dynamic_sec_flags
|
|
| SEC_ALLOC
|
|
| SEC_CODE
|
|
| SEC_LOAD
|
|
| SEC_READONLY);
|
|
unsigned int non_lazy_plt_alignment
|
|
= bfd_log2 (htab->non_lazy_plt->plt_entry_size);
|
|
|
|
sec = pltsec;
|
|
if (!bfd_set_section_alignment (sec, plt_alignment))
|
|
goto error_alignment;
|
|
|
|
/* Create the GOT procedure linkage table. */
|
|
sec = bfd_make_section_anyway_with_flags (dynobj,
|
|
".plt.got",
|
|
pltflags);
|
|
if (sec == NULL)
|
|
info->callbacks->einfo (_("%F%P: failed to create GOT PLT section\n"));
|
|
|
|
if (!bfd_set_section_alignment (sec, non_lazy_plt_alignment))
|
|
goto error_alignment;
|
|
|
|
htab->plt_got = sec;
|
|
|
|
if (lazy_plt)
|
|
{
|
|
sec = NULL;
|
|
|
|
if (use_ibt_plt)
|
|
{
|
|
/* Create the second PLT for Intel IBT support. IBT
|
|
PLT is needed only for lazy binding. */
|
|
sec = bfd_make_section_anyway_with_flags (dynobj,
|
|
".plt.sec",
|
|
pltflags);
|
|
if (sec == NULL)
|
|
info->callbacks->einfo (_("%F%P: failed to create IBT-enabled PLT section\n"));
|
|
|
|
if (!bfd_set_section_alignment (sec, plt_alignment))
|
|
goto error_alignment;
|
|
}
|
|
|
|
htab->plt_second = sec;
|
|
}
|
|
}
|
|
|
|
if (!info->no_ld_generated_unwind_info)
|
|
{
|
|
flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
|
|
| SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
|
| SEC_LINKER_CREATED);
|
|
|
|
sec = bfd_make_section_anyway_with_flags (dynobj,
|
|
".eh_frame",
|
|
flags);
|
|
if (sec == NULL)
|
|
info->callbacks->einfo (_("%F%P: failed to create PLT .eh_frame section\n"));
|
|
|
|
if (!bfd_set_section_alignment (sec, class_align))
|
|
goto error_alignment;
|
|
|
|
htab->plt_eh_frame = sec;
|
|
|
|
if (htab->plt_got != NULL)
|
|
{
|
|
sec = bfd_make_section_anyway_with_flags (dynobj,
|
|
".eh_frame",
|
|
flags);
|
|
if (sec == NULL)
|
|
info->callbacks->einfo (_("%F%P: failed to create GOT PLT .eh_frame section\n"));
|
|
|
|
if (!bfd_set_section_alignment (sec, class_align))
|
|
goto error_alignment;
|
|
|
|
htab->plt_got_eh_frame = sec;
|
|
}
|
|
|
|
if (htab->plt_second != NULL)
|
|
{
|
|
sec = bfd_make_section_anyway_with_flags (dynobj,
|
|
".eh_frame",
|
|
flags);
|
|
if (sec == NULL)
|
|
info->callbacks->einfo (_("%F%P: failed to create the second PLT .eh_frame section\n"));
|
|
|
|
if (!bfd_set_section_alignment (sec, class_align))
|
|
goto error_alignment;
|
|
|
|
htab->plt_second_eh_frame = sec;
|
|
}
|
|
}
|
|
|
|
/* .sframe sections are emitted for AMD64 ABI only. */
|
|
if (ABI_64_P (info->output_bfd) && !info->no_ld_generated_unwind_info)
|
|
{
|
|
flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
|
|
| SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
|
| SEC_LINKER_CREATED);
|
|
|
|
sec = bfd_make_section_anyway_with_flags (dynobj,
|
|
".sframe",
|
|
flags);
|
|
if (sec == NULL)
|
|
info->callbacks->einfo (_("%F%P: failed to create PLT .sframe section\n"));
|
|
|
|
// FIXME check this
|
|
// if (!bfd_set_section_alignment (sec, class_align))
|
|
// goto error_alignment;
|
|
|
|
htab->plt_sframe = sec;
|
|
|
|
/* Second PLT is generated for Intel IBT + lazy plt. */
|
|
if (htab->plt_second != NULL)
|
|
{
|
|
sec = bfd_make_section_anyway_with_flags (dynobj,
|
|
".sframe",
|
|
flags);
|
|
if (sec == NULL)
|
|
info->callbacks->einfo (_("%F%P: failed to create second PLT .sframe section\n"));
|
|
|
|
htab->plt_second_sframe = sec;
|
|
}
|
|
/* FIXME - add later for plt_got. */
|
|
}
|
|
}
|
|
|
|
/* The .iplt section is used for IFUNC symbols in static
|
|
executables. */
|
|
sec = htab->elf.iplt;
|
|
if (sec != NULL)
|
|
{
|
|
/* NB: Delay setting its alignment until we know it is non-empty.
|
|
Otherwise an empty iplt section may change vma and lma of the
|
|
following sections, which triggers moving dot of the following
|
|
section backwards, resulting in a warning and section lma not
|
|
being set properly. It later leads to a "File truncated"
|
|
error. */
|
|
if (!bfd_set_section_alignment (sec, 0))
|
|
goto error_alignment;
|
|
|
|
htab->plt.iplt_alignment = (normal_target
|
|
? plt_alignment
|
|
: bed->plt_alignment);
|
|
}
|
|
|
|
if (bfd_link_executable (info)
|
|
&& !info->nointerp
|
|
&& !htab->params->has_dynamic_linker
|
|
&& htab->params->static_before_all_inputs)
|
|
{
|
|
/* Report error for dynamic input objects if -static is passed at
|
|
command-line before all input files without --dynamic-linker
|
|
unless --no-dynamic-linker is used. */
|
|
bfd *abfd;
|
|
|
|
for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
|
if ((abfd->flags & DYNAMIC))
|
|
info->callbacks->einfo
|
|
(_("%X%P: attempted static link of dynamic object `%pB'\n"),
|
|
abfd);
|
|
}
|
|
|
|
return pbfd;
|
|
}
|
|
|
|
/* Fix up x86 GNU properties. */
|
|
|
|
void
|
|
_bfd_x86_elf_link_fixup_gnu_properties
|
|
(struct bfd_link_info *info, elf_property_list **listp)
|
|
{
|
|
elf_property_list *p;
|
|
|
|
for (p = *listp; p; p = p->next)
|
|
{
|
|
unsigned int type = p->property.pr_type;
|
|
if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED
|
|
|| type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED
|
|
|| (type >= GNU_PROPERTY_X86_UINT32_AND_LO
|
|
&& type <= GNU_PROPERTY_X86_UINT32_AND_HI)
|
|
|| (type >= GNU_PROPERTY_X86_UINT32_OR_LO
|
|
&& type <= GNU_PROPERTY_X86_UINT32_OR_HI)
|
|
|| (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO
|
|
&& type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI))
|
|
{
|
|
if (p->property.u.number == 0
|
|
&& (type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED
|
|
|| (type >= GNU_PROPERTY_X86_UINT32_AND_LO
|
|
&& type <= GNU_PROPERTY_X86_UINT32_AND_HI)
|
|
|| (type >= GNU_PROPERTY_X86_UINT32_OR_LO
|
|
&& type <= GNU_PROPERTY_X86_UINT32_OR_HI)))
|
|
{
|
|
/* Remove empty property. */
|
|
*listp = p->next;
|
|
continue;
|
|
}
|
|
|
|
/* Keep LAM features only for 64-bit output. */
|
|
if (type == GNU_PROPERTY_X86_FEATURE_1_AND
|
|
&& !ABI_64_P (info->output_bfd))
|
|
p->property.u.number &= ~(GNU_PROPERTY_X86_FEATURE_1_LAM_U48
|
|
| GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
|
|
|
|
listp = &p->next;
|
|
}
|
|
else if (type > GNU_PROPERTY_HIPROC)
|
|
{
|
|
/* The property list is sorted in order of type. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
_bfd_elf_linker_x86_set_options (struct bfd_link_info * info,
|
|
struct elf_linker_x86_params *params)
|
|
{
|
|
const struct elf_backend_data *bed
|
|
= get_elf_backend_data (info->output_bfd);
|
|
struct elf_x86_link_hash_table *htab
|
|
= elf_x86_hash_table (info, bed->target_id);
|
|
if (htab != NULL)
|
|
htab->params = params;
|
|
}
|