binutils-gdb/gdb/gdbserver/regcache.c
Joel Brobecker 80d82c1964 [LynxOS] GDBserver crash debugging threaded program
This crash is observable by debugging a threaded program on LynxOS.
On the GDB side, this is what we would see:

    % gdb q
    (gdb) target remote machine:4444
    (gdb) break q.adb:6
    (gdb) cont
    [gdb hits breakpoint]
    (gdb) cont
    Remote connection closed    <<<--- expected: [Inferior 1 (Remote target) exited normally]

On the gdbserver side, which was launched as usual:

    % gdbserver --once :4444 q
    Segmentation fault (core dumped)

Ooops!

The problem happens while GDB is trying to handle the thread termination
event of the thread that hit the breakpoint. It started happening after
the following change was made:

    commit 96e7a1eb6d
    Date:   Fri Oct 16 11:08:38 2015 -0400
    Subject: gdbserver: Reset current_thread when the thread is removed.

    Reset current_thread and make sure 'remove_process' is used
    after all associated threads have been removed first.

More precisely:

  . GDBserver receives the execution-resume order;

  . lynx-low resumes it succesfully, and then relies on lynx_wait_1
    to wait for the next event;

  . We quickly receive one, which lynx_wait_1 analyzes to be
    a "thread exit" event, and therefore does...

          case SIGTHREADEXIT:
            remove_thread (find_thread_ptid (new_ptid));
            lynx_continue (new_ptid);
            goto retry;

    => remove_thread causes current_thread to be set to NULL...
       (that's the recent change mentioned above)

    => ... which causes problems during lynx_continue, because
       it calls lynx_resume, which calls regcache_invalidate,
       which unfortunately assumes that CURRENT_THREAD is not NULL:

        void
        regcache_invalidate (void)
        {
          /* Only update the threads of the current process.  */
SEGV!-->  int pid = ptid_get_pid (current_thread->entry.id);

          find_inferior (&all_threads, regcache_invalidate_one, &pid);
        }

Since the problem at hand is caused by trying to figure out which
inferior to reset the regcache for, and since lynx_resume actually
had that info, this patch fixes the problem by introducing a new
routine called regcache_invalidate_pid, which invalidates the cache
of the given pid; and then modifies lynx_resume use that new routine
rather than relying on regcache_invalidate to invalidate the regcache
of the expected inferior.

gdb/gdbserver/ChangeLog:

        * regcache.h (regcache_invalidate_pid): Add declaration.
        * regcache.c (regcache_invalidate_pid): New function, extracted
        from regcache_invalidate.
        (regcache_invalidate): Reimplement using regcache_invalidate_pid.
        Add trivial documentation comment.
        * lynx-low.c: Use regcache_invalidate_pid instead of
        regcache_invalidate.
2015-11-23 09:56:23 -08:00

481 lines
11 KiB
C

/* Register support routines for the remote server for GDB.
Copyright (C) 2001-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "server.h"
#include "regdef.h"
#include "gdbthread.h"
#include "tdesc.h"
#include "rsp-low.h"
#ifndef IN_PROCESS_AGENT
struct regcache *
get_thread_regcache (struct thread_info *thread, int fetch)
{
struct regcache *regcache;
regcache = inferior_regcache_data (thread);
/* Threads' regcaches are created lazily, because biarch targets add
the main thread/lwp before seeing it stop for the first time, and
it is only after the target sees the thread stop for the first
time that the target has a chance of determining the process's
architecture. IOW, when we first add the process's main thread
we don't know which architecture/tdesc its regcache should
have. */
if (regcache == NULL)
{
struct process_info *proc = get_thread_process (thread);
gdb_assert (proc->tdesc != NULL);
regcache = new_register_cache (proc->tdesc);
set_inferior_regcache_data (thread, regcache);
}
if (fetch && regcache->registers_valid == 0)
{
struct thread_info *saved_thread = current_thread;
current_thread = thread;
/* Invalidate all registers, to prevent stale left-overs. */
memset (regcache->register_status, REG_UNAVAILABLE,
regcache->tdesc->num_registers);
fetch_inferior_registers (regcache, -1);
current_thread = saved_thread;
regcache->registers_valid = 1;
}
return regcache;
}
/* See common/common-regcache.h. */
struct regcache *
get_thread_regcache_for_ptid (ptid_t ptid)
{
return get_thread_regcache (find_thread_ptid (ptid), 1);
}
void
regcache_invalidate_thread (struct thread_info *thread)
{
struct regcache *regcache;
regcache = inferior_regcache_data (thread);
if (regcache == NULL)
return;
if (regcache->registers_valid)
{
struct thread_info *saved_thread = current_thread;
current_thread = thread;
store_inferior_registers (regcache, -1);
current_thread = saved_thread;
}
regcache->registers_valid = 0;
}
static int
regcache_invalidate_one (struct inferior_list_entry *entry,
void *pid_p)
{
struct thread_info *thread = (struct thread_info *) entry;
int pid = *(int *) pid_p;
/* Only invalidate the regcaches of threads of this process. */
if (ptid_get_pid (entry->id) == pid)
regcache_invalidate_thread (thread);
return 0;
}
/* See regcache.h. */
void
regcache_invalidate_pid (int pid)
{
find_inferior (&all_threads, regcache_invalidate_one, &pid);
}
/* See regcache.h. */
void
regcache_invalidate (void)
{
/* Only update the threads of the current process. */
int pid = ptid_get_pid (current_thread->entry.id);
regcache_invalidate_pid (pid);
}
#endif
struct regcache *
init_register_cache (struct regcache *regcache,
const struct target_desc *tdesc,
unsigned char *regbuf)
{
if (regbuf == NULL)
{
#ifndef IN_PROCESS_AGENT
/* Make sure to zero-initialize the register cache when it is
created, in case there are registers the target never
fetches. This way they'll read as zero instead of
garbage. */
regcache->tdesc = tdesc;
regcache->registers
= (unsigned char *) xcalloc (1, tdesc->registers_size);
regcache->registers_owned = 1;
regcache->register_status
= (unsigned char *) xcalloc (1, tdesc->num_registers);
gdb_assert (REG_UNAVAILABLE == 0);
#else
gdb_assert_not_reached ("can't allocate memory from the heap");
#endif
}
else
{
regcache->tdesc = tdesc;
regcache->registers = regbuf;
regcache->registers_owned = 0;
#ifndef IN_PROCESS_AGENT
regcache->register_status = NULL;
#endif
}
regcache->registers_valid = 0;
return regcache;
}
#ifndef IN_PROCESS_AGENT
struct regcache *
new_register_cache (const struct target_desc *tdesc)
{
struct regcache *regcache = XCNEW (struct regcache);
gdb_assert (tdesc->registers_size != 0);
return init_register_cache (regcache, tdesc, NULL);
}
void
free_register_cache (struct regcache *regcache)
{
if (regcache)
{
if (regcache->registers_owned)
free (regcache->registers);
free (regcache->register_status);
free (regcache);
}
}
#endif
void
regcache_cpy (struct regcache *dst, struct regcache *src)
{
gdb_assert (src != NULL && dst != NULL);
gdb_assert (src->tdesc == dst->tdesc);
gdb_assert (src != dst);
memcpy (dst->registers, src->registers, src->tdesc->registers_size);
#ifndef IN_PROCESS_AGENT
if (dst->register_status != NULL && src->register_status != NULL)
memcpy (dst->register_status, src->register_status,
src->tdesc->num_registers);
#endif
dst->registers_valid = src->registers_valid;
}
#ifndef IN_PROCESS_AGENT
void
registers_to_string (struct regcache *regcache, char *buf)
{
unsigned char *registers = regcache->registers;
const struct target_desc *tdesc = regcache->tdesc;
int i;
for (i = 0; i < tdesc->num_registers; i++)
{
if (regcache->register_status[i] == REG_VALID)
{
bin2hex (registers, buf, register_size (tdesc, i));
buf += register_size (tdesc, i) * 2;
}
else
{
memset (buf, 'x', register_size (tdesc, i) * 2);
buf += register_size (tdesc, i) * 2;
}
registers += register_size (tdesc, i);
}
*buf = '\0';
}
void
registers_from_string (struct regcache *regcache, char *buf)
{
int len = strlen (buf);
unsigned char *registers = regcache->registers;
const struct target_desc *tdesc = regcache->tdesc;
if (len != tdesc->registers_size * 2)
{
warning ("Wrong sized register packet (expected %d bytes, got %d)",
2 * tdesc->registers_size, len);
if (len > tdesc->registers_size * 2)
len = tdesc->registers_size * 2;
}
hex2bin (buf, registers, len / 2);
}
struct reg *
find_register_by_name (const struct target_desc *tdesc, const char *name)
{
int i;
for (i = 0; i < tdesc->num_registers; i++)
if (strcmp (name, tdesc->reg_defs[i].name) == 0)
return &tdesc->reg_defs[i];
internal_error (__FILE__, __LINE__, "Unknown register %s requested",
name);
}
int
find_regno (const struct target_desc *tdesc, const char *name)
{
int i;
for (i = 0; i < tdesc->num_registers; i++)
if (strcmp (name, tdesc->reg_defs[i].name) == 0)
return i;
internal_error (__FILE__, __LINE__, "Unknown register %s requested",
name);
}
struct reg *
find_register_by_number (const struct target_desc *tdesc, int n)
{
return &tdesc->reg_defs[n];
}
#endif
#ifndef IN_PROCESS_AGENT
static void
free_register_cache_thread (struct thread_info *thread)
{
struct regcache *regcache = inferior_regcache_data (thread);
if (regcache != NULL)
{
regcache_invalidate_thread (thread);
free_register_cache (regcache);
set_inferior_regcache_data (thread, NULL);
}
}
static void
free_register_cache_thread_one (struct inferior_list_entry *entry)
{
struct thread_info *thread = (struct thread_info *) entry;
free_register_cache_thread (thread);
}
void
regcache_release (void)
{
/* Flush and release all pre-existing register caches. */
for_each_inferior (&all_threads, free_register_cache_thread_one);
}
#endif
int
register_cache_size (const struct target_desc *tdesc)
{
return tdesc->registers_size;
}
int
register_size (const struct target_desc *tdesc, int n)
{
return tdesc->reg_defs[n].size / 8;
}
/* See common/common-regcache.h. */
int
regcache_register_size (const struct regcache *regcache, int n)
{
return register_size (regcache->tdesc, n);
}
static unsigned char *
register_data (struct regcache *regcache, int n, int fetch)
{
return regcache->registers + regcache->tdesc->reg_defs[n].offset / 8;
}
/* Supply register N, whose contents are stored in BUF, to REGCACHE.
If BUF is NULL, the register's value is recorded as
unavailable. */
void
supply_register (struct regcache *regcache, int n, const void *buf)
{
if (buf)
{
memcpy (register_data (regcache, n, 0), buf,
register_size (regcache->tdesc, n));
#ifndef IN_PROCESS_AGENT
if (regcache->register_status != NULL)
regcache->register_status[n] = REG_VALID;
#endif
}
else
{
memset (register_data (regcache, n, 0), 0,
register_size (regcache->tdesc, n));
#ifndef IN_PROCESS_AGENT
if (regcache->register_status != NULL)
regcache->register_status[n] = REG_UNAVAILABLE;
#endif
}
}
/* Supply register N with value zero to REGCACHE. */
void
supply_register_zeroed (struct regcache *regcache, int n)
{
memset (register_data (regcache, n, 0), 0,
register_size (regcache->tdesc, n));
#ifndef IN_PROCESS_AGENT
if (regcache->register_status != NULL)
regcache->register_status[n] = REG_VALID;
#endif
}
/* Supply the whole register set whose contents are stored in BUF, to
REGCACHE. If BUF is NULL, all the registers' values are recorded
as unavailable. */
void
supply_regblock (struct regcache *regcache, const void *buf)
{
if (buf)
{
const struct target_desc *tdesc = regcache->tdesc;
memcpy (regcache->registers, buf, tdesc->registers_size);
#ifndef IN_PROCESS_AGENT
{
int i;
for (i = 0; i < tdesc->num_registers; i++)
regcache->register_status[i] = REG_VALID;
}
#endif
}
else
{
const struct target_desc *tdesc = regcache->tdesc;
memset (regcache->registers, 0, tdesc->registers_size);
#ifndef IN_PROCESS_AGENT
{
int i;
for (i = 0; i < tdesc->num_registers; i++)
regcache->register_status[i] = REG_UNAVAILABLE;
}
#endif
}
}
#ifndef IN_PROCESS_AGENT
void
supply_register_by_name (struct regcache *regcache,
const char *name, const void *buf)
{
supply_register (regcache, find_regno (regcache->tdesc, name), buf);
}
#endif
void
collect_register (struct regcache *regcache, int n, void *buf)
{
memcpy (buf, register_data (regcache, n, 1),
register_size (regcache->tdesc, n));
}
#ifndef IN_PROCESS_AGENT
void
collect_register_as_string (struct regcache *regcache, int n, char *buf)
{
bin2hex (register_data (regcache, n, 1), buf,
register_size (regcache->tdesc, n));
}
void
collect_register_by_name (struct regcache *regcache,
const char *name, void *buf)
{
collect_register (regcache, find_regno (regcache->tdesc, name), buf);
}
/* Special handling for register PC. */
CORE_ADDR
regcache_read_pc (struct regcache *regcache)
{
CORE_ADDR pc_val;
if (the_target->read_pc)
pc_val = the_target->read_pc (regcache);
else
internal_error (__FILE__, __LINE__,
"regcache_read_pc: Unable to find PC");
return pc_val;
}
void
regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
if (the_target->write_pc)
the_target->write_pc (regcache, pc);
else
internal_error (__FILE__, __LINE__,
"regcache_write_pc: Unable to update PC");
}
#endif