mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
1d506c26d9
This commit is the result of the following actions: - Running gdb/copyright.py to update all of the copyright headers to include 2024, - Manually updating a few files the copyright.py script told me to update, these files had copyright headers embedded within the file, - Regenerating gdbsupport/Makefile.in to refresh it's copyright date, - Using grep to find other files that still mentioned 2023. If these files were updated last year from 2022 to 2023 then I've updated them this year to 2024. I'm sure I've probably missed some dates. Feel free to fix them up as you spot them.
193 lines
5.1 KiB
C
193 lines
5.1 KiB
C
/* Example synacor simulator.
|
||
|
||
Copyright (C) 2005-2024 Free Software Foundation, Inc.
|
||
Contributed by Mike Frysinger.
|
||
|
||
This file is part of simulators.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains the main glue logic between the sim core and the target
|
||
specific simulator. Normally this file will be kept small and the target
|
||
details will live in other files.
|
||
|
||
For more specific details on these functions, see the sim/sim.h header
|
||
file. */
|
||
|
||
/* This must come before any other includes. */
|
||
#include "defs.h"
|
||
|
||
#include "sim/callback.h"
|
||
#include "sim-main.h"
|
||
#include "sim-options.h"
|
||
|
||
#include "example-synacor-sim.h"
|
||
|
||
/* This function is the main loop. It should process ticks and decode+execute
|
||
a single instruction.
|
||
|
||
Usually you do not need to change things here. */
|
||
|
||
void
|
||
sim_engine_run (SIM_DESC sd,
|
||
int next_cpu_nr, /* ignore */
|
||
int nr_cpus, /* ignore */
|
||
int siggnal) /* ignore */
|
||
{
|
||
SIM_CPU *cpu;
|
||
|
||
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
|
||
|
||
cpu = STATE_CPU (sd, 0);
|
||
|
||
while (1)
|
||
{
|
||
step_once (cpu);
|
||
if (sim_events_tick (sd))
|
||
sim_events_process (sd);
|
||
}
|
||
}
|
||
|
||
/* Initialize the simulator from scratch. This is called once per lifetime of
|
||
the simulation. Think of it as a processor reset.
|
||
|
||
Usually all cpu-specific setup is handled in the initialize_cpu callback.
|
||
If you want to do cpu-independent stuff, then it should go at the end (see
|
||
where memory is initialized). */
|
||
|
||
#define DEFAULT_MEM_SIZE (16 * 1024 * 1024)
|
||
|
||
static void
|
||
free_state (SIM_DESC sd)
|
||
{
|
||
if (STATE_MODULES (sd) != NULL)
|
||
sim_module_uninstall (sd);
|
||
sim_cpu_free_all (sd);
|
||
sim_state_free (sd);
|
||
}
|
||
|
||
SIM_DESC
|
||
sim_open (SIM_OPEN_KIND kind, host_callback *callback,
|
||
struct bfd *abfd, char * const *argv)
|
||
{
|
||
char c;
|
||
int i;
|
||
SIM_DESC sd = sim_state_alloc (kind, callback);
|
||
|
||
/* Set default options before parsing user options. */
|
||
current_alignment = STRICT_ALIGNMENT;
|
||
current_target_byte_order = BFD_ENDIAN_LITTLE;
|
||
|
||
/* The cpu data is kept in a separately allocated chunk of memory. */
|
||
if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct example_sim_cpu))
|
||
!= SIM_RC_OK)
|
||
{
|
||
free_state (sd);
|
||
return 0;
|
||
}
|
||
|
||
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
|
||
{
|
||
free_state (sd);
|
||
return 0;
|
||
}
|
||
|
||
/* XXX: Default to the Virtual environment. */
|
||
if (STATE_ENVIRONMENT (sd) == ALL_ENVIRONMENT)
|
||
STATE_ENVIRONMENT (sd) = VIRTUAL_ENVIRONMENT;
|
||
|
||
/* The parser will print an error message for us, so we silently return. */
|
||
if (sim_parse_args (sd, argv) != SIM_RC_OK)
|
||
{
|
||
free_state (sd);
|
||
return 0;
|
||
}
|
||
|
||
/* Check for/establish the a reference program image. */
|
||
if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK)
|
||
{
|
||
free_state (sd);
|
||
return 0;
|
||
}
|
||
|
||
/* Establish any remaining configuration options. */
|
||
if (sim_config (sd) != SIM_RC_OK)
|
||
{
|
||
free_state (sd);
|
||
return 0;
|
||
}
|
||
|
||
if (sim_post_argv_init (sd) != SIM_RC_OK)
|
||
{
|
||
free_state (sd);
|
||
return 0;
|
||
}
|
||
|
||
/* CPU specific initialization. */
|
||
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
|
||
{
|
||
SIM_CPU *cpu = STATE_CPU (sd, i);
|
||
|
||
initialize_cpu (sd, cpu);
|
||
}
|
||
|
||
/* Allocate external memory if none specified by user.
|
||
Use address 4 here in case the user wanted address 0 unmapped. */
|
||
if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0)
|
||
sim_do_commandf (sd, "memory-size %#x", DEFAULT_MEM_SIZE);
|
||
|
||
return sd;
|
||
}
|
||
|
||
/* Prepare to run a program that has already been loaded into memory.
|
||
|
||
Usually you do not need to change things here. */
|
||
|
||
SIM_RC
|
||
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
|
||
char * const *argv, char * const *env)
|
||
{
|
||
SIM_CPU *cpu = STATE_CPU (sd, 0);
|
||
host_callback *cb = STATE_CALLBACK (sd);
|
||
sim_cia addr;
|
||
|
||
/* Set the PC. */
|
||
if (abfd != NULL)
|
||
addr = bfd_get_start_address (abfd);
|
||
else
|
||
addr = 0;
|
||
sim_pc_set (cpu, addr);
|
||
|
||
/* Standalone mode (i.e. `run`) will take care of the argv for us in
|
||
sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
|
||
with `gdb`), we need to handle it because the user can change the
|
||
argv on the fly via gdb's 'run'. */
|
||
if (STATE_PROG_ARGV (sd) != argv)
|
||
{
|
||
freeargv (STATE_PROG_ARGV (sd));
|
||
STATE_PROG_ARGV (sd) = dupargv (argv);
|
||
}
|
||
|
||
if (STATE_PROG_ENVP (sd) != env)
|
||
{
|
||
freeargv (STATE_PROG_ENVP (sd));
|
||
STATE_PROG_ENVP (sd) = dupargv (env);
|
||
}
|
||
|
||
cb->argv = STATE_PROG_ARGV (sd);
|
||
cb->envp = STATE_PROG_ENVP (sd);
|
||
|
||
return SIM_RC_OK;
|
||
}
|