mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
e5434c3d1a
read_memory_unsigned_integer instead of read_memory_integer.
472 lines
14 KiB
C
472 lines
14 KiB
C
/* Target-dependent code for Linux running on i386's, for GDB.
|
||
Copyright 2000, 2001 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "gdbcore.h"
|
||
#include "frame.h"
|
||
#include "value.h"
|
||
#include "regcache.h"
|
||
|
||
/* For i386_linux_skip_solib_resolver. */
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
|
||
#include "solib-svr4.h" /* For struct link_map_offsets. */
|
||
|
||
|
||
/* Recognizing signal handler frames. */
|
||
|
||
/* Linux has two flavors of signals. Normal signal handlers, and
|
||
"realtime" (RT) signals. The RT signals can provide additional
|
||
information to the signal handler if the SA_SIGINFO flag is set
|
||
when establishing a signal handler using `sigaction'. It is not
|
||
unlikely that future versions of Linux will support SA_SIGINFO for
|
||
normal signals too. */
|
||
|
||
/* When the i386 Linux kernel calls a signal handler and the
|
||
SA_RESTORER flag isn't set, the return address points to a bit of
|
||
code on the stack. This function returns whether the PC appears to
|
||
be within this bit of code.
|
||
|
||
The instruction sequence for normal signals is
|
||
pop %eax
|
||
mov $0x77,%eax
|
||
int $0x80
|
||
or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
|
||
|
||
Checking for the code sequence should be somewhat reliable, because
|
||
the effect is to call the system call sigreturn. This is unlikely
|
||
to occur anywhere other than a signal trampoline.
|
||
|
||
It kind of sucks that we have to read memory from the process in
|
||
order to identify a signal trampoline, but there doesn't seem to be
|
||
any other way. The IN_SIGTRAMP macro in tm-linux.h arranges to
|
||
only call us if no function name could be identified, which should
|
||
be the case since the code is on the stack.
|
||
|
||
Detection of signal trampolines for handlers that set the
|
||
SA_RESTORER flag is in general not possible. Unfortunately this is
|
||
what the GNU C Library has been doing for quite some time now.
|
||
However, as of version 2.1.2, the GNU C Library uses signal
|
||
trampolines (named __restore and __restore_rt) that are identical
|
||
to the ones used by the kernel. Therefore, these trampolines are
|
||
supported too. */
|
||
|
||
#define LINUX_SIGTRAMP_INSN0 (0x58) /* pop %eax */
|
||
#define LINUX_SIGTRAMP_OFFSET0 (0)
|
||
#define LINUX_SIGTRAMP_INSN1 (0xb8) /* mov $NNNN,%eax */
|
||
#define LINUX_SIGTRAMP_OFFSET1 (1)
|
||
#define LINUX_SIGTRAMP_INSN2 (0xcd) /* int */
|
||
#define LINUX_SIGTRAMP_OFFSET2 (6)
|
||
|
||
static const unsigned char linux_sigtramp_code[] =
|
||
{
|
||
LINUX_SIGTRAMP_INSN0, /* pop %eax */
|
||
LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77,%eax */
|
||
LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
|
||
};
|
||
|
||
#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
|
||
|
||
/* If PC is in a sigtramp routine, return the address of the start of
|
||
the routine. Otherwise, return 0. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_sigtramp_start (CORE_ADDR pc)
|
||
{
|
||
unsigned char buf[LINUX_SIGTRAMP_LEN];
|
||
|
||
/* We only recognize a signal trampoline if PC is at the start of
|
||
one of the three instructions. We optimize for finding the PC at
|
||
the start, as will be the case when the trampoline is not the
|
||
first frame on the stack. We assume that in the case where the
|
||
PC is not at the start of the instruction sequence, there will be
|
||
a few trailing readable bytes on the stack. */
|
||
|
||
if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
|
||
if (buf[0] != LINUX_SIGTRAMP_INSN0)
|
||
{
|
||
int adjust;
|
||
|
||
switch (buf[0])
|
||
{
|
||
case LINUX_SIGTRAMP_INSN1:
|
||
adjust = LINUX_SIGTRAMP_OFFSET1;
|
||
break;
|
||
case LINUX_SIGTRAMP_INSN2:
|
||
adjust = LINUX_SIGTRAMP_OFFSET2;
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
pc -= adjust;
|
||
|
||
if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
}
|
||
|
||
if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* This function does the same for RT signals. Here the instruction
|
||
sequence is
|
||
mov $0xad,%eax
|
||
int $0x80
|
||
or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
|
||
|
||
The effect is to call the system call rt_sigreturn. */
|
||
|
||
#define LINUX_RT_SIGTRAMP_INSN0 (0xb8) /* mov $NNNN,%eax */
|
||
#define LINUX_RT_SIGTRAMP_OFFSET0 (0)
|
||
#define LINUX_RT_SIGTRAMP_INSN1 (0xcd) /* int */
|
||
#define LINUX_RT_SIGTRAMP_OFFSET1 (5)
|
||
|
||
static const unsigned char linux_rt_sigtramp_code[] =
|
||
{
|
||
LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad,%eax */
|
||
LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
|
||
};
|
||
|
||
#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
|
||
|
||
/* If PC is in a RT sigtramp routine, return the address of the start
|
||
of the routine. Otherwise, return 0. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_rt_sigtramp_start (CORE_ADDR pc)
|
||
{
|
||
unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
|
||
|
||
/* We only recognize a signal trampoline if PC is at the start of
|
||
one of the two instructions. We optimize for finding the PC at
|
||
the start, as will be the case when the trampoline is not the
|
||
first frame on the stack. We assume that in the case where the
|
||
PC is not at the start of the instruction sequence, there will be
|
||
a few trailing readable bytes on the stack. */
|
||
|
||
if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
|
||
if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
|
||
{
|
||
if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
|
||
return 0;
|
||
|
||
pc -= LINUX_RT_SIGTRAMP_OFFSET1;
|
||
|
||
if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
}
|
||
|
||
if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Return whether PC is in a Linux sigtramp routine. */
|
||
|
||
int
|
||
i386_linux_in_sigtramp (CORE_ADDR pc, char *name)
|
||
{
|
||
if (name)
|
||
return STREQ ("__restore", name) || STREQ ("__restore_rt", name);
|
||
|
||
return (i386_linux_sigtramp_start (pc) != 0
|
||
|| i386_linux_rt_sigtramp_start (pc) != 0);
|
||
}
|
||
|
||
/* Assuming FRAME is for a Linux sigtramp routine, return the address
|
||
of the associated sigcontext structure. */
|
||
|
||
CORE_ADDR
|
||
i386_linux_sigcontext_addr (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR pc;
|
||
|
||
pc = i386_linux_sigtramp_start (frame->pc);
|
||
if (pc)
|
||
{
|
||
CORE_ADDR sp;
|
||
|
||
if (frame->next)
|
||
/* If this isn't the top frame, the next frame must be for the
|
||
signal handler itself. The sigcontext structure lives on
|
||
the stack, right after the signum argument. */
|
||
return frame->next->frame + 12;
|
||
|
||
/* This is the top frame. We'll have to find the address of the
|
||
sigcontext structure by looking at the stack pointer. Keep
|
||
in mind that the first instruction of the sigtramp code is
|
||
"pop %eax". If the PC is at this instruction, adjust the
|
||
returned value accordingly. */
|
||
sp = read_register (SP_REGNUM);
|
||
if (pc == frame->pc)
|
||
return sp + 4;
|
||
return sp;
|
||
}
|
||
|
||
pc = i386_linux_rt_sigtramp_start (frame->pc);
|
||
if (pc)
|
||
{
|
||
if (frame->next)
|
||
/* If this isn't the top frame, the next frame must be for the
|
||
signal handler itself. The sigcontext structure is part of
|
||
the user context. A pointer to the user context is passed
|
||
as the third argument to the signal handler. */
|
||
return read_memory_integer (frame->next->frame + 16, 4) + 20;
|
||
|
||
/* This is the top frame. Again, use the stack pointer to find
|
||
the address of the sigcontext structure. */
|
||
return read_memory_integer (read_register (SP_REGNUM) + 8, 4) + 20;
|
||
}
|
||
|
||
error ("Couldn't recognize signal trampoline.");
|
||
return 0;
|
||
}
|
||
|
||
/* Offset to saved PC in sigcontext, from <asm/sigcontext.h>. */
|
||
#define LINUX_SIGCONTEXT_PC_OFFSET (56)
|
||
|
||
/* Assuming FRAME is for a Linux sigtramp routine, return the saved
|
||
program counter. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_sigtramp_saved_pc (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR addr;
|
||
addr = i386_linux_sigcontext_addr (frame);
|
||
return read_memory_integer (addr + LINUX_SIGCONTEXT_PC_OFFSET, 4);
|
||
}
|
||
|
||
/* Offset to saved SP in sigcontext, from <asm/sigcontext.h>. */
|
||
#define LINUX_SIGCONTEXT_SP_OFFSET (28)
|
||
|
||
/* Assuming FRAME is for a Linux sigtramp routine, return the saved
|
||
stack pointer. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_sigtramp_saved_sp (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR addr;
|
||
addr = i386_linux_sigcontext_addr (frame);
|
||
return read_memory_integer (addr + LINUX_SIGCONTEXT_SP_OFFSET, 4);
|
||
}
|
||
|
||
/* Signal trampolines don't have a meaningful frame. As in
|
||
"i386/tm-i386.h", the frame pointer value we use is actually the
|
||
frame pointer of the calling frame -- that is, the frame which was
|
||
in progress when the signal trampoline was entered. GDB mostly
|
||
treats this frame pointer value as a magic cookie. We detect the
|
||
case of a signal trampoline by looking at the SIGNAL_HANDLER_CALLER
|
||
field, which is set based on IN_SIGTRAMP.
|
||
|
||
When a signal trampoline is invoked from a frameless function, we
|
||
essentially have two frameless functions in a row. In this case,
|
||
we use the same magic cookie for three frames in a row. We detect
|
||
this case by seeing whether the next frame has
|
||
SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
|
||
current frame is actually frameless. In this case, we need to get
|
||
the PC by looking at the SP register value stored in the signal
|
||
context.
|
||
|
||
This should work in most cases except in horrible situations where
|
||
a signal occurs just as we enter a function but before the frame
|
||
has been set up. */
|
||
|
||
#define FRAMELESS_SIGNAL(frame) \
|
||
((frame)->next != NULL \
|
||
&& (frame)->next->signal_handler_caller \
|
||
&& frameless_look_for_prologue (frame))
|
||
|
||
CORE_ADDR
|
||
i386_linux_frame_chain (struct frame_info *frame)
|
||
{
|
||
if (frame->signal_handler_caller || FRAMELESS_SIGNAL (frame))
|
||
return frame->frame;
|
||
|
||
if (! inside_entry_file (frame->pc))
|
||
return read_memory_unsigned_integer (frame->frame, 4);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the saved program counter for FRAME. */
|
||
|
||
CORE_ADDR
|
||
i386_linux_frame_saved_pc (struct frame_info *frame)
|
||
{
|
||
if (frame->signal_handler_caller)
|
||
return i386_linux_sigtramp_saved_pc (frame);
|
||
|
||
if (FRAMELESS_SIGNAL (frame))
|
||
{
|
||
CORE_ADDR sp = i386_linux_sigtramp_saved_sp (frame->next);
|
||
return read_memory_unsigned_integer (sp, 4);
|
||
}
|
||
|
||
return read_memory_unsigned_integer (frame->frame + 4, 4);
|
||
}
|
||
|
||
/* Immediately after a function call, return the saved pc. */
|
||
|
||
CORE_ADDR
|
||
i386_linux_saved_pc_after_call (struct frame_info *frame)
|
||
{
|
||
if (frame->signal_handler_caller)
|
||
return i386_linux_sigtramp_saved_pc (frame);
|
||
|
||
return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
|
||
}
|
||
|
||
|
||
/* Calling functions in shared libraries. */
|
||
/* Find the minimal symbol named NAME, and return both the minsym
|
||
struct and its objfile. This probably ought to be in minsym.c, but
|
||
everything there is trying to deal with things like C++ and
|
||
SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
|
||
be considered too special-purpose for general consumption. */
|
||
|
||
static struct minimal_symbol *
|
||
find_minsym_and_objfile (char *name, struct objfile **objfile_p)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
ALL_OBJFILE_MSYMBOLS (objfile, msym)
|
||
{
|
||
if (SYMBOL_NAME (msym)
|
||
&& STREQ (SYMBOL_NAME (msym), name))
|
||
{
|
||
*objfile_p = objfile;
|
||
return msym;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
skip_hurd_resolver (CORE_ADDR pc)
|
||
{
|
||
/* The HURD dynamic linker is part of the GNU C library, so many
|
||
GNU/Linux distributions use it. (All ELF versions, as far as I
|
||
know.) An unresolved PLT entry points to "_dl_runtime_resolve",
|
||
which calls "fixup" to patch the PLT, and then passes control to
|
||
the function.
|
||
|
||
We look for the symbol `_dl_runtime_resolve', and find `fixup' in
|
||
the same objfile. If we are at the entry point of `fixup', then
|
||
we set a breakpoint at the return address (at the top of the
|
||
stack), and continue.
|
||
|
||
It's kind of gross to do all these checks every time we're
|
||
called, since they don't change once the executable has gotten
|
||
started. But this is only a temporary hack --- upcoming versions
|
||
of Linux will provide a portable, efficient interface for
|
||
debugging programs that use shared libraries. */
|
||
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *resolver
|
||
= find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
|
||
|
||
if (resolver)
|
||
{
|
||
struct minimal_symbol *fixup
|
||
= lookup_minimal_symbol ("fixup", 0, objfile);
|
||
|
||
if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
|
||
return (SAVED_PC_AFTER_CALL (get_current_frame ()));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
|
||
This function:
|
||
1) decides whether a PLT has sent us into the linker to resolve
|
||
a function reference, and
|
||
2) if so, tells us where to set a temporary breakpoint that will
|
||
trigger when the dynamic linker is done. */
|
||
|
||
CORE_ADDR
|
||
i386_linux_skip_solib_resolver (CORE_ADDR pc)
|
||
{
|
||
CORE_ADDR result;
|
||
|
||
/* Plug in functions for other kinds of resolvers here. */
|
||
result = skip_hurd_resolver (pc);
|
||
if (result)
|
||
return result;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Fetch (and possibly build) an appropriate link_map_offsets
|
||
structure for native Linux/x86 targets using the struct offsets
|
||
defined in link.h (but without actual reference to that file).
|
||
|
||
This makes it possible to access Linux/x86 shared libraries from a
|
||
GDB that was not built on an Linux/x86 host (for cross debugging). */
|
||
|
||
struct link_map_offsets *
|
||
i386_linux_svr4_fetch_link_map_offsets (void)
|
||
{
|
||
static struct link_map_offsets lmo;
|
||
static struct link_map_offsets *lmp = NULL;
|
||
|
||
if (lmp == NULL)
|
||
{
|
||
lmp = &lmo;
|
||
|
||
lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
|
||
this is all we need. */
|
||
lmo.r_map_offset = 4;
|
||
lmo.r_map_size = 4;
|
||
|
||
lmo.link_map_size = 20; /* The actual size is 552 bytes, but
|
||
this is all we need. */
|
||
lmo.l_addr_offset = 0;
|
||
lmo.l_addr_size = 4;
|
||
|
||
lmo.l_name_offset = 4;
|
||
lmo.l_name_size = 4;
|
||
|
||
lmo.l_next_offset = 12;
|
||
lmo.l_next_size = 4;
|
||
|
||
lmo.l_prev_offset = 16;
|
||
lmo.l_prev_size = 4;
|
||
}
|
||
|
||
return lmp;
|
||
}
|