mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
95ce627aeb
When a core file is created from within GDB add the target description into a note within the core file. When loading a core file, if the target description note is present then load the target description from the core file. The benefit of this is that we can be sure that, when analysing the core file within GDB, that we are using the exact same target description as was in use at the time the core file was created. GDB already supports a mechanism for figuring out the target description from a given corefile; gdbarch_core_read_description. This new mechanism (GDB adding the target description) is not going to replace the old mechanism. Core files generated outside of GDB will not include a target description, and so GDB still needs to be able to figure out a target description for these files. My primary motivation for adding this feature is that, in a future commit, I will be adding support for bare metal core dumps on some targets. For RISC-V specifically, I want to be able to dump all the available control status registers. As different targets will present different sets of register in their target description, including registers that are possibly not otherwise known to GDB I wanted a way to capture these registers in the core dump. I therefore need a mechanism to write out an arbitrary set of registers, and to then derive a target description from this arbitrary set when later loading the core file. The obvious approach (I think) is to just reuse the target description. Once I'd decided to add support for writing out the target description I could either choose to make this RISC-V only, or make it generic. I figure that having the target description in the core file doesn't hurt, and _might_ be helpful. So that's how I got here, general support for including the target description in GDB generated core files. In previous versions of this patch I added the target description from generic code (in gcore.c). However, doing this creates a dependency between GDB's common code and bfd ELF support. As ELF support in gdb is optional (for example the target x86_64-apple-darwin20.3.0 does not include ELF support) then having gcore.c require ELF support would break the GDB build in some cases. Instead, in this version of the patch, writing the target description note is done from each specific targets make notes function. Each of these now calls a common function in gcore-elf.c (which is only linked in when bfd has ELF support). And so only targets that are ELF based will call the new function and we can therefore avoid an unconditional dependency on ELF support. gdb/ChangeLog: * corelow.c: Add 'xml-tdesc.h' include. (core_target::read_description): Load the target description from the core file when possible. * fbsd-tdep.c (fbsd_make_corefile_notes): Add target description note. * gcore-elf.c: Add 'gdbsupport/tdesc.h' include. (gcore_elf_make_tdesc_note): New function. * gcore-elf.h (gcore_elf_make_tdesc_note): Declare. * linux-tdep.c (linux_make_corefile_notes): Add target description note.
1198 lines
34 KiB
C
1198 lines
34 KiB
C
/* Core dump and executable file functions below target vector, for GDB.
|
||
|
||
Copyright (C) 1986-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include <signal.h>
|
||
#include <fcntl.h>
|
||
#include "frame.h" /* required by inferior.h */
|
||
#include "inferior.h"
|
||
#include "infrun.h"
|
||
#include "symtab.h"
|
||
#include "command.h"
|
||
#include "bfd.h"
|
||
#include "target.h"
|
||
#include "process-stratum-target.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbthread.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "symfile.h"
|
||
#include "exec.h"
|
||
#include "readline/tilde.h"
|
||
#include "solib.h"
|
||
#include "solist.h"
|
||
#include "filenames.h"
|
||
#include "progspace.h"
|
||
#include "objfiles.h"
|
||
#include "gdb_bfd.h"
|
||
#include "completer.h"
|
||
#include "gdbsupport/filestuff.h"
|
||
#include "build-id.h"
|
||
#include "gdbsupport/pathstuff.h"
|
||
#include <unordered_map>
|
||
#include <unordered_set>
|
||
#include "gdbcmd.h"
|
||
#include "xml-tdesc.h"
|
||
|
||
#ifndef O_LARGEFILE
|
||
#define O_LARGEFILE 0
|
||
#endif
|
||
|
||
/* The core file target. */
|
||
|
||
static const target_info core_target_info = {
|
||
"core",
|
||
N_("Local core dump file"),
|
||
N_("Use a core file as a target.\n\
|
||
Specify the filename of the core file.")
|
||
};
|
||
|
||
class core_target final : public process_stratum_target
|
||
{
|
||
public:
|
||
core_target ();
|
||
|
||
const target_info &info () const override
|
||
{ return core_target_info; }
|
||
|
||
void close () override;
|
||
void detach (inferior *, int) override;
|
||
void fetch_registers (struct regcache *, int) override;
|
||
|
||
enum target_xfer_status xfer_partial (enum target_object object,
|
||
const char *annex,
|
||
gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len) override;
|
||
void files_info () override;
|
||
|
||
bool thread_alive (ptid_t ptid) override;
|
||
const struct target_desc *read_description () override;
|
||
|
||
std::string pid_to_str (ptid_t) override;
|
||
|
||
const char *thread_name (struct thread_info *) override;
|
||
|
||
bool has_all_memory () override { return true; }
|
||
bool has_memory () override;
|
||
bool has_stack () override;
|
||
bool has_registers () override;
|
||
bool has_execution (inferior *inf) override { return false; }
|
||
|
||
bool info_proc (const char *, enum info_proc_what) override;
|
||
|
||
/* A few helpers. */
|
||
|
||
/* Getter, see variable definition. */
|
||
struct gdbarch *core_gdbarch ()
|
||
{
|
||
return m_core_gdbarch;
|
||
}
|
||
|
||
/* See definition. */
|
||
void get_core_register_section (struct regcache *regcache,
|
||
const struct regset *regset,
|
||
const char *name,
|
||
int section_min_size,
|
||
const char *human_name,
|
||
bool required);
|
||
|
||
/* See definition. */
|
||
void info_proc_mappings (struct gdbarch *gdbarch);
|
||
|
||
private: /* per-core data */
|
||
|
||
/* The core's section table. Note that these target sections are
|
||
*not* mapped in the current address spaces' set of target
|
||
sections --- those should come only from pure executable or
|
||
shared library bfds. The core bfd sections are an implementation
|
||
detail of the core target, just like ptrace is for unix child
|
||
targets. */
|
||
target_section_table m_core_section_table;
|
||
|
||
/* File-backed address space mappings: some core files include
|
||
information about memory mapped files. */
|
||
target_section_table m_core_file_mappings;
|
||
|
||
/* Unavailable mappings. These correspond to pathnames which either
|
||
weren't found or could not be opened. Knowing these addresses can
|
||
still be useful. */
|
||
std::vector<mem_range> m_core_unavailable_mappings;
|
||
|
||
/* Build m_core_file_mappings. Called from the constructor. */
|
||
void build_file_mappings ();
|
||
|
||
/* Helper method for xfer_partial. */
|
||
enum target_xfer_status xfer_memory_via_mappings (gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset,
|
||
ULONGEST len,
|
||
ULONGEST *xfered_len);
|
||
|
||
/* FIXME: kettenis/20031023: Eventually this field should
|
||
disappear. */
|
||
struct gdbarch *m_core_gdbarch = NULL;
|
||
};
|
||
|
||
core_target::core_target ()
|
||
{
|
||
m_core_gdbarch = gdbarch_from_bfd (core_bfd);
|
||
|
||
if (!m_core_gdbarch
|
||
|| !gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
|
||
error (_("\"%s\": Core file format not supported"),
|
||
bfd_get_filename (core_bfd));
|
||
|
||
/* Find the data section */
|
||
m_core_section_table = build_section_table (core_bfd);
|
||
|
||
build_file_mappings ();
|
||
}
|
||
|
||
/* Construct the target_section_table for file-backed mappings if
|
||
they exist.
|
||
|
||
For each unique path in the note, we'll open a BFD with a bfd
|
||
target of "binary". This is an unstructured bfd target upon which
|
||
we'll impose a structure from the mappings in the architecture-specific
|
||
mappings note. A BFD section is allocated and initialized for each
|
||
file-backed mapping.
|
||
|
||
We take care to not share already open bfds with other parts of
|
||
GDB; in particular, we don't want to add new sections to existing
|
||
BFDs. We do, however, ensure that the BFDs that we allocate here
|
||
will go away (be deallocated) when the core target is detached. */
|
||
|
||
void
|
||
core_target::build_file_mappings ()
|
||
{
|
||
std::unordered_map<std::string, struct bfd *> bfd_map;
|
||
std::unordered_set<std::string> unavailable_paths;
|
||
|
||
/* See linux_read_core_file_mappings() in linux-tdep.c for an example
|
||
read_core_file_mappings method. */
|
||
gdbarch_read_core_file_mappings (m_core_gdbarch, core_bfd,
|
||
|
||
/* After determining the number of mappings, read_core_file_mappings
|
||
will invoke this lambda. */
|
||
[&] (ULONGEST)
|
||
{
|
||
},
|
||
|
||
/* read_core_file_mappings will invoke this lambda for each mapping
|
||
that it finds. */
|
||
[&] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
|
||
const char *filename)
|
||
{
|
||
/* Architecture-specific read_core_mapping methods are expected to
|
||
weed out non-file-backed mappings. */
|
||
gdb_assert (filename != nullptr);
|
||
|
||
struct bfd *bfd = bfd_map[filename];
|
||
if (bfd == nullptr)
|
||
{
|
||
/* Use exec_file_find() to do sysroot expansion. It'll
|
||
also strip the potential sysroot "target:" prefix. If
|
||
there is no sysroot, an equivalent (possibly more
|
||
canonical) pathname will be provided. */
|
||
gdb::unique_xmalloc_ptr<char> expanded_fname
|
||
= exec_file_find (filename, NULL);
|
||
if (expanded_fname == nullptr)
|
||
{
|
||
m_core_unavailable_mappings.emplace_back (start, end - start);
|
||
/* Print just one warning per path. */
|
||
if (unavailable_paths.insert (filename).second)
|
||
warning (_("Can't open file %s during file-backed mapping "
|
||
"note processing"),
|
||
filename);
|
||
return;
|
||
}
|
||
|
||
bfd = bfd_map[filename] = bfd_openr (expanded_fname.get (),
|
||
"binary");
|
||
|
||
if (bfd == nullptr || !bfd_check_format (bfd, bfd_object))
|
||
{
|
||
m_core_unavailable_mappings.emplace_back (start, end - start);
|
||
/* If we get here, there's a good chance that it's due to
|
||
an internal error. We issue a warning instead of an
|
||
internal error because of the possibility that the
|
||
file was removed in between checking for its
|
||
existence during the expansion in exec_file_find()
|
||
and the calls to bfd_openr() / bfd_check_format().
|
||
Output both the path from the core file note along
|
||
with its expansion to make debugging this problem
|
||
easier. */
|
||
warning (_("Can't open file %s which was expanded to %s "
|
||
"during file-backed mapping note processing"),
|
||
filename, expanded_fname.get ());
|
||
if (bfd != nullptr)
|
||
bfd_close (bfd);
|
||
return;
|
||
}
|
||
/* Ensure that the bfd will be closed when core_bfd is closed.
|
||
This can be checked before/after a core file detach via
|
||
"maint info bfds". */
|
||
gdb_bfd_record_inclusion (core_bfd, bfd);
|
||
}
|
||
|
||
/* Make new BFD section. All sections have the same name,
|
||
which is permitted by bfd_make_section_anyway(). */
|
||
asection *sec = bfd_make_section_anyway (bfd, "load");
|
||
if (sec == nullptr)
|
||
error (_("Can't make section"));
|
||
sec->filepos = file_ofs;
|
||
bfd_set_section_flags (sec, SEC_READONLY | SEC_HAS_CONTENTS);
|
||
bfd_set_section_size (sec, end - start);
|
||
bfd_set_section_vma (sec, start);
|
||
bfd_set_section_lma (sec, start);
|
||
bfd_set_section_alignment (sec, 2);
|
||
|
||
/* Set target_section fields. */
|
||
m_core_file_mappings.emplace_back (start, end, sec);
|
||
});
|
||
|
||
normalize_mem_ranges (&m_core_unavailable_mappings);
|
||
}
|
||
|
||
/* An arbitrary identifier for the core inferior. */
|
||
#define CORELOW_PID 1
|
||
|
||
/* Close the core target. */
|
||
|
||
void
|
||
core_target::close ()
|
||
{
|
||
if (core_bfd)
|
||
{
|
||
switch_to_no_thread (); /* Avoid confusion from thread
|
||
stuff. */
|
||
exit_inferior_silent (current_inferior ());
|
||
|
||
/* Clear out solib state while the bfd is still open. See
|
||
comments in clear_solib in solib.c. */
|
||
clear_solib ();
|
||
|
||
current_program_space->cbfd.reset (nullptr);
|
||
}
|
||
|
||
/* Core targets are heap-allocated (see core_target_open), so here
|
||
we delete ourselves. */
|
||
delete this;
|
||
}
|
||
|
||
/* Look for sections whose names start with `.reg/' so that we can
|
||
extract the list of threads in a core file. */
|
||
|
||
static void
|
||
add_to_thread_list (asection *asect, asection *reg_sect)
|
||
{
|
||
int core_tid;
|
||
int pid, lwpid;
|
||
bool fake_pid_p = false;
|
||
struct inferior *inf;
|
||
|
||
if (!startswith (bfd_section_name (asect), ".reg/"))
|
||
return;
|
||
|
||
core_tid = atoi (bfd_section_name (asect) + 5);
|
||
|
||
pid = bfd_core_file_pid (core_bfd);
|
||
if (pid == 0)
|
||
{
|
||
fake_pid_p = true;
|
||
pid = CORELOW_PID;
|
||
}
|
||
|
||
lwpid = core_tid;
|
||
|
||
inf = current_inferior ();
|
||
if (inf->pid == 0)
|
||
{
|
||
inferior_appeared (inf, pid);
|
||
inf->fake_pid_p = fake_pid_p;
|
||
}
|
||
|
||
ptid_t ptid (pid, lwpid);
|
||
|
||
thread_info *thr = add_thread (inf->process_target (), ptid);
|
||
|
||
/* Warning, Will Robinson, looking at BFD private data! */
|
||
|
||
if (reg_sect != NULL
|
||
&& asect->filepos == reg_sect->filepos) /* Did we find .reg? */
|
||
switch_to_thread (thr); /* Yes, make it current. */
|
||
}
|
||
|
||
/* Issue a message saying we have no core to debug, if FROM_TTY. */
|
||
|
||
static void
|
||
maybe_say_no_core_file_now (int from_tty)
|
||
{
|
||
if (from_tty)
|
||
printf_filtered (_("No core file now.\n"));
|
||
}
|
||
|
||
/* Backward compatibility with old way of specifying core files. */
|
||
|
||
void
|
||
core_file_command (const char *filename, int from_tty)
|
||
{
|
||
dont_repeat (); /* Either way, seems bogus. */
|
||
|
||
if (filename == NULL)
|
||
{
|
||
if (core_bfd != NULL)
|
||
{
|
||
target_detach (current_inferior (), from_tty);
|
||
gdb_assert (core_bfd == NULL);
|
||
}
|
||
else
|
||
maybe_say_no_core_file_now (from_tty);
|
||
}
|
||
else
|
||
core_target_open (filename, from_tty);
|
||
}
|
||
|
||
/* Locate (and load) an executable file (and symbols) given the core file
|
||
BFD ABFD. */
|
||
|
||
static void
|
||
locate_exec_from_corefile_build_id (bfd *abfd, int from_tty)
|
||
{
|
||
const bfd_build_id *build_id = build_id_bfd_get (abfd);
|
||
if (build_id == nullptr)
|
||
return;
|
||
|
||
gdb_bfd_ref_ptr execbfd
|
||
= build_id_to_exec_bfd (build_id->size, build_id->data);
|
||
|
||
if (execbfd != nullptr)
|
||
{
|
||
exec_file_attach (bfd_get_filename (execbfd.get ()), from_tty);
|
||
symbol_file_add_main (bfd_get_filename (execbfd.get ()),
|
||
symfile_add_flag (from_tty ? SYMFILE_VERBOSE : 0));
|
||
}
|
||
}
|
||
|
||
/* See gdbcore.h. */
|
||
|
||
void
|
||
core_target_open (const char *arg, int from_tty)
|
||
{
|
||
const char *p;
|
||
int siggy;
|
||
int scratch_chan;
|
||
int flags;
|
||
|
||
target_preopen (from_tty);
|
||
if (!arg)
|
||
{
|
||
if (core_bfd)
|
||
error (_("No core file specified. (Use `detach' "
|
||
"to stop debugging a core file.)"));
|
||
else
|
||
error (_("No core file specified."));
|
||
}
|
||
|
||
gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
|
||
if (!IS_ABSOLUTE_PATH (filename.get ()))
|
||
filename = gdb_abspath (filename.get ());
|
||
|
||
flags = O_BINARY | O_LARGEFILE;
|
||
if (write_files)
|
||
flags |= O_RDWR;
|
||
else
|
||
flags |= O_RDONLY;
|
||
scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
|
||
if (scratch_chan < 0)
|
||
perror_with_name (filename.get ());
|
||
|
||
gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
|
||
write_files ? FOPEN_RUB : FOPEN_RB,
|
||
scratch_chan));
|
||
if (temp_bfd == NULL)
|
||
perror_with_name (filename.get ());
|
||
|
||
if (!bfd_check_format (temp_bfd.get (), bfd_core))
|
||
{
|
||
/* Do it after the err msg */
|
||
/* FIXME: should be checking for errors from bfd_close (for one
|
||
thing, on error it does not free all the storage associated
|
||
with the bfd). */
|
||
error (_("\"%s\" is not a core dump: %s"),
|
||
filename.get (), bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
current_program_space->cbfd = std::move (temp_bfd);
|
||
|
||
core_target *target = new core_target ();
|
||
|
||
/* Own the target until it is successfully pushed. */
|
||
target_ops_up target_holder (target);
|
||
|
||
validate_files ();
|
||
|
||
/* If we have no exec file, try to set the architecture from the
|
||
core file. We don't do this unconditionally since an exec file
|
||
typically contains more information that helps us determine the
|
||
architecture than a core file. */
|
||
if (!current_program_space->exec_bfd ())
|
||
set_gdbarch_from_file (core_bfd);
|
||
|
||
push_target (std::move (target_holder));
|
||
|
||
switch_to_no_thread ();
|
||
|
||
/* Need to flush the register cache (and the frame cache) from a
|
||
previous debug session. If inferior_ptid ends up the same as the
|
||
last debug session --- e.g., b foo; run; gcore core1; step; gcore
|
||
core2; core core1; core core2 --- then there's potential for
|
||
get_current_regcache to return the cached regcache of the
|
||
previous session, and the frame cache being stale. */
|
||
registers_changed ();
|
||
|
||
/* Build up thread list from BFD sections, and possibly set the
|
||
current thread to the .reg/NN section matching the .reg
|
||
section. */
|
||
asection *reg_sect = bfd_get_section_by_name (core_bfd, ".reg");
|
||
for (asection *sect : gdb_bfd_sections (core_bfd))
|
||
add_to_thread_list (sect, reg_sect);
|
||
|
||
if (inferior_ptid == null_ptid)
|
||
{
|
||
/* Either we found no .reg/NN section, and hence we have a
|
||
non-threaded core (single-threaded, from gdb's perspective),
|
||
or for some reason add_to_thread_list couldn't determine
|
||
which was the "main" thread. The latter case shouldn't
|
||
usually happen, but we're dealing with input here, which can
|
||
always be broken in different ways. */
|
||
thread_info *thread = first_thread_of_inferior (current_inferior ());
|
||
|
||
if (thread == NULL)
|
||
{
|
||
inferior_appeared (current_inferior (), CORELOW_PID);
|
||
thread = add_thread_silent (target, ptid_t (CORELOW_PID));
|
||
}
|
||
|
||
switch_to_thread (thread);
|
||
}
|
||
|
||
if (current_program_space->exec_bfd () == nullptr)
|
||
locate_exec_from_corefile_build_id (core_bfd, from_tty);
|
||
|
||
post_create_inferior (from_tty);
|
||
|
||
/* Now go through the target stack looking for threads since there
|
||
may be a thread_stratum target loaded on top of target core by
|
||
now. The layer above should claim threads found in the BFD
|
||
sections. */
|
||
try
|
||
{
|
||
target_update_thread_list ();
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
exception_print (gdb_stderr, except);
|
||
}
|
||
|
||
p = bfd_core_file_failing_command (core_bfd);
|
||
if (p)
|
||
printf_filtered (_("Core was generated by `%s'.\n"), p);
|
||
|
||
/* Clearing any previous state of convenience variables. */
|
||
clear_exit_convenience_vars ();
|
||
|
||
siggy = bfd_core_file_failing_signal (core_bfd);
|
||
if (siggy > 0)
|
||
{
|
||
gdbarch *core_gdbarch = target->core_gdbarch ();
|
||
|
||
/* If we don't have a CORE_GDBARCH to work with, assume a native
|
||
core (map gdb_signal from host signals). If we do have
|
||
CORE_GDBARCH to work with, but no gdb_signal_from_target
|
||
implementation for that gdbarch, as a fallback measure,
|
||
assume the host signal mapping. It'll be correct for native
|
||
cores, but most likely incorrect for cross-cores. */
|
||
enum gdb_signal sig = (core_gdbarch != NULL
|
||
&& gdbarch_gdb_signal_from_target_p (core_gdbarch)
|
||
? gdbarch_gdb_signal_from_target (core_gdbarch,
|
||
siggy)
|
||
: gdb_signal_from_host (siggy));
|
||
|
||
printf_filtered (_("Program terminated with signal %s, %s"),
|
||
gdb_signal_to_name (sig), gdb_signal_to_string (sig));
|
||
if (gdbarch_report_signal_info_p (core_gdbarch))
|
||
gdbarch_report_signal_info (core_gdbarch, current_uiout, sig);
|
||
printf_filtered (_(".\n"));
|
||
|
||
/* Set the value of the internal variable $_exitsignal,
|
||
which holds the signal uncaught by the inferior. */
|
||
set_internalvar_integer (lookup_internalvar ("_exitsignal"),
|
||
siggy);
|
||
}
|
||
|
||
/* Fetch all registers from core file. */
|
||
target_fetch_registers (get_current_regcache (), -1);
|
||
|
||
/* Now, set up the frame cache, and print the top of stack. */
|
||
reinit_frame_cache ();
|
||
print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
|
||
|
||
/* Current thread should be NUM 1 but the user does not know that.
|
||
If a program is single threaded gdb in general does not mention
|
||
anything about threads. That is why the test is >= 2. */
|
||
if (thread_count (target) >= 2)
|
||
{
|
||
try
|
||
{
|
||
thread_command (NULL, from_tty);
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
exception_print (gdb_stderr, except);
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
core_target::detach (inferior *inf, int from_tty)
|
||
{
|
||
/* Note that 'this' is dangling after this call. unpush_target
|
||
closes the target, and our close implementation deletes
|
||
'this'. */
|
||
unpush_target (this);
|
||
|
||
/* Clear the register cache and the frame cache. */
|
||
registers_changed ();
|
||
reinit_frame_cache ();
|
||
maybe_say_no_core_file_now (from_tty);
|
||
}
|
||
|
||
/* Try to retrieve registers from a section in core_bfd, and supply
|
||
them to REGSET.
|
||
|
||
If ptid's lwp member is zero, do the single-threaded
|
||
thing: look for a section named NAME. If ptid's lwp
|
||
member is non-zero, do the multi-threaded thing: look for a section
|
||
named "NAME/LWP", where LWP is the shortest ASCII decimal
|
||
representation of ptid's lwp member.
|
||
|
||
HUMAN_NAME is a human-readable name for the kind of registers the
|
||
NAME section contains, for use in error messages.
|
||
|
||
If REQUIRED is true, print an error if the core file doesn't have a
|
||
section by the appropriate name. Otherwise, just do nothing. */
|
||
|
||
void
|
||
core_target::get_core_register_section (struct regcache *regcache,
|
||
const struct regset *regset,
|
||
const char *name,
|
||
int section_min_size,
|
||
const char *human_name,
|
||
bool required)
|
||
{
|
||
gdb_assert (regset != nullptr);
|
||
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
|
||
|
||
thread_section_name section_name (name, regcache->ptid ());
|
||
|
||
section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
|
||
if (! section)
|
||
{
|
||
if (required)
|
||
warning (_("Couldn't find %s registers in core file."),
|
||
human_name);
|
||
return;
|
||
}
|
||
|
||
size = bfd_section_size (section);
|
||
if (size < section_min_size)
|
||
{
|
||
warning (_("Section `%s' in core file too small."),
|
||
section_name.c_str ());
|
||
return;
|
||
}
|
||
if (size != section_min_size && !variable_size_section)
|
||
{
|
||
warning (_("Unexpected size of section `%s' in core file."),
|
||
section_name.c_str ());
|
||
}
|
||
|
||
gdb::byte_vector contents (size);
|
||
if (!bfd_get_section_contents (core_bfd, section, contents.data (),
|
||
(file_ptr) 0, size))
|
||
{
|
||
warning (_("Couldn't read %s registers from `%s' section in core file."),
|
||
human_name, section_name.c_str ());
|
||
return;
|
||
}
|
||
|
||
regset->supply_regset (regset, regcache, -1, contents.data (), size);
|
||
}
|
||
|
||
/* Data passed to gdbarch_iterate_over_regset_sections's callback. */
|
||
struct get_core_registers_cb_data
|
||
{
|
||
core_target *target;
|
||
struct regcache *regcache;
|
||
};
|
||
|
||
/* Callback for get_core_registers that handles a single core file
|
||
register note section. */
|
||
|
||
static void
|
||
get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
|
||
const struct regset *regset,
|
||
const char *human_name, void *cb_data)
|
||
{
|
||
gdb_assert (regset != nullptr);
|
||
|
||
auto *data = (get_core_registers_cb_data *) cb_data;
|
||
bool required = false;
|
||
bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
|
||
|
||
if (!variable_size_section)
|
||
gdb_assert (supply_size == collect_size);
|
||
|
||
if (strcmp (sect_name, ".reg") == 0)
|
||
{
|
||
required = true;
|
||
if (human_name == NULL)
|
||
human_name = "general-purpose";
|
||
}
|
||
else if (strcmp (sect_name, ".reg2") == 0)
|
||
{
|
||
if (human_name == NULL)
|
||
human_name = "floating-point";
|
||
}
|
||
|
||
data->target->get_core_register_section (data->regcache, regset, sect_name,
|
||
supply_size, human_name, required);
|
||
}
|
||
|
||
/* Get the registers out of a core file. This is the machine-
|
||
independent part. Fetch_core_registers is the machine-dependent
|
||
part, typically implemented in the xm-file for each
|
||
architecture. */
|
||
|
||
/* We just get all the registers, so we don't use regno. */
|
||
|
||
void
|
||
core_target::fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
if (!(m_core_gdbarch != nullptr
|
||
&& gdbarch_iterate_over_regset_sections_p (m_core_gdbarch)))
|
||
{
|
||
fprintf_filtered (gdb_stderr,
|
||
"Can't fetch registers from this type of core file\n");
|
||
return;
|
||
}
|
||
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
get_core_registers_cb_data data = { this, regcache };
|
||
gdbarch_iterate_over_regset_sections (gdbarch,
|
||
get_core_registers_cb,
|
||
(void *) &data, NULL);
|
||
|
||
/* Mark all registers not found in the core as unavailable. */
|
||
for (int i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
|
||
if (regcache->get_register_status (i) == REG_UNKNOWN)
|
||
regcache->raw_supply (i, NULL);
|
||
}
|
||
|
||
void
|
||
core_target::files_info ()
|
||
{
|
||
print_section_info (&m_core_section_table, core_bfd);
|
||
}
|
||
|
||
/* Helper method for core_target::xfer_partial. */
|
||
|
||
enum target_xfer_status
|
||
core_target::xfer_memory_via_mappings (gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status xfer_status;
|
||
|
||
xfer_status = (section_table_xfer_memory_partial
|
||
(readbuf, writebuf,
|
||
offset, len, xfered_len,
|
||
m_core_file_mappings));
|
||
|
||
if (xfer_status == TARGET_XFER_OK || m_core_unavailable_mappings.empty ())
|
||
return xfer_status;
|
||
|
||
/* There are instances - e.g. when debugging within a docker
|
||
container using the AUFS storage driver - where the pathnames
|
||
obtained from the note section are incorrect. Despite the path
|
||
being wrong, just knowing the start and end addresses of the
|
||
mappings is still useful; we can attempt an access of the file
|
||
stratum constrained to the address ranges corresponding to the
|
||
unavailable mappings. */
|
||
|
||
ULONGEST memaddr = offset;
|
||
ULONGEST memend = offset + len;
|
||
|
||
for (const auto &mr : m_core_unavailable_mappings)
|
||
{
|
||
if (address_in_mem_range (memaddr, &mr))
|
||
{
|
||
if (!address_in_mem_range (memend, &mr))
|
||
len = mr.start + mr.length - memaddr;
|
||
|
||
xfer_status = this->beneath ()->xfer_partial (TARGET_OBJECT_MEMORY,
|
||
NULL,
|
||
readbuf,
|
||
writebuf,
|
||
offset,
|
||
len,
|
||
xfered_len);
|
||
break;
|
||
}
|
||
}
|
||
|
||
return xfer_status;
|
||
}
|
||
|
||
enum target_xfer_status
|
||
core_target::xfer_partial (enum target_object object, const char *annex,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
switch (object)
|
||
{
|
||
case TARGET_OBJECT_MEMORY:
|
||
{
|
||
enum target_xfer_status xfer_status;
|
||
|
||
/* Try accessing memory contents from core file data,
|
||
restricting consideration to those sections for which
|
||
the BFD section flag SEC_HAS_CONTENTS is set. */
|
||
auto has_contents_cb = [] (const struct target_section *s)
|
||
{
|
||
return ((s->the_bfd_section->flags & SEC_HAS_CONTENTS) != 0);
|
||
};
|
||
xfer_status = section_table_xfer_memory_partial
|
||
(readbuf, writebuf,
|
||
offset, len, xfered_len,
|
||
m_core_section_table,
|
||
has_contents_cb);
|
||
if (xfer_status == TARGET_XFER_OK)
|
||
return TARGET_XFER_OK;
|
||
|
||
/* Check file backed mappings. If they're available, use
|
||
core file provided mappings (e.g. from .note.linuxcore.file
|
||
or the like) as this should provide a more accurate
|
||
result. If not, check the stratum beneath us, which should
|
||
be the file stratum.
|
||
|
||
We also check unavailable mappings due to Docker/AUFS driver
|
||
issues. */
|
||
if (!m_core_file_mappings.empty ()
|
||
|| !m_core_unavailable_mappings.empty ())
|
||
{
|
||
xfer_status = xfer_memory_via_mappings (readbuf, writebuf, offset,
|
||
len, xfered_len);
|
||
}
|
||
else
|
||
xfer_status = this->beneath ()->xfer_partial (object, annex, readbuf,
|
||
writebuf, offset, len,
|
||
xfered_len);
|
||
if (xfer_status == TARGET_XFER_OK)
|
||
return TARGET_XFER_OK;
|
||
|
||
/* Finally, attempt to access data in core file sections with
|
||
no contents. These will typically read as all zero. */
|
||
auto no_contents_cb = [&] (const struct target_section *s)
|
||
{
|
||
return !has_contents_cb (s);
|
||
};
|
||
xfer_status = section_table_xfer_memory_partial
|
||
(readbuf, writebuf,
|
||
offset, len, xfered_len,
|
||
m_core_section_table,
|
||
no_contents_cb);
|
||
|
||
return xfer_status;
|
||
}
|
||
case TARGET_OBJECT_AUXV:
|
||
if (readbuf)
|
||
{
|
||
/* When the aux vector is stored in core file, BFD
|
||
represents this with a fake section called ".auxv". */
|
||
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
|
||
section = bfd_get_section_by_name (core_bfd, ".auxv");
|
||
if (section == NULL)
|
||
return TARGET_XFER_E_IO;
|
||
|
||
size = bfd_section_size (section);
|
||
if (offset >= size)
|
||
return TARGET_XFER_EOF;
|
||
size -= offset;
|
||
if (size > len)
|
||
size = len;
|
||
|
||
if (size == 0)
|
||
return TARGET_XFER_EOF;
|
||
if (!bfd_get_section_contents (core_bfd, section, readbuf,
|
||
(file_ptr) offset, size))
|
||
{
|
||
warning (_("Couldn't read NT_AUXV note in core file."));
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
*xfered_len = (ULONGEST) size;
|
||
return TARGET_XFER_OK;
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_WCOOKIE:
|
||
if (readbuf)
|
||
{
|
||
/* When the StackGhost cookie is stored in core file, BFD
|
||
represents this with a fake section called
|
||
".wcookie". */
|
||
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
|
||
section = bfd_get_section_by_name (core_bfd, ".wcookie");
|
||
if (section == NULL)
|
||
return TARGET_XFER_E_IO;
|
||
|
||
size = bfd_section_size (section);
|
||
if (offset >= size)
|
||
return TARGET_XFER_EOF;
|
||
size -= offset;
|
||
if (size > len)
|
||
size = len;
|
||
|
||
if (size == 0)
|
||
return TARGET_XFER_EOF;
|
||
if (!bfd_get_section_contents (core_bfd, section, readbuf,
|
||
(file_ptr) offset, size))
|
||
{
|
||
warning (_("Couldn't read StackGhost cookie in core file."));
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
*xfered_len = (ULONGEST) size;
|
||
return TARGET_XFER_OK;
|
||
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_LIBRARIES:
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
|
||
{
|
||
if (writebuf)
|
||
return TARGET_XFER_E_IO;
|
||
else
|
||
{
|
||
*xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
|
||
readbuf,
|
||
offset, len);
|
||
|
||
if (*xfered_len == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
/* FALL THROUGH */
|
||
|
||
case TARGET_OBJECT_LIBRARIES_AIX:
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
|
||
{
|
||
if (writebuf)
|
||
return TARGET_XFER_E_IO;
|
||
else
|
||
{
|
||
*xfered_len
|
||
= gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
|
||
readbuf, offset,
|
||
len);
|
||
|
||
if (*xfered_len == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
/* FALL THROUGH */
|
||
|
||
case TARGET_OBJECT_SIGNAL_INFO:
|
||
if (readbuf)
|
||
{
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
|
||
{
|
||
LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
|
||
offset, len);
|
||
|
||
if (l >= 0)
|
||
{
|
||
*xfered_len = l;
|
||
if (l == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
default:
|
||
return this->beneath ()->xfer_partial (object, annex, readbuf,
|
||
writebuf, offset, len,
|
||
xfered_len);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Okay, let's be honest: threads gleaned from a core file aren't
|
||
exactly lively, are they? On the other hand, if we don't claim
|
||
that each & every one is alive, then we don't get any of them
|
||
to appear in an "info thread" command, which is quite a useful
|
||
behaviour.
|
||
*/
|
||
bool
|
||
core_target::thread_alive (ptid_t ptid)
|
||
{
|
||
return true;
|
||
}
|
||
|
||
/* Ask the current architecture what it knows about this core file.
|
||
That will be used, in turn, to pick a better architecture. This
|
||
wrapper could be avoided if targets got a chance to specialize
|
||
core_target. */
|
||
|
||
const struct target_desc *
|
||
core_target::read_description ()
|
||
{
|
||
/* If the core file contains a target description note then we will use
|
||
that in preference to anything else. */
|
||
bfd_size_type tdesc_note_size = 0;
|
||
struct bfd_section *tdesc_note_section
|
||
= bfd_get_section_by_name (core_bfd, ".gdb-tdesc");
|
||
if (tdesc_note_section != nullptr)
|
||
tdesc_note_size = bfd_section_size (tdesc_note_section);
|
||
if (tdesc_note_size > 0)
|
||
{
|
||
gdb::char_vector contents (tdesc_note_size + 1);
|
||
if (bfd_get_section_contents (core_bfd, tdesc_note_section,
|
||
contents.data (), (file_ptr) 0,
|
||
tdesc_note_size))
|
||
{
|
||
/* Ensure we have a null terminator. */
|
||
contents[tdesc_note_size] = '\0';
|
||
const struct target_desc *result
|
||
= string_read_description_xml (contents.data ());
|
||
if (result != nullptr)
|
||
return result;
|
||
}
|
||
}
|
||
|
||
if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
|
||
{
|
||
const struct target_desc *result;
|
||
|
||
result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
|
||
if (result != NULL)
|
||
return result;
|
||
}
|
||
|
||
return this->beneath ()->read_description ();
|
||
}
|
||
|
||
std::string
|
||
core_target::pid_to_str (ptid_t ptid)
|
||
{
|
||
struct inferior *inf;
|
||
int pid;
|
||
|
||
/* The preferred way is to have a gdbarch/OS specific
|
||
implementation. */
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_pid_to_str_p (m_core_gdbarch))
|
||
return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
|
||
|
||
/* Otherwise, if we don't have one, we'll just fallback to
|
||
"process", with normal_pid_to_str. */
|
||
|
||
/* Try the LWPID field first. */
|
||
pid = ptid.lwp ();
|
||
if (pid != 0)
|
||
return normal_pid_to_str (ptid_t (pid));
|
||
|
||
/* Otherwise, this isn't a "threaded" core -- use the PID field, but
|
||
only if it isn't a fake PID. */
|
||
inf = find_inferior_ptid (this, ptid);
|
||
if (inf != NULL && !inf->fake_pid_p)
|
||
return normal_pid_to_str (ptid);
|
||
|
||
/* No luck. We simply don't have a valid PID to print. */
|
||
return "<main task>";
|
||
}
|
||
|
||
const char *
|
||
core_target::thread_name (struct thread_info *thr)
|
||
{
|
||
if (m_core_gdbarch != nullptr
|
||
&& gdbarch_core_thread_name_p (m_core_gdbarch))
|
||
return gdbarch_core_thread_name (m_core_gdbarch, thr);
|
||
return NULL;
|
||
}
|
||
|
||
bool
|
||
core_target::has_memory ()
|
||
{
|
||
return (core_bfd != NULL);
|
||
}
|
||
|
||
bool
|
||
core_target::has_stack ()
|
||
{
|
||
return (core_bfd != NULL);
|
||
}
|
||
|
||
bool
|
||
core_target::has_registers ()
|
||
{
|
||
return (core_bfd != NULL);
|
||
}
|
||
|
||
/* Implement the to_info_proc method. */
|
||
|
||
bool
|
||
core_target::info_proc (const char *args, enum info_proc_what request)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
|
||
/* Since this is the core file target, call the 'core_info_proc'
|
||
method on gdbarch, not 'info_proc'. */
|
||
if (gdbarch_core_info_proc_p (gdbarch))
|
||
gdbarch_core_info_proc (gdbarch, args, request);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Get a pointer to the current core target. If not connected to a
|
||
core target, return NULL. */
|
||
|
||
static core_target *
|
||
get_current_core_target ()
|
||
{
|
||
target_ops *proc_target = current_inferior ()->process_target ();
|
||
return dynamic_cast<core_target *> (proc_target);
|
||
}
|
||
|
||
/* Display file backed mappings from core file. */
|
||
|
||
void
|
||
core_target::info_proc_mappings (struct gdbarch *gdbarch)
|
||
{
|
||
if (!m_core_file_mappings.empty ())
|
||
{
|
||
printf_filtered (_("Mapped address spaces:\n\n"));
|
||
if (gdbarch_addr_bit (gdbarch) == 32)
|
||
{
|
||
printf_filtered ("\t%10s %10s %10s %10s %s\n",
|
||
"Start Addr",
|
||
" End Addr",
|
||
" Size", " Offset", "objfile");
|
||
}
|
||
else
|
||
{
|
||
printf_filtered (" %18s %18s %10s %10s %s\n",
|
||
"Start Addr",
|
||
" End Addr",
|
||
" Size", " Offset", "objfile");
|
||
}
|
||
}
|
||
|
||
for (const target_section &tsp : m_core_file_mappings)
|
||
{
|
||
ULONGEST start = tsp.addr;
|
||
ULONGEST end = tsp.endaddr;
|
||
ULONGEST file_ofs = tsp.the_bfd_section->filepos;
|
||
const char *filename = bfd_get_filename (tsp.the_bfd_section->owner);
|
||
|
||
if (gdbarch_addr_bit (gdbarch) == 32)
|
||
printf_filtered ("\t%10s %10s %10s %10s %s\n",
|
||
paddress (gdbarch, start),
|
||
paddress (gdbarch, end),
|
||
hex_string (end - start),
|
||
hex_string (file_ofs),
|
||
filename);
|
||
else
|
||
printf_filtered (" %18s %18s %10s %10s %s\n",
|
||
paddress (gdbarch, start),
|
||
paddress (gdbarch, end),
|
||
hex_string (end - start),
|
||
hex_string (file_ofs),
|
||
filename);
|
||
}
|
||
}
|
||
|
||
/* Implement "maintenance print core-file-backed-mappings" command.
|
||
|
||
If mappings are loaded, the results should be similar to the
|
||
mappings shown by "info proc mappings". This command is mainly a
|
||
debugging tool for GDB developers to make sure that the expected
|
||
mappings are present after loading a core file. For Linux, the
|
||
output provided by this command will be very similar (if not
|
||
identical) to that provided by "info proc mappings". This is not
|
||
necessarily the case for other OSes which might provide
|
||
more/different information in the "info proc mappings" output. */
|
||
|
||
static void
|
||
maintenance_print_core_file_backed_mappings (const char *args, int from_tty)
|
||
{
|
||
core_target *targ = get_current_core_target ();
|
||
if (targ != nullptr)
|
||
targ->info_proc_mappings (targ->core_gdbarch ());
|
||
}
|
||
|
||
void _initialize_corelow ();
|
||
void
|
||
_initialize_corelow ()
|
||
{
|
||
add_target (core_target_info, core_target_open, filename_completer);
|
||
add_cmd ("core-file-backed-mappings", class_maintenance,
|
||
maintenance_print_core_file_backed_mappings,
|
||
_("Print core file's file-backed mappings."),
|
||
&maintenanceprintlist);
|
||
}
|