mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
6cb06a8cda
Now that filtered and unfiltered output can be treated identically, we can unify the printf family of functions. This is done under the name "gdb_printf". Most of this patch was written by script.
1589 lines
42 KiB
C
1589 lines
42 KiB
C
/* Dynamic architecture support for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1998-2022 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
|
||
#include "arch-utils.h"
|
||
#include "gdbcmd.h"
|
||
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et al. */
|
||
#include "infrun.h"
|
||
#include "regcache.h"
|
||
#include "sim-regno.h"
|
||
#include "gdbcore.h"
|
||
#include "osabi.h"
|
||
#include "target-descriptions.h"
|
||
#include "objfiles.h"
|
||
#include "language.h"
|
||
#include "symtab.h"
|
||
#include "dummy-frame.h"
|
||
#include "frame-unwind.h"
|
||
#include "reggroups.h"
|
||
#include "auxv.h"
|
||
#include "observable.h"
|
||
|
||
#include "gdbsupport/version.h"
|
||
|
||
#include "floatformat.h"
|
||
|
||
#include "dis-asm.h"
|
||
|
||
bool
|
||
default_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
|
||
{
|
||
return !gdbarch_software_single_step_p (gdbarch);
|
||
}
|
||
|
||
CORE_ADDR
|
||
displaced_step_at_entry_point (struct gdbarch *gdbarch)
|
||
{
|
||
CORE_ADDR addr;
|
||
int bp_len;
|
||
|
||
addr = entry_point_address ();
|
||
|
||
/* Inferior calls also use the entry point as a breakpoint location.
|
||
We don't want displaced stepping to interfere with those
|
||
breakpoints, so leave space. */
|
||
gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
|
||
addr += bp_len * 2;
|
||
|
||
return addr;
|
||
}
|
||
|
||
int
|
||
legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
/* Only makes sense to supply raw registers. */
|
||
gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
|
||
/* NOTE: cagney/2002-05-13: The old code did it this way and it is
|
||
suspected that some GDB/SIM combinations may rely on this
|
||
behaviour. The default should be one2one_register_sim_regno
|
||
(below). */
|
||
if (gdbarch_register_name (gdbarch, regnum) != NULL
|
||
&& gdbarch_register_name (gdbarch, regnum)[0] != '\0')
|
||
return regnum;
|
||
else
|
||
return LEGACY_SIM_REGNO_IGNORE;
|
||
}
|
||
|
||
|
||
/* See arch-utils.h */
|
||
|
||
std::string
|
||
default_memtag_to_string (struct gdbarch *gdbarch, struct value *tag)
|
||
{
|
||
error (_("This architecture has no method to convert a memory tag to"
|
||
" a string."));
|
||
}
|
||
|
||
/* See arch-utils.h */
|
||
|
||
bool
|
||
default_tagged_address_p (struct gdbarch *gdbarch, struct value *address)
|
||
{
|
||
/* By default, assume the address is untagged. */
|
||
return false;
|
||
}
|
||
|
||
/* See arch-utils.h */
|
||
|
||
bool
|
||
default_memtag_matches_p (struct gdbarch *gdbarch, struct value *address)
|
||
{
|
||
/* By default, assume the tags match. */
|
||
return true;
|
||
}
|
||
|
||
/* See arch-utils.h */
|
||
|
||
bool
|
||
default_set_memtags (struct gdbarch *gdbarch, struct value *address,
|
||
size_t length, const gdb::byte_vector &tags,
|
||
memtag_type tag_type)
|
||
{
|
||
/* By default, return true (successful); */
|
||
return true;
|
||
}
|
||
|
||
/* See arch-utils.h */
|
||
|
||
struct value *
|
||
default_get_memtag (struct gdbarch *gdbarch, struct value *address,
|
||
memtag_type tag_type)
|
||
{
|
||
/* By default, return no tag. */
|
||
return nullptr;
|
||
}
|
||
|
||
CORE_ADDR
|
||
generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
CORE_ADDR
|
||
generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_in_solib_return_trampoline (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, const char *name)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
default_code_of_frame_writable (struct gdbarch *gdbarch,
|
||
struct frame_info *frame)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Helper functions for gdbarch_inner_than */
|
||
|
||
int
|
||
core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
|
||
{
|
||
return (lhs < rhs);
|
||
}
|
||
|
||
int
|
||
core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
|
||
{
|
||
return (lhs > rhs);
|
||
}
|
||
|
||
/* Misc helper functions for targets. */
|
||
|
||
CORE_ADDR
|
||
core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return addr;
|
||
}
|
||
|
||
CORE_ADDR
|
||
convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
struct target_ops *targ)
|
||
{
|
||
return addr;
|
||
}
|
||
|
||
int
|
||
no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
||
{
|
||
return reg;
|
||
}
|
||
|
||
void
|
||
default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
|
||
{
|
||
return;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
void
|
||
default_make_symbol_special (struct symbol *sym, struct objfile *objfile)
|
||
{
|
||
return;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
CORE_ADDR
|
||
default_adjust_dwarf2_addr (CORE_ADDR pc)
|
||
{
|
||
return pc;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
CORE_ADDR
|
||
default_adjust_dwarf2_line (CORE_ADDR addr, int rel)
|
||
{
|
||
return addr;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
bool
|
||
default_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
|
||
struct dwarf2_frame_state *fs)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
int
|
||
cannot_register_not (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Legacy version of target_virtual_frame_pointer(). Assumes that
|
||
there is an gdbarch_deprecated_fp_regnum and that it is the same,
|
||
cooked or raw. */
|
||
|
||
void
|
||
legacy_virtual_frame_pointer (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc,
|
||
int *frame_regnum,
|
||
LONGEST *frame_offset)
|
||
{
|
||
/* FIXME: cagney/2002-09-13: This code is used when identifying the
|
||
frame pointer of the current PC. It is assuming that a single
|
||
register and an offset can determine this. I think it should
|
||
instead generate a byte code expression as that would work better
|
||
with things like Dwarf2's CFI. */
|
||
if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0
|
||
&& gdbarch_deprecated_fp_regnum (gdbarch)
|
||
< gdbarch_num_regs (gdbarch))
|
||
*frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch);
|
||
else if (gdbarch_sp_regnum (gdbarch) >= 0
|
||
&& gdbarch_sp_regnum (gdbarch)
|
||
< gdbarch_num_regs (gdbarch))
|
||
*frame_regnum = gdbarch_sp_regnum (gdbarch);
|
||
else
|
||
/* Should this be an internal error? I guess so, it is reflecting
|
||
an architectural limitation in the current design. */
|
||
internal_error (__FILE__, __LINE__,
|
||
_("No virtual frame pointer available"));
|
||
*frame_offset = 0;
|
||
}
|
||
|
||
/* Return a floating-point format for a floating-point variable of
|
||
length LEN in bits. If non-NULL, NAME is the name of its type.
|
||
If no suitable type is found, return NULL. */
|
||
|
||
const struct floatformat **
|
||
default_floatformat_for_type (struct gdbarch *gdbarch,
|
||
const char *name, int len)
|
||
{
|
||
const struct floatformat **format = NULL;
|
||
|
||
/* Check if this is a bfloat16 type. It has the same size as the
|
||
IEEE half float type, so we use the base type name to tell them
|
||
apart. */
|
||
if (name != nullptr && strcmp (name, "__bf16") == 0
|
||
&& len == gdbarch_bfloat16_bit (gdbarch))
|
||
format = gdbarch_bfloat16_format (gdbarch);
|
||
else if (len == gdbarch_half_bit (gdbarch))
|
||
format = gdbarch_half_format (gdbarch);
|
||
else if (len == gdbarch_float_bit (gdbarch))
|
||
format = gdbarch_float_format (gdbarch);
|
||
else if (len == gdbarch_double_bit (gdbarch))
|
||
format = gdbarch_double_format (gdbarch);
|
||
else if (len == gdbarch_long_double_bit (gdbarch))
|
||
format = gdbarch_long_double_format (gdbarch);
|
||
/* On i386 the 'long double' type takes 96 bits,
|
||
while the real number of used bits is only 80,
|
||
both in processor and in memory.
|
||
The code below accepts the real bit size. */
|
||
else if (gdbarch_long_double_format (gdbarch) != NULL
|
||
&& len == gdbarch_long_double_format (gdbarch)[0]->totalsize)
|
||
format = gdbarch_long_double_format (gdbarch);
|
||
|
||
return format;
|
||
}
|
||
|
||
int
|
||
generic_convert_register_p (struct gdbarch *gdbarch, int regnum,
|
||
struct type *type)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_instruction_nullified (struct gdbarch *gdbarch,
|
||
struct regcache *regcache)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
default_remote_register_number (struct gdbarch *gdbarch,
|
||
int regno)
|
||
{
|
||
return regno;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
int
|
||
default_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Functions to manipulate the endianness of the target. */
|
||
|
||
static enum bfd_endian target_byte_order_user = BFD_ENDIAN_UNKNOWN;
|
||
|
||
static const char endian_big[] = "big";
|
||
static const char endian_little[] = "little";
|
||
static const char endian_auto[] = "auto";
|
||
static const char *const endian_enum[] =
|
||
{
|
||
endian_big,
|
||
endian_little,
|
||
endian_auto,
|
||
NULL,
|
||
};
|
||
static const char *set_endian_string = endian_auto;
|
||
|
||
enum bfd_endian
|
||
selected_byte_order (void)
|
||
{
|
||
return target_byte_order_user;
|
||
}
|
||
|
||
/* Called by ``show endian''. */
|
||
|
||
static void
|
||
show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
if (target_byte_order_user == BFD_ENDIAN_UNKNOWN)
|
||
if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG)
|
||
gdb_printf (file, _("The target endianness is set automatically "
|
||
"(currently big endian).\n"));
|
||
else
|
||
gdb_printf (file, _("The target endianness is set automatically "
|
||
"(currently little endian).\n"));
|
||
else
|
||
if (target_byte_order_user == BFD_ENDIAN_BIG)
|
||
gdb_printf (file,
|
||
_("The target is set to big endian.\n"));
|
||
else
|
||
gdb_printf (file,
|
||
_("The target is set to little endian.\n"));
|
||
}
|
||
|
||
static void
|
||
set_endian (const char *ignore_args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
struct gdbarch_info info;
|
||
|
||
if (set_endian_string == endian_auto)
|
||
{
|
||
target_byte_order_user = BFD_ENDIAN_UNKNOWN;
|
||
if (! gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("set_endian: architecture update failed"));
|
||
}
|
||
else if (set_endian_string == endian_little)
|
||
{
|
||
info.byte_order = BFD_ENDIAN_LITTLE;
|
||
if (! gdbarch_update_p (info))
|
||
gdb_printf (gdb_stderr,
|
||
_("Little endian target not supported by GDB\n"));
|
||
else
|
||
target_byte_order_user = BFD_ENDIAN_LITTLE;
|
||
}
|
||
else if (set_endian_string == endian_big)
|
||
{
|
||
info.byte_order = BFD_ENDIAN_BIG;
|
||
if (! gdbarch_update_p (info))
|
||
gdb_printf (gdb_stderr,
|
||
_("Big endian target not supported by GDB\n"));
|
||
else
|
||
target_byte_order_user = BFD_ENDIAN_BIG;
|
||
}
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("set_endian: bad value"));
|
||
|
||
show_endian (gdb_stdout, from_tty, NULL, NULL);
|
||
}
|
||
|
||
/* Given SELECTED, a currently selected BFD architecture, and
|
||
TARGET_DESC, the current target description, return what
|
||
architecture to use.
|
||
|
||
SELECTED may be NULL, in which case we return the architecture
|
||
associated with TARGET_DESC. If SELECTED specifies a variant
|
||
of the architecture associated with TARGET_DESC, return the
|
||
more specific of the two.
|
||
|
||
If SELECTED is a different architecture, but it is accepted as
|
||
compatible by the target, we can use the target architecture.
|
||
|
||
If SELECTED is obviously incompatible, warn the user. */
|
||
|
||
static const struct bfd_arch_info *
|
||
choose_architecture_for_target (const struct target_desc *target_desc,
|
||
const struct bfd_arch_info *selected)
|
||
{
|
||
const struct bfd_arch_info *from_target = tdesc_architecture (target_desc);
|
||
const struct bfd_arch_info *compat1, *compat2;
|
||
|
||
if (selected == NULL)
|
||
return from_target;
|
||
|
||
if (from_target == NULL)
|
||
return selected;
|
||
|
||
/* struct bfd_arch_info objects are singletons: that is, there's
|
||
supposed to be exactly one instance for a given machine. So you
|
||
can tell whether two are equivalent by comparing pointers. */
|
||
if (from_target == selected)
|
||
return selected;
|
||
|
||
/* BFD's 'A->compatible (A, B)' functions return zero if A and B are
|
||
incompatible. But if they are compatible, it returns the 'more
|
||
featureful' of the two arches. That is, if A can run code
|
||
written for B, but B can't run code written for A, then it'll
|
||
return A.
|
||
|
||
Some targets (e.g. MIPS as of 2006-12-04) don't fully
|
||
implement this, instead always returning NULL or the first
|
||
argument. We detect that case by checking both directions. */
|
||
|
||
compat1 = selected->compatible (selected, from_target);
|
||
compat2 = from_target->compatible (from_target, selected);
|
||
|
||
if (compat1 == NULL && compat2 == NULL)
|
||
{
|
||
/* BFD considers the architectures incompatible. Check our
|
||
target description whether it accepts SELECTED as compatible
|
||
anyway. */
|
||
if (tdesc_compatible_p (target_desc, selected))
|
||
return from_target;
|
||
|
||
warning (_("Selected architecture %s is not compatible "
|
||
"with reported target architecture %s"),
|
||
selected->printable_name, from_target->printable_name);
|
||
return selected;
|
||
}
|
||
|
||
if (compat1 == NULL)
|
||
return compat2;
|
||
if (compat2 == NULL)
|
||
return compat1;
|
||
if (compat1 == compat2)
|
||
return compat1;
|
||
|
||
/* If the two didn't match, but one of them was a default
|
||
architecture, assume the more specific one is correct. This
|
||
handles the case where an executable or target description just
|
||
says "mips", but the other knows which MIPS variant. */
|
||
if (compat1->the_default)
|
||
return compat2;
|
||
if (compat2->the_default)
|
||
return compat1;
|
||
|
||
/* We have no idea which one is better. This is a bug, but not
|
||
a critical problem; warn the user. */
|
||
warning (_("Selected architecture %s is ambiguous with "
|
||
"reported target architecture %s"),
|
||
selected->printable_name, from_target->printable_name);
|
||
return selected;
|
||
}
|
||
|
||
/* Functions to manipulate the architecture of the target. */
|
||
|
||
enum set_arch { set_arch_auto, set_arch_manual };
|
||
|
||
static const struct bfd_arch_info *target_architecture_user;
|
||
|
||
static const char *set_architecture_string;
|
||
|
||
const char *
|
||
selected_architecture_name (void)
|
||
{
|
||
if (target_architecture_user == NULL)
|
||
return NULL;
|
||
else
|
||
return set_architecture_string;
|
||
}
|
||
|
||
/* Called if the user enters ``show architecture'' without an
|
||
argument. */
|
||
|
||
static void
|
||
show_architecture (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
if (target_architecture_user == NULL)
|
||
gdb_printf (file, _("The target architecture is set to "
|
||
"\"auto\" (currently \"%s\").\n"),
|
||
gdbarch_bfd_arch_info (get_current_arch ())->printable_name);
|
||
else
|
||
gdb_printf (file, _("The target architecture is set to \"%s\".\n"),
|
||
set_architecture_string);
|
||
}
|
||
|
||
|
||
/* Called if the user enters ``set architecture'' with or without an
|
||
argument. */
|
||
|
||
static void
|
||
set_architecture (const char *ignore_args,
|
||
int from_tty, struct cmd_list_element *c)
|
||
{
|
||
struct gdbarch_info info;
|
||
|
||
if (strcmp (set_architecture_string, "auto") == 0)
|
||
{
|
||
target_architecture_user = NULL;
|
||
if (!gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not select an architecture automatically"));
|
||
}
|
||
else
|
||
{
|
||
info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
|
||
if (info.bfd_arch_info == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("set_architecture: bfd_scan_arch failed"));
|
||
if (gdbarch_update_p (info))
|
||
target_architecture_user = info.bfd_arch_info;
|
||
else
|
||
gdb_printf (gdb_stderr,
|
||
_("Architecture `%s' not recognized.\n"),
|
||
set_architecture_string);
|
||
}
|
||
show_architecture (gdb_stdout, from_tty, NULL, NULL);
|
||
}
|
||
|
||
/* Try to select a global architecture that matches "info". Return
|
||
non-zero if the attempt succeeds. */
|
||
int
|
||
gdbarch_update_p (struct gdbarch_info info)
|
||
{
|
||
struct gdbarch *new_gdbarch;
|
||
|
||
/* Check for the current file. */
|
||
if (info.abfd == NULL)
|
||
info.abfd = current_program_space->exec_bfd ();
|
||
if (info.abfd == NULL)
|
||
info.abfd = core_bfd;
|
||
|
||
/* Check for the current target description. */
|
||
if (info.target_desc == NULL)
|
||
info.target_desc = target_current_description ();
|
||
|
||
new_gdbarch = gdbarch_find_by_info (info);
|
||
|
||
/* If there no architecture by that name, reject the request. */
|
||
if (new_gdbarch == NULL)
|
||
{
|
||
if (gdbarch_debug)
|
||
gdb_printf (gdb_stdlog, "gdbarch_update_p: "
|
||
"Architecture not found\n");
|
||
return 0;
|
||
}
|
||
|
||
/* If it is the same old architecture, accept the request (but don't
|
||
swap anything). */
|
||
if (new_gdbarch == target_gdbarch ())
|
||
{
|
||
if (gdbarch_debug)
|
||
gdb_printf (gdb_stdlog, "gdbarch_update_p: "
|
||
"Architecture %s (%s) unchanged\n",
|
||
host_address_to_string (new_gdbarch),
|
||
gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
|
||
return 1;
|
||
}
|
||
|
||
/* It's a new architecture, swap it in. */
|
||
if (gdbarch_debug)
|
||
gdb_printf (gdb_stdlog, "gdbarch_update_p: "
|
||
"New architecture %s (%s) selected\n",
|
||
host_address_to_string (new_gdbarch),
|
||
gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
|
||
set_target_gdbarch (new_gdbarch);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return the architecture for ABFD. If no suitable architecture
|
||
could be find, return NULL. */
|
||
|
||
struct gdbarch *
|
||
gdbarch_from_bfd (bfd *abfd)
|
||
{
|
||
struct gdbarch_info info;
|
||
|
||
info.abfd = abfd;
|
||
return gdbarch_find_by_info (info);
|
||
}
|
||
|
||
/* Set the dynamic target-system-dependent parameters (architecture,
|
||
byte-order) using information found in the BFD */
|
||
|
||
void
|
||
set_gdbarch_from_file (bfd *abfd)
|
||
{
|
||
struct gdbarch_info info;
|
||
struct gdbarch *gdbarch;
|
||
|
||
info.abfd = abfd;
|
||
info.target_desc = target_current_description ();
|
||
gdbarch = gdbarch_find_by_info (info);
|
||
|
||
if (gdbarch == NULL)
|
||
error (_("Architecture of file not recognized."));
|
||
set_target_gdbarch (gdbarch);
|
||
}
|
||
|
||
/* Initialize the current architecture. Update the ``set
|
||
architecture'' command so that it specifies a list of valid
|
||
architectures. */
|
||
|
||
#ifdef DEFAULT_BFD_ARCH
|
||
extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
|
||
static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
|
||
#else
|
||
static const bfd_arch_info_type *default_bfd_arch;
|
||
#endif
|
||
|
||
#ifdef DEFAULT_BFD_VEC
|
||
extern const bfd_target DEFAULT_BFD_VEC;
|
||
static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
|
||
#else
|
||
static const bfd_target *default_bfd_vec;
|
||
#endif
|
||
|
||
static enum bfd_endian default_byte_order = BFD_ENDIAN_UNKNOWN;
|
||
|
||
/* Printable names of architectures. Used as the enum list of the
|
||
"set arch" command. */
|
||
static std::vector<const char *> arches;
|
||
|
||
void
|
||
initialize_current_architecture (void)
|
||
{
|
||
arches = gdbarch_printable_names ();
|
||
|
||
/* Find a default architecture. */
|
||
if (default_bfd_arch == NULL)
|
||
{
|
||
/* Choose the architecture by taking the first one
|
||
alphabetically. */
|
||
const char *chosen = arches[0];
|
||
|
||
for (const char *arch : arches)
|
||
{
|
||
if (strcmp (arch, chosen) < 0)
|
||
chosen = arch;
|
||
}
|
||
|
||
if (chosen == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("initialize_current_architecture: No arch"));
|
||
|
||
default_bfd_arch = bfd_scan_arch (chosen);
|
||
if (default_bfd_arch == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("initialize_current_architecture: Arch not found"));
|
||
}
|
||
|
||
gdbarch_info info;
|
||
info.bfd_arch_info = default_bfd_arch;
|
||
|
||
/* Take several guesses at a byte order. */
|
||
if (default_byte_order == BFD_ENDIAN_UNKNOWN
|
||
&& default_bfd_vec != NULL)
|
||
{
|
||
/* Extract BFD's default vector's byte order. */
|
||
switch (default_bfd_vec->byteorder)
|
||
{
|
||
case BFD_ENDIAN_BIG:
|
||
default_byte_order = BFD_ENDIAN_BIG;
|
||
break;
|
||
case BFD_ENDIAN_LITTLE:
|
||
default_byte_order = BFD_ENDIAN_LITTLE;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
if (default_byte_order == BFD_ENDIAN_UNKNOWN)
|
||
{
|
||
/* look for ``*el-*'' in the target name. */
|
||
const char *chp;
|
||
chp = strchr (target_name, '-');
|
||
if (chp != NULL
|
||
&& chp - 2 >= target_name
|
||
&& startswith (chp - 2, "el"))
|
||
default_byte_order = BFD_ENDIAN_LITTLE;
|
||
}
|
||
if (default_byte_order == BFD_ENDIAN_UNKNOWN)
|
||
{
|
||
/* Wire it to big-endian!!! */
|
||
default_byte_order = BFD_ENDIAN_BIG;
|
||
}
|
||
|
||
info.byte_order = default_byte_order;
|
||
info.byte_order_for_code = info.byte_order;
|
||
|
||
if (! gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("initialize_current_architecture: Selection of "
|
||
"initial architecture failed"));
|
||
|
||
/* Create the ``set architecture'' command appending ``auto'' to the
|
||
list of architectures. */
|
||
{
|
||
/* Append ``auto''. */
|
||
set_architecture_string = "auto";
|
||
arches.push_back (set_architecture_string);
|
||
arches.push_back (nullptr);
|
||
set_show_commands architecture_cmds
|
||
= add_setshow_enum_cmd ("architecture", class_support,
|
||
arches.data (), &set_architecture_string,
|
||
_("Set architecture of target."),
|
||
_("Show architecture of target."), NULL,
|
||
set_architecture, show_architecture,
|
||
&setlist, &showlist);
|
||
add_alias_cmd ("processor", architecture_cmds.set, class_support, 1,
|
||
&setlist);
|
||
}
|
||
}
|
||
|
||
/* Similar to init, but this time fill in the blanks. Information is
|
||
obtained from the global "set ..." options and explicitly
|
||
initialized INFO fields. */
|
||
|
||
void
|
||
gdbarch_info_fill (struct gdbarch_info *info)
|
||
{
|
||
/* "(gdb) set architecture ...". */
|
||
if (info->bfd_arch_info == NULL
|
||
&& target_architecture_user)
|
||
info->bfd_arch_info = target_architecture_user;
|
||
/* From the file. */
|
||
if (info->bfd_arch_info == NULL
|
||
&& info->abfd != NULL
|
||
&& bfd_get_arch (info->abfd) != bfd_arch_unknown
|
||
&& bfd_get_arch (info->abfd) != bfd_arch_obscure)
|
||
info->bfd_arch_info = bfd_get_arch_info (info->abfd);
|
||
/* From the target. */
|
||
if (info->target_desc != NULL)
|
||
info->bfd_arch_info = choose_architecture_for_target
|
||
(info->target_desc, info->bfd_arch_info);
|
||
/* From the default. */
|
||
if (info->bfd_arch_info == NULL)
|
||
info->bfd_arch_info = default_bfd_arch;
|
||
|
||
/* "(gdb) set byte-order ...". */
|
||
if (info->byte_order == BFD_ENDIAN_UNKNOWN
|
||
&& target_byte_order_user != BFD_ENDIAN_UNKNOWN)
|
||
info->byte_order = target_byte_order_user;
|
||
/* From the INFO struct. */
|
||
if (info->byte_order == BFD_ENDIAN_UNKNOWN
|
||
&& info->abfd != NULL)
|
||
info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
|
||
: bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
|
||
: BFD_ENDIAN_UNKNOWN);
|
||
/* From the default. */
|
||
if (info->byte_order == BFD_ENDIAN_UNKNOWN)
|
||
info->byte_order = default_byte_order;
|
||
info->byte_order_for_code = info->byte_order;
|
||
/* Wire the default to the last selected byte order. */
|
||
default_byte_order = info->byte_order;
|
||
|
||
/* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
|
||
/* From the manual override, or from file. */
|
||
if (info->osabi == GDB_OSABI_UNKNOWN)
|
||
info->osabi = gdbarch_lookup_osabi (info->abfd);
|
||
/* From the target. */
|
||
|
||
if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL)
|
||
info->osabi = tdesc_osabi (info->target_desc);
|
||
/* From the configured default. */
|
||
#ifdef GDB_OSABI_DEFAULT
|
||
if (info->osabi == GDB_OSABI_UNKNOWN)
|
||
info->osabi = GDB_OSABI_DEFAULT;
|
||
#endif
|
||
/* If we still don't know which osabi to pick, pick none. */
|
||
if (info->osabi == GDB_OSABI_UNKNOWN)
|
||
info->osabi = GDB_OSABI_NONE;
|
||
|
||
/* Must have at least filled in the architecture. */
|
||
gdb_assert (info->bfd_arch_info != NULL);
|
||
}
|
||
|
||
/* Return "current" architecture. If the target is running, this is
|
||
the architecture of the selected frame. Otherwise, the "current"
|
||
architecture defaults to the target architecture.
|
||
|
||
This function should normally be called solely by the command
|
||
interpreter routines to determine the architecture to execute a
|
||
command in. */
|
||
struct gdbarch *
|
||
get_current_arch (void)
|
||
{
|
||
if (has_stack_frames ())
|
||
return get_frame_arch (get_selected_frame (NULL));
|
||
else
|
||
return target_gdbarch ();
|
||
}
|
||
|
||
int
|
||
default_has_shared_address_space (struct gdbarch *gdbarch)
|
||
{
|
||
/* Simply say no. In most unix-like targets each inferior/process
|
||
has its own address space. */
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
default_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
std::string *msg)
|
||
{
|
||
/* We don't know if maybe the target has some way to do fast
|
||
tracepoints that doesn't need gdbarch, so always say yes. */
|
||
if (msg)
|
||
msg->clear ();
|
||
return 1;
|
||
}
|
||
|
||
const gdb_byte *
|
||
default_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
|
||
int *lenptr)
|
||
{
|
||
int kind = gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
|
||
|
||
return gdbarch_sw_breakpoint_from_kind (gdbarch, kind, lenptr);
|
||
}
|
||
int
|
||
default_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
CORE_ADDR *pcptr)
|
||
{
|
||
return gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
|
||
}
|
||
|
||
|
||
void
|
||
default_gen_return_address (struct gdbarch *gdbarch,
|
||
struct agent_expr *ax, struct axs_value *value,
|
||
CORE_ADDR scope)
|
||
{
|
||
error (_("This architecture has no method to collect a return address."));
|
||
}
|
||
|
||
int
|
||
default_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
|
||
struct type *type)
|
||
{
|
||
/* Usually, the return value's address is stored the in the "first hidden"
|
||
parameter if the return value should be passed by reference, as
|
||
specified in ABI. */
|
||
return !(language_pass_by_reference (type).trivially_copyable);
|
||
}
|
||
|
||
int default_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int default_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int default_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
bool
|
||
default_program_breakpoint_here_p (struct gdbarch *gdbarch,
|
||
CORE_ADDR address)
|
||
{
|
||
int len;
|
||
const gdb_byte *bpoint = gdbarch_breakpoint_from_pc (gdbarch, &address, &len);
|
||
|
||
/* Software breakpoints unsupported? */
|
||
if (bpoint == nullptr)
|
||
return false;
|
||
|
||
gdb_byte *target_mem = (gdb_byte *) alloca (len);
|
||
|
||
/* Enable the automatic memory restoration from breakpoints while
|
||
we read the memory. Otherwise we may find temporary breakpoints, ones
|
||
inserted by GDB, and flag them as permanent breakpoints. */
|
||
scoped_restore restore_memory
|
||
= make_scoped_restore_show_memory_breakpoints (0);
|
||
|
||
if (target_read_memory (address, target_mem, len) == 0)
|
||
{
|
||
/* Check if this is a breakpoint instruction for this architecture,
|
||
including ones used by GDB. */
|
||
if (memcmp (target_mem, bpoint, len) == 0)
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
void
|
||
default_skip_permanent_breakpoint (struct regcache *regcache)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
CORE_ADDR current_pc = regcache_read_pc (regcache);
|
||
int bp_len;
|
||
|
||
gdbarch_breakpoint_from_pc (gdbarch, ¤t_pc, &bp_len);
|
||
current_pc += bp_len;
|
||
regcache_write_pc (regcache, current_pc);
|
||
}
|
||
|
||
CORE_ADDR
|
||
default_infcall_mmap (CORE_ADDR size, unsigned prot)
|
||
{
|
||
error (_("This target does not support inferior memory allocation by mmap."));
|
||
}
|
||
|
||
void
|
||
default_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
|
||
{
|
||
/* Memory reserved by inferior mmap is kept leaked. */
|
||
}
|
||
|
||
/* -mcmodel=large is used so that no GOT (Global Offset Table) is needed to be
|
||
created in inferior memory by GDB (normally it is set by ld.so). */
|
||
|
||
std::string
|
||
default_gcc_target_options (struct gdbarch *gdbarch)
|
||
{
|
||
return string_printf ("-m%d%s", gdbarch_ptr_bit (gdbarch),
|
||
(gdbarch_ptr_bit (gdbarch) == 64
|
||
? " -mcmodel=large" : ""));
|
||
}
|
||
|
||
/* gdbarch gnu_triplet_regexp method. */
|
||
|
||
const char *
|
||
default_gnu_triplet_regexp (struct gdbarch *gdbarch)
|
||
{
|
||
return gdbarch_bfd_arch_info (gdbarch)->arch_name;
|
||
}
|
||
|
||
/* Default method for gdbarch_addressable_memory_unit_size. The default is
|
||
based on the bits_per_byte defined in the bfd library for the current
|
||
architecture, this is usually 8-bits, and so this function will usually
|
||
return 1 indicating 1 byte is 1 octet. */
|
||
|
||
int
|
||
default_addressable_memory_unit_size (struct gdbarch *gdbarch)
|
||
{
|
||
return gdbarch_bfd_arch_info (gdbarch)->bits_per_byte / 8;
|
||
}
|
||
|
||
void
|
||
default_guess_tracepoint_registers (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
CORE_ADDR addr)
|
||
{
|
||
int pc_regno = gdbarch_pc_regnum (gdbarch);
|
||
gdb_byte *regs;
|
||
|
||
/* This guessing code below only works if the PC register isn't
|
||
a pseudo-register. The value of a pseudo-register isn't stored
|
||
in the (non-readonly) regcache -- instead it's recomputed
|
||
(probably from some other cached raw register) whenever the
|
||
register is read. In this case, a custom method implementation
|
||
should be used by the architecture. */
|
||
if (pc_regno < 0 || pc_regno >= gdbarch_num_regs (gdbarch))
|
||
return;
|
||
|
||
regs = (gdb_byte *) alloca (register_size (gdbarch, pc_regno));
|
||
store_unsigned_integer (regs, register_size (gdbarch, pc_regno),
|
||
gdbarch_byte_order (gdbarch), addr);
|
||
regcache->raw_supply (pc_regno, regs);
|
||
}
|
||
|
||
int
|
||
default_print_insn (bfd_vma memaddr, disassemble_info *info)
|
||
{
|
||
disassembler_ftype disassemble_fn;
|
||
|
||
disassemble_fn = disassembler (info->arch, info->endian == BFD_ENDIAN_BIG,
|
||
info->mach, current_program_space->exec_bfd ());
|
||
|
||
gdb_assert (disassemble_fn != NULL);
|
||
return (*disassemble_fn) (memaddr, info);
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
CORE_ADDR
|
||
gdbarch_skip_prologue_noexcept (gdbarch *gdbarch, CORE_ADDR pc) noexcept
|
||
{
|
||
CORE_ADDR new_pc = pc;
|
||
|
||
try
|
||
{
|
||
new_pc = gdbarch_skip_prologue (gdbarch, pc);
|
||
}
|
||
catch (const gdb_exception &ex)
|
||
{}
|
||
|
||
return new_pc;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
bool
|
||
default_in_indirect_branch_thunk (gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
ULONGEST
|
||
default_type_align (struct gdbarch *gdbarch, struct type *type)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
std::string
|
||
default_get_pc_address_flags (frame_info *frame, CORE_ADDR pc)
|
||
{
|
||
return "";
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
void
|
||
default_read_core_file_mappings
|
||
(struct gdbarch *gdbarch,
|
||
struct bfd *cbfd,
|
||
read_core_file_mappings_pre_loop_ftype pre_loop_cb,
|
||
read_core_file_mappings_loop_ftype loop_cb)
|
||
{
|
||
}
|
||
|
||
/* Static function declarations */
|
||
|
||
static void alloc_gdbarch_data (struct gdbarch *);
|
||
|
||
/* Non-zero if we want to trace architecture code. */
|
||
|
||
#ifndef GDBARCH_DEBUG
|
||
#define GDBARCH_DEBUG 0
|
||
#endif
|
||
unsigned int gdbarch_debug = GDBARCH_DEBUG;
|
||
static void
|
||
show_gdbarch_debug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
gdb_printf (file, _("Architecture debugging is %s.\n"), value);
|
||
}
|
||
|
||
static const char *
|
||
pformat (const struct floatformat **format)
|
||
{
|
||
if (format == NULL)
|
||
return "(null)";
|
||
else
|
||
/* Just print out one of them - this is only for diagnostics. */
|
||
return format[0]->name;
|
||
}
|
||
|
||
static const char *
|
||
pstring (const char *string)
|
||
{
|
||
if (string == NULL)
|
||
return "(null)";
|
||
return string;
|
||
}
|
||
|
||
static const char *
|
||
pstring_ptr (char **string)
|
||
{
|
||
if (string == NULL || *string == NULL)
|
||
return "(null)";
|
||
return *string;
|
||
}
|
||
|
||
/* Helper function to print a list of strings, represented as "const
|
||
char *const *". The list is printed comma-separated. */
|
||
|
||
static const char *
|
||
pstring_list (const char *const *list)
|
||
{
|
||
static char ret[100];
|
||
const char *const *p;
|
||
size_t offset = 0;
|
||
|
||
if (list == NULL)
|
||
return "(null)";
|
||
|
||
ret[0] = '\0';
|
||
for (p = list; *p != NULL && offset < sizeof (ret); ++p)
|
||
{
|
||
size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
|
||
offset += 2 + s;
|
||
}
|
||
|
||
if (offset > 0)
|
||
{
|
||
gdb_assert (offset - 2 < sizeof (ret));
|
||
ret[offset - 2] = '\0';
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
#include "gdbarch.c"
|
||
|
||
obstack *gdbarch_obstack (gdbarch *arch)
|
||
{
|
||
return arch->obstack;
|
||
}
|
||
|
||
/* See gdbarch.h. */
|
||
|
||
char *
|
||
gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
|
||
{
|
||
return obstack_strdup (arch->obstack, string);
|
||
}
|
||
|
||
|
||
/* Free a gdbarch struct. This should never happen in normal
|
||
operation --- once you've created a gdbarch, you keep it around.
|
||
However, if an architecture's init function encounters an error
|
||
building the structure, it may need to clean up a partially
|
||
constructed gdbarch. */
|
||
|
||
void
|
||
gdbarch_free (struct gdbarch *arch)
|
||
{
|
||
struct obstack *obstack;
|
||
|
||
gdb_assert (arch != NULL);
|
||
gdb_assert (!arch->initialized_p);
|
||
obstack = arch->obstack;
|
||
obstack_free (obstack, 0); /* Includes the ARCH. */
|
||
xfree (obstack);
|
||
}
|
||
|
||
struct gdbarch_tdep *
|
||
gdbarch_tdep (struct gdbarch *gdbarch)
|
||
{
|
||
if (gdbarch_debug >= 2)
|
||
gdb_printf (gdb_stdlog, "gdbarch_tdep called\n");
|
||
return gdbarch->tdep;
|
||
}
|
||
|
||
/* Keep a registry of per-architecture data-pointers required by GDB
|
||
modules. */
|
||
|
||
struct gdbarch_data
|
||
{
|
||
unsigned index;
|
||
int init_p;
|
||
gdbarch_data_pre_init_ftype *pre_init;
|
||
gdbarch_data_post_init_ftype *post_init;
|
||
};
|
||
|
||
struct gdbarch_data_registration
|
||
{
|
||
struct gdbarch_data *data;
|
||
struct gdbarch_data_registration *next;
|
||
};
|
||
|
||
struct gdbarch_data_registry
|
||
{
|
||
unsigned nr;
|
||
struct gdbarch_data_registration *registrations;
|
||
};
|
||
|
||
static struct gdbarch_data_registry gdbarch_data_registry =
|
||
{
|
||
0, NULL,
|
||
};
|
||
|
||
static struct gdbarch_data *
|
||
gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
|
||
gdbarch_data_post_init_ftype *post_init)
|
||
{
|
||
struct gdbarch_data_registration **curr;
|
||
|
||
/* Append the new registration. */
|
||
for (curr = &gdbarch_data_registry.registrations;
|
||
(*curr) != NULL;
|
||
curr = &(*curr)->next);
|
||
(*curr) = XNEW (struct gdbarch_data_registration);
|
||
(*curr)->next = NULL;
|
||
(*curr)->data = XNEW (struct gdbarch_data);
|
||
(*curr)->data->index = gdbarch_data_registry.nr++;
|
||
(*curr)->data->pre_init = pre_init;
|
||
(*curr)->data->post_init = post_init;
|
||
(*curr)->data->init_p = 1;
|
||
return (*curr)->data;
|
||
}
|
||
|
||
struct gdbarch_data *
|
||
gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
|
||
{
|
||
return gdbarch_data_register (pre_init, NULL);
|
||
}
|
||
|
||
struct gdbarch_data *
|
||
gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
|
||
{
|
||
return gdbarch_data_register (NULL, post_init);
|
||
}
|
||
|
||
/* Create/delete the gdbarch data vector. */
|
||
|
||
static void
|
||
alloc_gdbarch_data (struct gdbarch *gdbarch)
|
||
{
|
||
gdb_assert (gdbarch->data == NULL);
|
||
gdbarch->nr_data = gdbarch_data_registry.nr;
|
||
gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
|
||
}
|
||
|
||
/* Return the current value of the specified per-architecture
|
||
data-pointer. */
|
||
|
||
void *
|
||
gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
|
||
{
|
||
gdb_assert (data->index < gdbarch->nr_data);
|
||
if (gdbarch->data[data->index] == NULL)
|
||
{
|
||
/* The data-pointer isn't initialized, call init() to get a
|
||
value. */
|
||
if (data->pre_init != NULL)
|
||
/* Mid architecture creation: pass just the obstack, and not
|
||
the entire architecture, as that way it isn't possible for
|
||
pre-init code to refer to undefined architecture
|
||
fields. */
|
||
gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
|
||
else if (gdbarch->initialized_p
|
||
&& data->post_init != NULL)
|
||
/* Post architecture creation: pass the entire architecture
|
||
(as all fields are valid), but be careful to also detect
|
||
recursive references. */
|
||
{
|
||
gdb_assert (data->init_p);
|
||
data->init_p = 0;
|
||
gdbarch->data[data->index] = data->post_init (gdbarch);
|
||
data->init_p = 1;
|
||
}
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("gdbarch post-init data field can only be used "
|
||
"after gdbarch is fully initialised"));
|
||
gdb_assert (gdbarch->data[data->index] != NULL);
|
||
}
|
||
return gdbarch->data[data->index];
|
||
}
|
||
|
||
|
||
/* Keep a registry of the architectures known by GDB. */
|
||
|
||
struct gdbarch_registration
|
||
{
|
||
enum bfd_architecture bfd_architecture;
|
||
gdbarch_init_ftype *init;
|
||
gdbarch_dump_tdep_ftype *dump_tdep;
|
||
struct gdbarch_list *arches;
|
||
struct gdbarch_registration *next;
|
||
};
|
||
|
||
static struct gdbarch_registration *gdbarch_registry = NULL;
|
||
|
||
std::vector<const char *>
|
||
gdbarch_printable_names ()
|
||
{
|
||
/* Accumulate a list of names based on the registed list of
|
||
architectures. */
|
||
std::vector<const char *> arches;
|
||
|
||
for (gdbarch_registration *rego = gdbarch_registry;
|
||
rego != nullptr;
|
||
rego = rego->next)
|
||
{
|
||
const struct bfd_arch_info *ap
|
||
= bfd_lookup_arch (rego->bfd_architecture, 0);
|
||
if (ap == nullptr)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("gdbarch_architecture_names: multi-arch unknown"));
|
||
do
|
||
{
|
||
arches.push_back (ap->printable_name);
|
||
ap = ap->next;
|
||
}
|
||
while (ap != NULL);
|
||
}
|
||
|
||
return arches;
|
||
}
|
||
|
||
|
||
void
|
||
gdbarch_register (enum bfd_architecture bfd_architecture,
|
||
gdbarch_init_ftype *init,
|
||
gdbarch_dump_tdep_ftype *dump_tdep)
|
||
{
|
||
struct gdbarch_registration **curr;
|
||
const struct bfd_arch_info *bfd_arch_info;
|
||
|
||
/* Check that BFD recognizes this architecture */
|
||
bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
|
||
if (bfd_arch_info == NULL)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
_("gdbarch: Attempt to register "
|
||
"unknown architecture (%d)"),
|
||
bfd_architecture);
|
||
}
|
||
/* Check that we haven't seen this architecture before. */
|
||
for (curr = &gdbarch_registry;
|
||
(*curr) != NULL;
|
||
curr = &(*curr)->next)
|
||
{
|
||
if (bfd_architecture == (*curr)->bfd_architecture)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("gdbarch: Duplicate registration "
|
||
"of architecture (%s)"),
|
||
bfd_arch_info->printable_name);
|
||
}
|
||
/* log it */
|
||
if (gdbarch_debug)
|
||
gdb_printf (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
|
||
bfd_arch_info->printable_name,
|
||
host_address_to_string (init));
|
||
/* Append it */
|
||
(*curr) = XNEW (struct gdbarch_registration);
|
||
(*curr)->bfd_architecture = bfd_architecture;
|
||
(*curr)->init = init;
|
||
(*curr)->dump_tdep = dump_tdep;
|
||
(*curr)->arches = NULL;
|
||
(*curr)->next = NULL;
|
||
}
|
||
|
||
void
|
||
register_gdbarch_init (enum bfd_architecture bfd_architecture,
|
||
gdbarch_init_ftype *init)
|
||
{
|
||
gdbarch_register (bfd_architecture, init, NULL);
|
||
}
|
||
|
||
|
||
/* Look for an architecture using gdbarch_info. */
|
||
|
||
struct gdbarch_list *
|
||
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
|
||
const struct gdbarch_info *info)
|
||
{
|
||
for (; arches != NULL; arches = arches->next)
|
||
{
|
||
if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
|
||
continue;
|
||
if (info->byte_order != arches->gdbarch->byte_order)
|
||
continue;
|
||
if (info->osabi != arches->gdbarch->osabi)
|
||
continue;
|
||
if (info->target_desc != arches->gdbarch->target_desc)
|
||
continue;
|
||
return arches;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Find an architecture that matches the specified INFO. Create a new
|
||
architecture if needed. Return that new architecture. */
|
||
|
||
struct gdbarch *
|
||
gdbarch_find_by_info (struct gdbarch_info info)
|
||
{
|
||
struct gdbarch *new_gdbarch;
|
||
struct gdbarch_registration *rego;
|
||
|
||
/* Fill in missing parts of the INFO struct using a number of
|
||
sources: "set ..."; INFOabfd supplied; and the global
|
||
defaults. */
|
||
gdbarch_info_fill (&info);
|
||
|
||
/* Must have found some sort of architecture. */
|
||
gdb_assert (info.bfd_arch_info != NULL);
|
||
|
||
if (gdbarch_debug)
|
||
{
|
||
gdb_printf (gdb_stdlog,
|
||
"gdbarch_find_by_info: info.bfd_arch_info %s\n",
|
||
(info.bfd_arch_info != NULL
|
||
? info.bfd_arch_info->printable_name
|
||
: "(null)"));
|
||
gdb_printf (gdb_stdlog,
|
||
"gdbarch_find_by_info: info.byte_order %d (%s)\n",
|
||
info.byte_order,
|
||
(info.byte_order == BFD_ENDIAN_BIG ? "big"
|
||
: info.byte_order == BFD_ENDIAN_LITTLE ? "little"
|
||
: "default"));
|
||
gdb_printf (gdb_stdlog,
|
||
"gdbarch_find_by_info: info.osabi %d (%s)\n",
|
||
info.osabi, gdbarch_osabi_name (info.osabi));
|
||
gdb_printf (gdb_stdlog,
|
||
"gdbarch_find_by_info: info.abfd %s\n",
|
||
host_address_to_string (info.abfd));
|
||
}
|
||
|
||
/* Find the tdep code that knows about this architecture. */
|
||
for (rego = gdbarch_registry;
|
||
rego != NULL;
|
||
rego = rego->next)
|
||
if (rego->bfd_architecture == info.bfd_arch_info->arch)
|
||
break;
|
||
if (rego == NULL)
|
||
{
|
||
if (gdbarch_debug)
|
||
gdb_printf (gdb_stdlog, "gdbarch_find_by_info: "
|
||
"No matching architecture\n");
|
||
return 0;
|
||
}
|
||
|
||
/* Ask the tdep code for an architecture that matches "info". */
|
||
new_gdbarch = rego->init (info, rego->arches);
|
||
|
||
/* Did the tdep code like it? No. Reject the change and revert to
|
||
the old architecture. */
|
||
if (new_gdbarch == NULL)
|
||
{
|
||
if (gdbarch_debug)
|
||
gdb_printf (gdb_stdlog, "gdbarch_find_by_info: "
|
||
"Target rejected architecture\n");
|
||
return NULL;
|
||
}
|
||
|
||
/* Is this a pre-existing architecture (as determined by already
|
||
being initialized)? Move it to the front of the architecture
|
||
list (keeping the list sorted Most Recently Used). */
|
||
if (new_gdbarch->initialized_p)
|
||
{
|
||
struct gdbarch_list **list;
|
||
struct gdbarch_list *self;
|
||
if (gdbarch_debug)
|
||
gdb_printf (gdb_stdlog, "gdbarch_find_by_info: "
|
||
"Previous architecture %s (%s) selected\n",
|
||
host_address_to_string (new_gdbarch),
|
||
new_gdbarch->bfd_arch_info->printable_name);
|
||
/* Find the existing arch in the list. */
|
||
for (list = ®o->arches;
|
||
(*list) != NULL && (*list)->gdbarch != new_gdbarch;
|
||
list = &(*list)->next);
|
||
/* It had better be in the list of architectures. */
|
||
gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
|
||
/* Unlink SELF. */
|
||
self = (*list);
|
||
(*list) = self->next;
|
||
/* Insert SELF at the front. */
|
||
self->next = rego->arches;
|
||
rego->arches = self;
|
||
/* Return it. */
|
||
return new_gdbarch;
|
||
}
|
||
|
||
/* It's a new architecture. */
|
||
if (gdbarch_debug)
|
||
gdb_printf (gdb_stdlog, "gdbarch_find_by_info: "
|
||
"New architecture %s (%s) selected\n",
|
||
host_address_to_string (new_gdbarch),
|
||
new_gdbarch->bfd_arch_info->printable_name);
|
||
|
||
/* Insert the new architecture into the front of the architecture
|
||
list (keep the list sorted Most Recently Used). */
|
||
{
|
||
struct gdbarch_list *self = XNEW (struct gdbarch_list);
|
||
self->next = rego->arches;
|
||
self->gdbarch = new_gdbarch;
|
||
rego->arches = self;
|
||
}
|
||
|
||
/* Check that the newly installed architecture is valid. Plug in
|
||
any post init values. */
|
||
new_gdbarch->dump_tdep = rego->dump_tdep;
|
||
verify_gdbarch (new_gdbarch);
|
||
new_gdbarch->initialized_p = 1;
|
||
|
||
if (gdbarch_debug)
|
||
gdbarch_dump (new_gdbarch, gdb_stdlog);
|
||
|
||
return new_gdbarch;
|
||
}
|
||
|
||
/* Make the specified architecture current. */
|
||
|
||
void
|
||
set_target_gdbarch (struct gdbarch *new_gdbarch)
|
||
{
|
||
gdb_assert (new_gdbarch != NULL);
|
||
gdb_assert (new_gdbarch->initialized_p);
|
||
current_inferior ()->gdbarch = new_gdbarch;
|
||
gdb::observers::architecture_changed.notify (new_gdbarch);
|
||
registers_changed ();
|
||
}
|
||
|
||
/* Return the current inferior's arch. */
|
||
|
||
struct gdbarch *
|
||
target_gdbarch (void)
|
||
{
|
||
return current_inferior ()->gdbarch;
|
||
}
|
||
|
||
void _initialize_gdbarch_utils ();
|
||
void
|
||
_initialize_gdbarch_utils ()
|
||
{
|
||
add_setshow_enum_cmd ("endian", class_support,
|
||
endian_enum, &set_endian_string,
|
||
_("Set endianness of target."),
|
||
_("Show endianness of target."),
|
||
NULL, set_endian, show_endian,
|
||
&setlist, &showlist);
|
||
add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\
|
||
Set architecture debugging."), _("\
|
||
Show architecture debugging."), _("\
|
||
When non-zero, architecture debugging is enabled."),
|
||
NULL,
|
||
show_gdbarch_debug,
|
||
&setdebuglist, &showdebuglist);
|
||
}
|