binutils-gdb/gdb/testsuite/gdb.pascal/floats.exp
Simon Marchi 4a6bdfb9ba gdb/testsuite: fail if gdb_start_cmd fails
I broke gdb.ada/start.exp, and did not notice it, because it outputs an
UNTESTED if gdb_start_cmd fails.  I don't really see when start would
fail and it's not a problem that should be looked at.  Change all spots
that call untested after a gdb_start_cmd failure, use fail instead.

Doing so caused some failures with the native-gdbserver board.  Some
tests that use "start" were relying on the fact that start would fail
with that board to just return with "untested".  Change them to add an
early return if use_gdb_stub returns true.

Some gdb.pascal tests also failed with native-gdbserver, because they
did use gdb_start_cmd to start the inferior, for no good reason.
Convert them to use runto_main instead, which does the right thing if
the target is a stub.

A further refactoring could be to make gdb_start_cmd match the expected
breakpoint hit and the prompt, which it doesn't do currently (it leaves
that to the callers, but not all of them do).

Change-Id: I097370851213e798ff29fb6cf8ba25ef7d2be007
Reviewed-By: Bruno Larsen <blarsen@redhat.com>
Approved-By: Andrew Burgess <aburgess@redhat.com>
2022-11-28 09:40:26 -05:00

149 lines
5.1 KiB
Plaintext

# Copyright 2007-2022 Free Software Foundation, Inc.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
load_lib "pascal.exp"
standard_testfile .pas
if {[gdb_compile_pascal "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable [list debug ]] != "" } {
untested "failed to compile"
return -1
}
clean_restart ${testfile}
if { ![runto_main] } {
return
}
set bp_location1 [gdb_get_line_number "set breakpoint 1 here"]
set bp_location2 [gdb_get_line_number "set breakpoint 2 here"]
if { [gdb_breakpoint ${srcfile}:${bp_location1}] } {
pass "setting breakpoint 1"
}
if { [gdb_breakpoint ${srcfile}:${bp_location2}] } {
pass "setting breakpoint 2"
}
gdb_test "cont" "Breakpoint .*:${bp_location1}.*" "going to first breakpoint"
gdb_test "print r" ".* = 0" "print r before assigned to 1.25"
gdb_test "next" "r := 1\\.25;" "next to 'r := 1.25' line"
gdb_test "next" "s := 2\\.2;" "next to 's := 2.2' line"
gdb_test "next" "t := -3\\.2;" "next to 't := -3.2' line"
gdb_test "next" "u := 78\\.3;" "next to 'u := 78.3' line"
gdb_test "next" "l := 1;" "next to 'l := 1' line"
gdb_test "next" "i := 1;" "next to 'i := 1' line"
# At that point,
# r should be equal to 1.25
gdb_test "print r" " = 1\\.25"
# s should be equal to 2.2
gdb_test "print s" " = 2\\.(199.*|2|200.*)"
# t should be equal to -3.2
gdb_test "print t" " = -3\\.(199.*|2|200.*)"
# u should be equal to 78.3
gdb_test "print u" " = 78\\.(3|300.*|299.*)"
# Test addition
gdb_test "print r + s" " = 3\\.4(499.*|5|500.*)"
gdb_test "print r + t" " = -1\\.9(499.*|5|500.*)"
#Test addition with float constants
gdb_test "print r + 1.5" " = 2\\.7(499.*|5|500.*)"
gdb_test "print r + 0.03" " = 1\\.2(799.*|8|800.*)"
gdb_test "print r + (-0.2)" " = 1\\.0(499.*|5|500.*)"
gdb_test "print r + 1.5E+3" " = 1501\\.2(499.*|5|500.*)"
gdb_test "print r + 1.5E+2" " = 151\\.2(499.*|5|500.*)"
gdb_test "print r + 1.5E+1" " = 16\\.2(499.*|5|500.*)"
gdb_test "print r + 1.5E+0" " = 2\\.7(499.*|5|500.*)"
gdb_test "print r + 1.5E-1" " = 1\\.(399.*|4|400.*)"
gdb_test "print r + 1.5E-2" " = 1\\.26(499.*|5|500.*)"
gdb_test "print r + 1.5E-3" " = 1\\.251(499.*|5|500.*)"
# Test addition with integer variables
gdb_test "print r + l" " = 2\\.2(499.*|5|500.*)"
gdb_test "print l + t" " = -2\\.(199.*|2|200.*)"
# Test addition with integer constants
gdb_test "print r + 10" " = 11\\.2(499.*|5|500.*)"
gdb_test "print r + 5" " = 6\\.2(499.*|5|500.*)"
gdb_test "print r + 1" " = 2\\.2(499.*|5|500.*)"
gdb_test "print r + 0" " = 1\\.2(499.*|5|500.*)"
gdb_test "print r + (-1)" " = 0\\.2(499.*|5|500.*)"
gdb_test "print r + (-5)" " = -3\\.7(499.*|5|500.*)"
gdb_test "print r + (-10)" " = -8\\.7(499.*|5|500.*)"
# Test substraction
gdb_test "print r - s" " = -0\\.9(499.*|5|500.*)"
gdb_test "print r - t" " = 4\\.4(499.*|5|500.*)"
# Test unany minus
gdb_test "print -r" " = -1\\.2(499.*|5|500.*)"
gdb_test "print (-r)" " = -1\\.2(499.*|5|500.*)"
gdb_test "print -(r)" " = -1.2(499.*|5|500.*)"
gdb_test "print -(r + s)" " = -3\\.4(499.*|5|500.*)"
# Test multiplication
gdb_test "print 2 * r" " = 2\\.(499.*|5|500.*)"
gdb_test "print 2.0 * r" " = 2\\.(499.*|5|500.*)"
gdb_test "print 1000*r" " = 12(49\\.99.*|50|50\\.00.*)"
#Test division
gdb_test "print r / 2" " = 0\\.62(499.*|5|500.*)"
gdb_test "print 35 / 2" " = 17\\.(499.*|5|500.*)"
# 'set r' does not work, as there are set sub-commands starting with 'r'
# Thus we need to use 'set var r'
gdb_test "set var r := 2.56" " := 2\\.56"
gdb_test "print r" " = 2\\.5(599.*|6|600.*)" "testing new r value"
gdb_test "cont" \
"Breakpoint .*:${bp_location2}.*" \
"Going to second breakpoint"
gdb_test "next" "r := cos\\(u\\);" "advance to 'r := cos(u)' line"
gdb_test "print u" " = 3\\.14159.*" "test pi value"
gdb_test "next" "s := sin\\(u\\);" "advance to 's := sin(u)' line"
gdb_test "print r" " = -1" "test cos(pi) is equal to -1"
gdb_test "next" "" "go past 's := sin(u)' line"
set msg "Test sin(pi) is equal to 0"
gdb_test_multiple "print s" $msg {
-re ".* = (0|-?\[0-9\]\\.\[0-9\]*\[eE\](-?\[0-9\]*))\[\r\n\]+$gdb_prompt $" {
set value "$expect_out(1,string)"
verbose "value is $value" 1
if [info exists expect_out(2,string)] {
set expo $expect_out(2,string)
verbose "expo found: $expo" 1
} else {
set expo "0"
regsub ".*\[eE\]" "$value" "" expo
}
regsub "^-" "$expo" "" mexpo
verbose "expo is $expo" 1
verbose "mexpo is $mexpo" 1
if { $value == 0 } {
pass $msg
} elseif {$mexpo > 8} {
pass "$msg '$value' is close to zero"
} else {
fail "$msg '$value' too large"
}
verbose "Still here" 1
}
}