mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
c13c43fdda
`free_current_contents' when passed to `make_cleanup'. * coffread.c (coff_symfile_read): Ditto. * dwarf2read.c (dwarf2_add_member_fn, read_array_type): Ditto. (dwarf_decode_lines): Ditto. * eval.c (parse_and_eval_address, parse_and_eval_address_1): Ditto. (parse_and_eval, parse_to_comma_and_eval): Ditto. * parse.c (parse_exp_1): Ditto. * printcmd.c (print_command_1, output_command, set_command): Ditto. (x_command, print_frame_args, printf_command): Ditto. * top.c (execute_control_command): Ditto. * tracepoint.c (validate_actionline): Ditto. * typeprint.c (whatis_exp, ptype_command): Ditto. (maintenance_print_type): Ditto.
1410 lines
36 KiB
C
1410 lines
36 KiB
C
/* Parse expressions for GDB.
|
||
Copyright (C) 1986, 89, 90, 91, 94, 98, 1999 Free Software Foundation, Inc.
|
||
Modified from expread.y by the Department of Computer Science at the
|
||
State University of New York at Buffalo, 1991.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* Parse an expression from text in a string,
|
||
and return the result as a struct expression pointer.
|
||
That structure contains arithmetic operations in reverse polish,
|
||
with constants represented by operations that are followed by special data.
|
||
See expression.h for the details of the format.
|
||
What is important here is that it can be built up sequentially
|
||
during the process of parsing; the lower levels of the tree always
|
||
come first in the result. */
|
||
|
||
#include <ctype.h>
|
||
|
||
#include "defs.h"
|
||
#include "gdb_string.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "frame.h"
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "command.h"
|
||
#include "language.h"
|
||
#include "parser-defs.h"
|
||
#include "gdbcmd.h"
|
||
#include "symfile.h" /* for overlay functions */
|
||
|
||
/* Symbols which architectures can redefine. */
|
||
|
||
/* Some systems have routines whose names start with `$'. Giving this
|
||
macro a non-zero value tells GDB's expression parser to check for
|
||
such routines when parsing tokens that begin with `$'.
|
||
|
||
On HP-UX, certain system routines (millicode) have names beginning
|
||
with `$' or `$$'. For example, `$$dyncall' is a millicode routine
|
||
that handles inter-space procedure calls on PA-RISC. */
|
||
#ifndef SYMBOLS_CAN_START_WITH_DOLLAR
|
||
#define SYMBOLS_CAN_START_WITH_DOLLAR (0)
|
||
#endif
|
||
|
||
|
||
|
||
/* Global variables declared in parser-defs.h (and commented there). */
|
||
struct expression *expout;
|
||
int expout_size;
|
||
int expout_ptr;
|
||
struct block *expression_context_block;
|
||
struct block *innermost_block;
|
||
int arglist_len;
|
||
union type_stack_elt *type_stack;
|
||
int type_stack_depth, type_stack_size;
|
||
char *lexptr;
|
||
char *namecopy;
|
||
int paren_depth;
|
||
int comma_terminates;
|
||
|
||
static int expressiondebug = 0;
|
||
|
||
extern int hp_som_som_object_present;
|
||
|
||
static void
|
||
free_funcalls PARAMS ((void));
|
||
|
||
static void
|
||
prefixify_expression PARAMS ((struct expression *));
|
||
|
||
static void
|
||
prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
|
||
|
||
void _initialize_parse PARAMS ((void));
|
||
|
||
/* Data structure for saving values of arglist_len for function calls whose
|
||
arguments contain other function calls. */
|
||
|
||
struct funcall
|
||
{
|
||
struct funcall *next;
|
||
int arglist_len;
|
||
};
|
||
|
||
static struct funcall *funcall_chain;
|
||
|
||
/* Assign machine-independent names to certain registers
|
||
(unless overridden by the REGISTER_NAMES table) */
|
||
|
||
unsigned num_std_regs = 0;
|
||
struct std_regs *std_regs;
|
||
|
||
/* The generic method for targets to specify how their registers are
|
||
named. The mapping can be derived from three sources:
|
||
REGISTER_NAME; std_regs; or a target specific alias hook. */
|
||
|
||
int
|
||
target_map_name_to_register (str, len)
|
||
char *str;
|
||
int len;
|
||
{
|
||
int i;
|
||
|
||
/* First try target specific aliases. We try these first because on some
|
||
systems standard names can be context dependent (eg. $pc on a
|
||
multiprocessor can be could be any of several PCs). */
|
||
#ifdef REGISTER_NAME_ALIAS_HOOK
|
||
i = REGISTER_NAME_ALIAS_HOOK (str, len);
|
||
if (i >= 0)
|
||
return i;
|
||
#endif
|
||
|
||
/* Search architectural register name space. */
|
||
for (i = 0; i < NUM_REGS; i++)
|
||
if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
|
||
&& STREQN (str, REGISTER_NAME (i), len))
|
||
{
|
||
return i;
|
||
}
|
||
|
||
/* Try standard aliases */
|
||
for (i = 0; i < num_std_regs; i++)
|
||
if (std_regs[i].name && len == strlen (std_regs[i].name)
|
||
&& STREQN (str, std_regs[i].name, len))
|
||
{
|
||
return std_regs[i].regnum;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Begin counting arguments for a function call,
|
||
saving the data about any containing call. */
|
||
|
||
void
|
||
start_arglist ()
|
||
{
|
||
register struct funcall *new;
|
||
|
||
new = (struct funcall *) xmalloc (sizeof (struct funcall));
|
||
new->next = funcall_chain;
|
||
new->arglist_len = arglist_len;
|
||
arglist_len = 0;
|
||
funcall_chain = new;
|
||
}
|
||
|
||
/* Return the number of arguments in a function call just terminated,
|
||
and restore the data for the containing function call. */
|
||
|
||
int
|
||
end_arglist ()
|
||
{
|
||
register int val = arglist_len;
|
||
register struct funcall *call = funcall_chain;
|
||
funcall_chain = call->next;
|
||
arglist_len = call->arglist_len;
|
||
free ((PTR) call);
|
||
return val;
|
||
}
|
||
|
||
/* Free everything in the funcall chain.
|
||
Used when there is an error inside parsing. */
|
||
|
||
static void
|
||
free_funcalls ()
|
||
{
|
||
register struct funcall *call, *next;
|
||
|
||
for (call = funcall_chain; call; call = next)
|
||
{
|
||
next = call->next;
|
||
free ((PTR) call);
|
||
}
|
||
}
|
||
|
||
/* This page contains the functions for adding data to the struct expression
|
||
being constructed. */
|
||
|
||
/* Add one element to the end of the expression. */
|
||
|
||
/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
|
||
a register through here */
|
||
|
||
void
|
||
write_exp_elt (expelt)
|
||
union exp_element expelt;
|
||
{
|
||
if (expout_ptr >= expout_size)
|
||
{
|
||
expout_size *= 2;
|
||
expout = (struct expression *)
|
||
xrealloc ((char *) expout, sizeof (struct expression)
|
||
+ EXP_ELEM_TO_BYTES (expout_size));
|
||
}
|
||
expout->elts[expout_ptr++] = expelt;
|
||
}
|
||
|
||
void
|
||
write_exp_elt_opcode (expelt)
|
||
enum exp_opcode expelt;
|
||
{
|
||
union exp_element tmp;
|
||
|
||
tmp.opcode = expelt;
|
||
|
||
write_exp_elt (tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_sym (expelt)
|
||
struct symbol *expelt;
|
||
{
|
||
union exp_element tmp;
|
||
|
||
tmp.symbol = expelt;
|
||
|
||
write_exp_elt (tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_block (b)
|
||
struct block *b;
|
||
{
|
||
union exp_element tmp;
|
||
tmp.block = b;
|
||
write_exp_elt (tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_longcst (expelt)
|
||
LONGEST expelt;
|
||
{
|
||
union exp_element tmp;
|
||
|
||
tmp.longconst = expelt;
|
||
|
||
write_exp_elt (tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_dblcst (expelt)
|
||
DOUBLEST expelt;
|
||
{
|
||
union exp_element tmp;
|
||
|
||
tmp.doubleconst = expelt;
|
||
|
||
write_exp_elt (tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_type (expelt)
|
||
struct type *expelt;
|
||
{
|
||
union exp_element tmp;
|
||
|
||
tmp.type = expelt;
|
||
|
||
write_exp_elt (tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_intern (expelt)
|
||
struct internalvar *expelt;
|
||
{
|
||
union exp_element tmp;
|
||
|
||
tmp.internalvar = expelt;
|
||
|
||
write_exp_elt (tmp);
|
||
}
|
||
|
||
/* Add a string constant to the end of the expression.
|
||
|
||
String constants are stored by first writing an expression element
|
||
that contains the length of the string, then stuffing the string
|
||
constant itself into however many expression elements are needed
|
||
to hold it, and then writing another expression element that contains
|
||
the length of the string. I.E. an expression element at each end of
|
||
the string records the string length, so you can skip over the
|
||
expression elements containing the actual string bytes from either
|
||
end of the string. Note that this also allows gdb to handle
|
||
strings with embedded null bytes, as is required for some languages.
|
||
|
||
Don't be fooled by the fact that the string is null byte terminated,
|
||
this is strictly for the convenience of debugging gdb itself. Gdb
|
||
Gdb does not depend up the string being null terminated, since the
|
||
actual length is recorded in expression elements at each end of the
|
||
string. The null byte is taken into consideration when computing how
|
||
many expression elements are required to hold the string constant, of
|
||
course. */
|
||
|
||
|
||
void
|
||
write_exp_string (str)
|
||
struct stoken str;
|
||
{
|
||
register int len = str.length;
|
||
register int lenelt;
|
||
register char *strdata;
|
||
|
||
/* Compute the number of expression elements required to hold the string
|
||
(including a null byte terminator), along with one expression element
|
||
at each end to record the actual string length (not including the
|
||
null byte terminator). */
|
||
|
||
lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
|
||
|
||
/* Ensure that we have enough available expression elements to store
|
||
everything. */
|
||
|
||
if ((expout_ptr + lenelt) >= expout_size)
|
||
{
|
||
expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
|
||
expout = (struct expression *)
|
||
xrealloc ((char *) expout, (sizeof (struct expression)
|
||
+ EXP_ELEM_TO_BYTES (expout_size)));
|
||
}
|
||
|
||
/* Write the leading length expression element (which advances the current
|
||
expression element index), then write the string constant followed by a
|
||
terminating null byte, and then write the trailing length expression
|
||
element. */
|
||
|
||
write_exp_elt_longcst ((LONGEST) len);
|
||
strdata = (char *) &expout->elts[expout_ptr];
|
||
memcpy (strdata, str.ptr, len);
|
||
*(strdata + len) = '\0';
|
||
expout_ptr += lenelt - 2;
|
||
write_exp_elt_longcst ((LONGEST) len);
|
||
}
|
||
|
||
/* Add a bitstring constant to the end of the expression.
|
||
|
||
Bitstring constants are stored by first writing an expression element
|
||
that contains the length of the bitstring (in bits), then stuffing the
|
||
bitstring constant itself into however many expression elements are
|
||
needed to hold it, and then writing another expression element that
|
||
contains the length of the bitstring. I.E. an expression element at
|
||
each end of the bitstring records the bitstring length, so you can skip
|
||
over the expression elements containing the actual bitstring bytes from
|
||
either end of the bitstring. */
|
||
|
||
void
|
||
write_exp_bitstring (str)
|
||
struct stoken str;
|
||
{
|
||
register int bits = str.length; /* length in bits */
|
||
register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
||
register int lenelt;
|
||
register char *strdata;
|
||
|
||
/* Compute the number of expression elements required to hold the bitstring,
|
||
along with one expression element at each end to record the actual
|
||
bitstring length in bits. */
|
||
|
||
lenelt = 2 + BYTES_TO_EXP_ELEM (len);
|
||
|
||
/* Ensure that we have enough available expression elements to store
|
||
everything. */
|
||
|
||
if ((expout_ptr + lenelt) >= expout_size)
|
||
{
|
||
expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
|
||
expout = (struct expression *)
|
||
xrealloc ((char *) expout, (sizeof (struct expression)
|
||
+ EXP_ELEM_TO_BYTES (expout_size)));
|
||
}
|
||
|
||
/* Write the leading length expression element (which advances the current
|
||
expression element index), then write the bitstring constant, and then
|
||
write the trailing length expression element. */
|
||
|
||
write_exp_elt_longcst ((LONGEST) bits);
|
||
strdata = (char *) &expout->elts[expout_ptr];
|
||
memcpy (strdata, str.ptr, len);
|
||
expout_ptr += lenelt - 2;
|
||
write_exp_elt_longcst ((LONGEST) bits);
|
||
}
|
||
|
||
/* Add the appropriate elements for a minimal symbol to the end of
|
||
the expression. The rationale behind passing in text_symbol_type and
|
||
data_symbol_type was so that Modula-2 could pass in WORD for
|
||
data_symbol_type. Perhaps it still is useful to have those types vary
|
||
based on the language, but they no longer have names like "int", so
|
||
the initial rationale is gone. */
|
||
|
||
static struct type *msym_text_symbol_type;
|
||
static struct type *msym_data_symbol_type;
|
||
static struct type *msym_unknown_symbol_type;
|
||
|
||
void
|
||
write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
|
||
struct minimal_symbol *msymbol;
|
||
struct type *text_symbol_type;
|
||
struct type *data_symbol_type;
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
write_exp_elt_opcode (OP_LONG);
|
||
write_exp_elt_type (lookup_pointer_type (builtin_type_void));
|
||
|
||
addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
if (overlay_debugging)
|
||
addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
|
||
write_exp_elt_longcst ((LONGEST) addr);
|
||
|
||
write_exp_elt_opcode (OP_LONG);
|
||
|
||
write_exp_elt_opcode (UNOP_MEMVAL);
|
||
switch (msymbol->type)
|
||
{
|
||
case mst_text:
|
||
case mst_file_text:
|
||
case mst_solib_trampoline:
|
||
write_exp_elt_type (msym_text_symbol_type);
|
||
break;
|
||
|
||
case mst_data:
|
||
case mst_file_data:
|
||
case mst_bss:
|
||
case mst_file_bss:
|
||
write_exp_elt_type (msym_data_symbol_type);
|
||
break;
|
||
|
||
default:
|
||
write_exp_elt_type (msym_unknown_symbol_type);
|
||
break;
|
||
}
|
||
write_exp_elt_opcode (UNOP_MEMVAL);
|
||
}
|
||
|
||
/* Recognize tokens that start with '$'. These include:
|
||
|
||
$regname A native register name or a "standard
|
||
register name".
|
||
|
||
$variable A convenience variable with a name chosen
|
||
by the user.
|
||
|
||
$digits Value history with index <digits>, starting
|
||
from the first value which has index 1.
|
||
|
||
$$digits Value history with index <digits> relative
|
||
to the last value. I.E. $$0 is the last
|
||
value, $$1 is the one previous to that, $$2
|
||
is the one previous to $$1, etc.
|
||
|
||
$ | $0 | $$0 The last value in the value history.
|
||
|
||
$$ An abbreviation for the second to the last
|
||
value in the value history, I.E. $$1
|
||
|
||
*/
|
||
|
||
void
|
||
write_dollar_variable (str)
|
||
struct stoken str;
|
||
{
|
||
/* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
|
||
and $$digits (equivalent to $<-digits> if you could type that). */
|
||
|
||
int negate = 0;
|
||
int i = 1;
|
||
/* Double dollar means negate the number and add -1 as well.
|
||
Thus $$ alone means -1. */
|
||
if (str.length >= 2 && str.ptr[1] == '$')
|
||
{
|
||
negate = 1;
|
||
i = 2;
|
||
}
|
||
if (i == str.length)
|
||
{
|
||
/* Just dollars (one or two) */
|
||
i = -negate;
|
||
goto handle_last;
|
||
}
|
||
/* Is the rest of the token digits? */
|
||
for (; i < str.length; i++)
|
||
if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
|
||
break;
|
||
if (i == str.length)
|
||
{
|
||
i = atoi (str.ptr + 1 + negate);
|
||
if (negate)
|
||
i = -i;
|
||
goto handle_last;
|
||
}
|
||
|
||
/* Handle tokens that refer to machine registers:
|
||
$ followed by a register name. */
|
||
i = target_map_name_to_register (str.ptr + 1, str.length - 1);
|
||
if (i >= 0)
|
||
goto handle_register;
|
||
|
||
if (SYMBOLS_CAN_START_WITH_DOLLAR)
|
||
{
|
||
struct symbol *sym = NULL;
|
||
struct minimal_symbol *msym = NULL;
|
||
|
||
/* On HP-UX, certain system routines (millicode) have names beginning
|
||
with $ or $$, e.g. $$dyncall, which handles inter-space procedure
|
||
calls on PA-RISC. Check for those, first. */
|
||
|
||
/* This code is not enabled on non HP-UX systems, since worst case
|
||
symbol table lookup performance is awful, to put it mildly. */
|
||
|
||
sym = lookup_symbol (copy_name (str), (struct block *) NULL,
|
||
VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
|
||
if (sym)
|
||
{
|
||
write_exp_elt_opcode (OP_VAR_VALUE);
|
||
write_exp_elt_block (block_found); /* set by lookup_symbol */
|
||
write_exp_elt_sym (sym);
|
||
write_exp_elt_opcode (OP_VAR_VALUE);
|
||
return;
|
||
}
|
||
msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
|
||
if (msym)
|
||
{
|
||
write_exp_msymbol (msym,
|
||
lookup_function_type (builtin_type_int),
|
||
builtin_type_int);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Any other names starting in $ are debugger internal variables. */
|
||
|
||
write_exp_elt_opcode (OP_INTERNALVAR);
|
||
write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
|
||
write_exp_elt_opcode (OP_INTERNALVAR);
|
||
return;
|
||
handle_last:
|
||
write_exp_elt_opcode (OP_LAST);
|
||
write_exp_elt_longcst ((LONGEST) i);
|
||
write_exp_elt_opcode (OP_LAST);
|
||
return;
|
||
handle_register:
|
||
write_exp_elt_opcode (OP_REGISTER);
|
||
write_exp_elt_longcst (i);
|
||
write_exp_elt_opcode (OP_REGISTER);
|
||
return;
|
||
}
|
||
|
||
|
||
/* Parse a string that is possibly a namespace / nested class
|
||
specification, i.e., something of the form A::B::C::x. Input
|
||
(NAME) is the entire string; LEN is the current valid length; the
|
||
output is a string, TOKEN, which points to the largest recognized
|
||
prefix which is a series of namespaces or classes. CLASS_PREFIX is
|
||
another output, which records whether a nested class spec was
|
||
recognized (= 1) or a fully qualified variable name was found (=
|
||
0). ARGPTR is side-effected (if non-NULL) to point to beyond the
|
||
string recognized and consumed by this routine.
|
||
|
||
The return value is a pointer to the symbol for the base class or
|
||
variable if found, or NULL if not found. Callers must check this
|
||
first -- if NULL, the outputs may not be correct.
|
||
|
||
This function is used c-exp.y. This is used specifically to get
|
||
around HP aCC (and possibly other compilers), which insists on
|
||
generating names with embedded colons for namespace or nested class
|
||
members.
|
||
|
||
(Argument LEN is currently unused. 1997-08-27)
|
||
|
||
Callers must free memory allocated for the output string TOKEN. */
|
||
|
||
static const char coloncolon[2] =
|
||
{':', ':'};
|
||
|
||
struct symbol *
|
||
parse_nested_classes_for_hpacc (name, len, token, class_prefix, argptr)
|
||
char *name;
|
||
int len;
|
||
char **token;
|
||
int *class_prefix;
|
||
char **argptr;
|
||
{
|
||
/* Comment below comes from decode_line_1 which has very similar
|
||
code, which is called for "break" command parsing. */
|
||
|
||
/* We have what looks like a class or namespace
|
||
scope specification (A::B), possibly with many
|
||
levels of namespaces or classes (A::B::C::D).
|
||
|
||
Some versions of the HP ANSI C++ compiler (as also possibly
|
||
other compilers) generate class/function/member names with
|
||
embedded double-colons if they are inside namespaces. To
|
||
handle this, we loop a few times, considering larger and
|
||
larger prefixes of the string as though they were single
|
||
symbols. So, if the initially supplied string is
|
||
A::B::C::D::foo, we have to look up "A", then "A::B",
|
||
then "A::B::C", then "A::B::C::D", and finally
|
||
"A::B::C::D::foo" as single, monolithic symbols, because
|
||
A, B, C or D may be namespaces.
|
||
|
||
Note that namespaces can nest only inside other
|
||
namespaces, and not inside classes. So we need only
|
||
consider *prefixes* of the string; there is no need to look up
|
||
"B::C" separately as a symbol in the previous example. */
|
||
|
||
register char *p;
|
||
char *start, *end;
|
||
char *prefix = NULL;
|
||
char *tmp;
|
||
struct symbol *sym_class = NULL;
|
||
struct symbol *sym_var = NULL;
|
||
struct type *t;
|
||
int prefix_len = 0;
|
||
int done = 0;
|
||
char *q;
|
||
|
||
/* Check for HP-compiled executable -- in other cases
|
||
return NULL, and caller must default to standard GDB
|
||
behaviour. */
|
||
|
||
if (!hp_som_som_object_present)
|
||
return (struct symbol *) NULL;
|
||
|
||
p = name;
|
||
|
||
/* Skip over whitespace and possible global "::" */
|
||
while (*p && (*p == ' ' || *p == '\t'))
|
||
p++;
|
||
if (p[0] == ':' && p[1] == ':')
|
||
p += 2;
|
||
while (*p && (*p == ' ' || *p == '\t'))
|
||
p++;
|
||
|
||
while (1)
|
||
{
|
||
/* Get to the end of the next namespace or class spec. */
|
||
/* If we're looking at some non-token, fail immediately */
|
||
start = p;
|
||
if (!(isalpha (*p) || *p == '$' || *p == '_'))
|
||
return (struct symbol *) NULL;
|
||
p++;
|
||
while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
|
||
p++;
|
||
|
||
if (*p == '<')
|
||
{
|
||
/* If we have the start of a template specification,
|
||
scan right ahead to its end */
|
||
q = find_template_name_end (p);
|
||
if (q)
|
||
p = q;
|
||
}
|
||
|
||
end = p;
|
||
|
||
/* Skip over "::" and whitespace for next time around */
|
||
while (*p && (*p == ' ' || *p == '\t'))
|
||
p++;
|
||
if (p[0] == ':' && p[1] == ':')
|
||
p += 2;
|
||
while (*p && (*p == ' ' || *p == '\t'))
|
||
p++;
|
||
|
||
/* Done with tokens? */
|
||
if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
|
||
done = 1;
|
||
|
||
tmp = (char *) alloca (prefix_len + end - start + 3);
|
||
if (prefix)
|
||
{
|
||
memcpy (tmp, prefix, prefix_len);
|
||
memcpy (tmp + prefix_len, coloncolon, 2);
|
||
memcpy (tmp + prefix_len + 2, start, end - start);
|
||
tmp[prefix_len + 2 + end - start] = '\000';
|
||
}
|
||
else
|
||
{
|
||
memcpy (tmp, start, end - start);
|
||
tmp[end - start] = '\000';
|
||
}
|
||
|
||
prefix = tmp;
|
||
prefix_len = strlen (prefix);
|
||
|
||
/* See if the prefix we have now is something we know about */
|
||
|
||
if (!done)
|
||
{
|
||
/* More tokens to process, so this must be a class/namespace */
|
||
sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
|
||
0, (struct symtab **) NULL);
|
||
}
|
||
else
|
||
{
|
||
/* No more tokens, so try as a variable first */
|
||
sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE,
|
||
0, (struct symtab **) NULL);
|
||
/* If failed, try as class/namespace */
|
||
if (!sym_var)
|
||
sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
|
||
0, (struct symtab **) NULL);
|
||
}
|
||
|
||
if (sym_var ||
|
||
(sym_class &&
|
||
(t = check_typedef (SYMBOL_TYPE (sym_class)),
|
||
(TYPE_CODE (t) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (t) == TYPE_CODE_UNION))))
|
||
{
|
||
/* We found a valid token */
|
||
*token = (char *) xmalloc (prefix_len + 1);
|
||
memcpy (*token, prefix, prefix_len);
|
||
(*token)[prefix_len] = '\000';
|
||
break;
|
||
}
|
||
|
||
/* No variable or class/namespace found, no more tokens */
|
||
if (done)
|
||
return (struct symbol *) NULL;
|
||
}
|
||
|
||
/* Out of loop, so we must have found a valid token */
|
||
if (sym_var)
|
||
*class_prefix = 0;
|
||
else
|
||
*class_prefix = 1;
|
||
|
||
if (argptr)
|
||
*argptr = done ? p : end;
|
||
|
||
return sym_var ? sym_var : sym_class; /* found */
|
||
}
|
||
|
||
char *
|
||
find_template_name_end (p)
|
||
char *p;
|
||
{
|
||
int depth = 1;
|
||
int just_seen_right = 0;
|
||
int just_seen_colon = 0;
|
||
int just_seen_space = 0;
|
||
|
||
if (!p || (*p != '<'))
|
||
return 0;
|
||
|
||
while (*++p)
|
||
{
|
||
switch (*p)
|
||
{
|
||
case '\'':
|
||
case '\"':
|
||
case '{':
|
||
case '}':
|
||
/* In future, may want to allow these?? */
|
||
return 0;
|
||
case '<':
|
||
depth++; /* start nested template */
|
||
if (just_seen_colon || just_seen_right || just_seen_space)
|
||
return 0; /* but not after : or :: or > or space */
|
||
break;
|
||
case '>':
|
||
if (just_seen_colon || just_seen_right)
|
||
return 0; /* end a (nested?) template */
|
||
just_seen_right = 1; /* but not after : or :: */
|
||
if (--depth == 0) /* also disallow >>, insist on > > */
|
||
return ++p; /* if outermost ended, return */
|
||
break;
|
||
case ':':
|
||
if (just_seen_space || (just_seen_colon > 1))
|
||
return 0; /* nested class spec coming up */
|
||
just_seen_colon++; /* we allow :: but not :::: */
|
||
break;
|
||
case ' ':
|
||
break;
|
||
default:
|
||
if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
|
||
(*p >= 'A' && *p <= 'Z') ||
|
||
(*p >= '0' && *p <= '9') ||
|
||
(*p == '_') || (*p == ',') || /* commas for template args */
|
||
(*p == '&') || (*p == '*') || /* pointer and ref types */
|
||
(*p == '(') || (*p == ')') || /* function types */
|
||
(*p == '[') || (*p == ']'))) /* array types */
|
||
return 0;
|
||
}
|
||
if (*p != ' ')
|
||
just_seen_space = 0;
|
||
if (*p != ':')
|
||
just_seen_colon = 0;
|
||
if (*p != '>')
|
||
just_seen_right = 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/* Return a null-terminated temporary copy of the name
|
||
of a string token. */
|
||
|
||
char *
|
||
copy_name (token)
|
||
struct stoken token;
|
||
{
|
||
memcpy (namecopy, token.ptr, token.length);
|
||
namecopy[token.length] = 0;
|
||
return namecopy;
|
||
}
|
||
|
||
/* Reverse an expression from suffix form (in which it is constructed)
|
||
to prefix form (in which we can conveniently print or execute it). */
|
||
|
||
static void
|
||
prefixify_expression (expr)
|
||
register struct expression *expr;
|
||
{
|
||
register int len =
|
||
sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
|
||
register struct expression *temp;
|
||
register int inpos = expr->nelts, outpos = 0;
|
||
|
||
temp = (struct expression *) alloca (len);
|
||
|
||
/* Copy the original expression into temp. */
|
||
memcpy (temp, expr, len);
|
||
|
||
prefixify_subexp (temp, expr, inpos, outpos);
|
||
}
|
||
|
||
/* Return the number of exp_elements in the subexpression of EXPR
|
||
whose last exp_element is at index ENDPOS - 1 in EXPR. */
|
||
|
||
int
|
||
length_of_subexp (expr, endpos)
|
||
register struct expression *expr;
|
||
register int endpos;
|
||
{
|
||
register int oplen = 1;
|
||
register int args = 0;
|
||
register int i;
|
||
|
||
if (endpos < 1)
|
||
error ("?error in length_of_subexp");
|
||
|
||
i = (int) expr->elts[endpos - 1].opcode;
|
||
|
||
switch (i)
|
||
{
|
||
/* C++ */
|
||
case OP_SCOPE:
|
||
oplen = longest_to_int (expr->elts[endpos - 2].longconst);
|
||
oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
|
||
break;
|
||
|
||
case OP_LONG:
|
||
case OP_DOUBLE:
|
||
case OP_VAR_VALUE:
|
||
oplen = 4;
|
||
break;
|
||
|
||
case OP_TYPE:
|
||
case OP_BOOL:
|
||
case OP_LAST:
|
||
case OP_REGISTER:
|
||
case OP_INTERNALVAR:
|
||
oplen = 3;
|
||
break;
|
||
|
||
case OP_COMPLEX:
|
||
oplen = 1;
|
||
args = 2;
|
||
break;
|
||
|
||
case OP_FUNCALL:
|
||
case OP_F77_UNDETERMINED_ARGLIST:
|
||
oplen = 3;
|
||
args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
|
||
break;
|
||
|
||
case UNOP_MAX:
|
||
case UNOP_MIN:
|
||
oplen = 3;
|
||
break;
|
||
|
||
case BINOP_VAL:
|
||
case UNOP_CAST:
|
||
case UNOP_MEMVAL:
|
||
oplen = 3;
|
||
args = 1;
|
||
break;
|
||
|
||
case UNOP_ABS:
|
||
case UNOP_CAP:
|
||
case UNOP_CHR:
|
||
case UNOP_FLOAT:
|
||
case UNOP_HIGH:
|
||
case UNOP_ODD:
|
||
case UNOP_ORD:
|
||
case UNOP_TRUNC:
|
||
oplen = 1;
|
||
args = 1;
|
||
break;
|
||
|
||
case OP_LABELED:
|
||
case STRUCTOP_STRUCT:
|
||
case STRUCTOP_PTR:
|
||
args = 1;
|
||
/* fall through */
|
||
case OP_M2_STRING:
|
||
case OP_STRING:
|
||
case OP_NAME:
|
||
case OP_EXPRSTRING:
|
||
oplen = longest_to_int (expr->elts[endpos - 2].longconst);
|
||
oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
|
||
break;
|
||
|
||
case OP_BITSTRING:
|
||
oplen = longest_to_int (expr->elts[endpos - 2].longconst);
|
||
oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
||
oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
|
||
break;
|
||
|
||
case OP_ARRAY:
|
||
oplen = 4;
|
||
args = longest_to_int (expr->elts[endpos - 2].longconst);
|
||
args -= longest_to_int (expr->elts[endpos - 3].longconst);
|
||
args += 1;
|
||
break;
|
||
|
||
case TERNOP_COND:
|
||
case TERNOP_SLICE:
|
||
case TERNOP_SLICE_COUNT:
|
||
args = 3;
|
||
break;
|
||
|
||
/* Modula-2 */
|
||
case MULTI_SUBSCRIPT:
|
||
oplen = 3;
|
||
args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
|
||
break;
|
||
|
||
case BINOP_ASSIGN_MODIFY:
|
||
oplen = 3;
|
||
args = 2;
|
||
break;
|
||
|
||
/* C++ */
|
||
case OP_THIS:
|
||
oplen = 2;
|
||
break;
|
||
|
||
default:
|
||
args = 1 + (i < (int) BINOP_END);
|
||
}
|
||
|
||
while (args > 0)
|
||
{
|
||
oplen += length_of_subexp (expr, endpos - oplen);
|
||
args--;
|
||
}
|
||
|
||
return oplen;
|
||
}
|
||
|
||
/* Copy the subexpression ending just before index INEND in INEXPR
|
||
into OUTEXPR, starting at index OUTBEG.
|
||
In the process, convert it from suffix to prefix form. */
|
||
|
||
static void
|
||
prefixify_subexp (inexpr, outexpr, inend, outbeg)
|
||
register struct expression *inexpr;
|
||
struct expression *outexpr;
|
||
register int inend;
|
||
int outbeg;
|
||
{
|
||
register int oplen = 1;
|
||
register int args = 0;
|
||
register int i;
|
||
int *arglens;
|
||
enum exp_opcode opcode;
|
||
|
||
/* Compute how long the last operation is (in OPLEN),
|
||
and also how many preceding subexpressions serve as
|
||
arguments for it (in ARGS). */
|
||
|
||
opcode = inexpr->elts[inend - 1].opcode;
|
||
switch (opcode)
|
||
{
|
||
/* C++ */
|
||
case OP_SCOPE:
|
||
oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
|
||
oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
|
||
break;
|
||
|
||
case OP_LONG:
|
||
case OP_DOUBLE:
|
||
case OP_VAR_VALUE:
|
||
oplen = 4;
|
||
break;
|
||
|
||
case OP_TYPE:
|
||
case OP_BOOL:
|
||
case OP_LAST:
|
||
case OP_REGISTER:
|
||
case OP_INTERNALVAR:
|
||
oplen = 3;
|
||
break;
|
||
|
||
case OP_COMPLEX:
|
||
oplen = 1;
|
||
args = 2;
|
||
break;
|
||
|
||
case OP_FUNCALL:
|
||
case OP_F77_UNDETERMINED_ARGLIST:
|
||
oplen = 3;
|
||
args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
|
||
break;
|
||
|
||
case UNOP_MIN:
|
||
case UNOP_MAX:
|
||
oplen = 3;
|
||
break;
|
||
|
||
case UNOP_CAST:
|
||
case UNOP_MEMVAL:
|
||
oplen = 3;
|
||
args = 1;
|
||
break;
|
||
|
||
case UNOP_ABS:
|
||
case UNOP_CAP:
|
||
case UNOP_CHR:
|
||
case UNOP_FLOAT:
|
||
case UNOP_HIGH:
|
||
case UNOP_ODD:
|
||
case UNOP_ORD:
|
||
case UNOP_TRUNC:
|
||
oplen = 1;
|
||
args = 1;
|
||
break;
|
||
|
||
case STRUCTOP_STRUCT:
|
||
case STRUCTOP_PTR:
|
||
case OP_LABELED:
|
||
args = 1;
|
||
/* fall through */
|
||
case OP_M2_STRING:
|
||
case OP_STRING:
|
||
case OP_NAME:
|
||
case OP_EXPRSTRING:
|
||
oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
|
||
oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
|
||
break;
|
||
|
||
case OP_BITSTRING:
|
||
oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
|
||
oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
||
oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
|
||
break;
|
||
|
||
case OP_ARRAY:
|
||
oplen = 4;
|
||
args = longest_to_int (inexpr->elts[inend - 2].longconst);
|
||
args -= longest_to_int (inexpr->elts[inend - 3].longconst);
|
||
args += 1;
|
||
break;
|
||
|
||
case TERNOP_COND:
|
||
case TERNOP_SLICE:
|
||
case TERNOP_SLICE_COUNT:
|
||
args = 3;
|
||
break;
|
||
|
||
case BINOP_ASSIGN_MODIFY:
|
||
oplen = 3;
|
||
args = 2;
|
||
break;
|
||
|
||
/* Modula-2 */
|
||
case MULTI_SUBSCRIPT:
|
||
oplen = 3;
|
||
args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
|
||
break;
|
||
|
||
/* C++ */
|
||
case OP_THIS:
|
||
oplen = 2;
|
||
break;
|
||
|
||
default:
|
||
args = 1 + ((int) opcode < (int) BINOP_END);
|
||
}
|
||
|
||
/* Copy the final operator itself, from the end of the input
|
||
to the beginning of the output. */
|
||
inend -= oplen;
|
||
memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
|
||
EXP_ELEM_TO_BYTES (oplen));
|
||
outbeg += oplen;
|
||
|
||
/* Find the lengths of the arg subexpressions. */
|
||
arglens = (int *) alloca (args * sizeof (int));
|
||
for (i = args - 1; i >= 0; i--)
|
||
{
|
||
oplen = length_of_subexp (inexpr, inend);
|
||
arglens[i] = oplen;
|
||
inend -= oplen;
|
||
}
|
||
|
||
/* Now copy each subexpression, preserving the order of
|
||
the subexpressions, but prefixifying each one.
|
||
In this loop, inend starts at the beginning of
|
||
the expression this level is working on
|
||
and marches forward over the arguments.
|
||
outbeg does similarly in the output. */
|
||
for (i = 0; i < args; i++)
|
||
{
|
||
oplen = arglens[i];
|
||
inend += oplen;
|
||
prefixify_subexp (inexpr, outexpr, inend, outbeg);
|
||
outbeg += oplen;
|
||
}
|
||
}
|
||
|
||
/* This page contains the two entry points to this file. */
|
||
|
||
/* Read an expression from the string *STRINGPTR points to,
|
||
parse it, and return a pointer to a struct expression that we malloc.
|
||
Use block BLOCK as the lexical context for variable names;
|
||
if BLOCK is zero, use the block of the selected stack frame.
|
||
Meanwhile, advance *STRINGPTR to point after the expression,
|
||
at the first nonwhite character that is not part of the expression
|
||
(possibly a null character).
|
||
|
||
If COMMA is nonzero, stop if a comma is reached. */
|
||
|
||
struct expression *
|
||
parse_exp_1 (stringptr, block, comma)
|
||
char **stringptr;
|
||
struct block *block;
|
||
int comma;
|
||
{
|
||
struct cleanup *old_chain;
|
||
|
||
lexptr = *stringptr;
|
||
|
||
paren_depth = 0;
|
||
type_stack_depth = 0;
|
||
|
||
comma_terminates = comma;
|
||
|
||
if (lexptr == 0 || *lexptr == 0)
|
||
error_no_arg ("expression to compute");
|
||
|
||
old_chain = make_cleanup ((make_cleanup_func) free_funcalls, 0);
|
||
funcall_chain = 0;
|
||
|
||
expression_context_block = block ? block : get_selected_block ();
|
||
|
||
namecopy = (char *) alloca (strlen (lexptr) + 1);
|
||
expout_size = 10;
|
||
expout_ptr = 0;
|
||
expout = (struct expression *)
|
||
xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
|
||
expout->language_defn = current_language;
|
||
make_cleanup (free_current_contents, &expout);
|
||
|
||
if (current_language->la_parser ())
|
||
current_language->la_error (NULL);
|
||
|
||
discard_cleanups (old_chain);
|
||
|
||
/* Record the actual number of expression elements, and then
|
||
reallocate the expression memory so that we free up any
|
||
excess elements. */
|
||
|
||
expout->nelts = expout_ptr;
|
||
expout = (struct expression *)
|
||
xrealloc ((char *) expout,
|
||
sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
|
||
|
||
/* Convert expression from postfix form as generated by yacc
|
||
parser, to a prefix form. */
|
||
|
||
if (expressiondebug)
|
||
dump_prefix_expression (expout, gdb_stdlog,
|
||
"before conversion to prefix form");
|
||
|
||
prefixify_expression (expout);
|
||
|
||
if (expressiondebug)
|
||
dump_postfix_expression (expout, gdb_stdlog,
|
||
"after conversion to prefix form");
|
||
|
||
*stringptr = lexptr;
|
||
return expout;
|
||
}
|
||
|
||
/* Parse STRING as an expression, and complain if this fails
|
||
to use up all of the contents of STRING. */
|
||
|
||
struct expression *
|
||
parse_expression (string)
|
||
char *string;
|
||
{
|
||
register struct expression *exp;
|
||
exp = parse_exp_1 (&string, 0, 0);
|
||
if (*string)
|
||
error ("Junk after end of expression.");
|
||
return exp;
|
||
}
|
||
|
||
/* Stuff for maintaining a stack of types. Currently just used by C, but
|
||
probably useful for any language which declares its types "backwards". */
|
||
|
||
void
|
||
push_type (tp)
|
||
enum type_pieces tp;
|
||
{
|
||
if (type_stack_depth == type_stack_size)
|
||
{
|
||
type_stack_size *= 2;
|
||
type_stack = (union type_stack_elt *)
|
||
xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
|
||
}
|
||
type_stack[type_stack_depth++].piece = tp;
|
||
}
|
||
|
||
void
|
||
push_type_int (n)
|
||
int n;
|
||
{
|
||
if (type_stack_depth == type_stack_size)
|
||
{
|
||
type_stack_size *= 2;
|
||
type_stack = (union type_stack_elt *)
|
||
xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
|
||
}
|
||
type_stack[type_stack_depth++].int_val = n;
|
||
}
|
||
|
||
enum type_pieces
|
||
pop_type ()
|
||
{
|
||
if (type_stack_depth)
|
||
return type_stack[--type_stack_depth].piece;
|
||
return tp_end;
|
||
}
|
||
|
||
int
|
||
pop_type_int ()
|
||
{
|
||
if (type_stack_depth)
|
||
return type_stack[--type_stack_depth].int_val;
|
||
/* "Can't happen". */
|
||
return 0;
|
||
}
|
||
|
||
/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
|
||
as modified by all the stuff on the stack. */
|
||
struct type *
|
||
follow_types (follow_type)
|
||
struct type *follow_type;
|
||
{
|
||
int done = 0;
|
||
int array_size;
|
||
struct type *range_type;
|
||
|
||
while (!done)
|
||
switch (pop_type ())
|
||
{
|
||
case tp_end:
|
||
done = 1;
|
||
break;
|
||
case tp_pointer:
|
||
follow_type = lookup_pointer_type (follow_type);
|
||
break;
|
||
case tp_reference:
|
||
follow_type = lookup_reference_type (follow_type);
|
||
break;
|
||
case tp_array:
|
||
array_size = pop_type_int ();
|
||
/* FIXME-type-allocation: need a way to free this type when we are
|
||
done with it. */
|
||
range_type =
|
||
create_range_type ((struct type *) NULL,
|
||
builtin_type_int, 0,
|
||
array_size >= 0 ? array_size - 1 : 0);
|
||
follow_type =
|
||
create_array_type ((struct type *) NULL,
|
||
follow_type, range_type);
|
||
if (array_size < 0)
|
||
TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
|
||
= BOUND_CANNOT_BE_DETERMINED;
|
||
break;
|
||
case tp_function:
|
||
/* FIXME-type-allocation: need a way to free this type when we are
|
||
done with it. */
|
||
follow_type = lookup_function_type (follow_type);
|
||
break;
|
||
}
|
||
return follow_type;
|
||
}
|
||
|
||
static void build_parse PARAMS ((void));
|
||
static void
|
||
build_parse ()
|
||
{
|
||
int i;
|
||
|
||
msym_text_symbol_type =
|
||
init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
|
||
TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
|
||
msym_data_symbol_type =
|
||
init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
|
||
"<data variable, no debug info>", NULL);
|
||
msym_unknown_symbol_type =
|
||
init_type (TYPE_CODE_INT, 1, 0,
|
||
"<variable (not text or data), no debug info>",
|
||
NULL);
|
||
|
||
/* create the std_regs table */
|
||
|
||
num_std_regs = 0;
|
||
#ifdef PC_REGNUM
|
||
if (PC_REGNUM >= 0)
|
||
num_std_regs++;
|
||
#endif
|
||
#ifdef FP_REGNUM
|
||
if (FP_REGNUM >= 0)
|
||
num_std_regs++;
|
||
#endif
|
||
#ifdef SP_REGNUM
|
||
if (SP_REGNUM >= 0)
|
||
num_std_regs++;
|
||
#endif
|
||
#ifdef PS_REGNUM
|
||
if (PS_REGNUM >= 0)
|
||
num_std_regs++;
|
||
#endif
|
||
/* create an empty table */
|
||
std_regs = xmalloc ((num_std_regs + 1) * sizeof *std_regs);
|
||
i = 0;
|
||
/* fill it in */
|
||
#ifdef PC_REGNUM
|
||
std_regs[i].name = "pc";
|
||
std_regs[i].regnum = PC_REGNUM;
|
||
i++;
|
||
#endif
|
||
#ifdef FP_REGNUM
|
||
std_regs[i].name = "fp";
|
||
std_regs[i].regnum = FP_REGNUM;
|
||
i++;
|
||
#endif
|
||
#ifdef SP_REGNUM
|
||
std_regs[i].name = "sp";
|
||
std_regs[i].regnum = SP_REGNUM;
|
||
i++;
|
||
#endif
|
||
#ifdef PS_REGNUM
|
||
std_regs[i].name = "ps";
|
||
std_regs[i].regnum = PS_REGNUM;
|
||
i++;
|
||
#endif
|
||
memset (&std_regs[i], 0, sizeof (std_regs[i]));
|
||
}
|
||
|
||
void
|
||
_initialize_parse ()
|
||
{
|
||
type_stack_size = 80;
|
||
type_stack_depth = 0;
|
||
type_stack = (union type_stack_elt *)
|
||
xmalloc (type_stack_size * sizeof (*type_stack));
|
||
|
||
build_parse ();
|
||
|
||
/* FIXME - For the moment, handle types by swapping them in and out.
|
||
Should be using the per-architecture data-pointer and a large
|
||
struct. */
|
||
register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL);
|
||
register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL);
|
||
register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL);
|
||
|
||
register_gdbarch_swap (&num_std_regs, sizeof (std_regs), NULL);
|
||
register_gdbarch_swap (&std_regs, sizeof (std_regs), NULL);
|
||
register_gdbarch_swap (NULL, 0, build_parse);
|
||
|
||
add_show_from_set (
|
||
add_set_cmd ("expression", class_maintenance, var_zinteger,
|
||
(char *) &expressiondebug,
|
||
"Set expression debugging.\n\
|
||
When non-zero, the internal representation of expressions will be printed.",
|
||
&setdebuglist),
|
||
&showdebuglist);
|
||
}
|