binutils-gdb/gdb/hppa-tdep.c
Jim Kingdon 976bb0be03 * Makefile.in (init.c): Generate using the source, not munch. This
cleans up all kinds of hassles (which nm to use in munch, etc).  The
	new formatting conventions (mostly already followed) are that
	the name of the _initialize_* routines must start in column zero,
	and must not be inside #if.
	* munch: Removed.
	* Makefile.in: Remove references to munch.
	* serial.c, remote.c, infptrace.c, maint.c, convex-tdep.c,
	alpha-tdep.c, hp300ux-nat.c, hppab-nat.c, osfsolib.c, remote-es.c,
	procfs.c, remote-udi.c, ser-go32.c, ultra3-xdep.c, sh-tdep.c,
	i960-tdep.c, hppa-tdep.c, h8500-tdep.c, dpx2-nat.c, delta68-nat.c,
	z8k-tdep.c: Make sure the above conventions are followed.  Make
	sure they are all declared as returning void.  Clean up
	miscellaneous comments and such.
1993-10-22 05:55:58 +00:00

1232 lines
31 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Machine-dependent code which would otherwise be in inflow.c and core.c,
for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
Contributed by the Center for Software Science at the
University of Utah (pa-gdb-bugs@cs.utah.edu).
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "value.h"
/* For argument passing to the inferior */
#include "symtab.h"
#ifdef USG
#include <sys/types.h>
#endif
#include <sys/param.h>
#include <sys/dir.h>
#include <signal.h>
#include <sys/ioctl.h>
#ifdef COFF_ENCAPSULATE
#include "a.out.encap.h"
#else
#include <a.out.h>
#endif
#ifndef N_SET_MAGIC
#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
#endif
/*#include <sys/user.h> After a.out.h */
#include <sys/file.h>
#include <sys/stat.h>
#include <machine/psl.h>
#include "wait.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "symfile.h"
#include "objfiles.h"
static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
static int hppa_alignof PARAMS ((struct type *arg));
static FRAME_ADDR dig_fp_from_stack PARAMS ((FRAME frame,
struct unwind_table_entry *u));
CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
/* Routines to extract various sized constants out of hppa
instructions. */
/* This assumes that no garbage lies outside of the lower bits of
value. */
int
sign_extend (val, bits)
unsigned val, bits;
{
return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
}
/* For many immediate values the sign bit is the low bit! */
int
low_sign_extend (val, bits)
unsigned val, bits;
{
return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
}
/* extract the immediate field from a ld{bhw}s instruction */
unsigned
get_field (val, from, to)
unsigned val, from, to;
{
val = val >> 31 - to;
return val & ((1 << 32 - from) - 1);
}
unsigned
set_field (val, from, to, new_val)
unsigned *val, from, to;
{
unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
return *val = *val & mask | (new_val << (31 - from));
}
/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
extract_3 (word)
unsigned word;
{
return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
}
extract_5_load (word)
unsigned word;
{
return low_sign_extend (word >> 16 & MASK_5, 5);
}
/* extract the immediate field from a st{bhw}s instruction */
int
extract_5_store (word)
unsigned word;
{
return low_sign_extend (word & MASK_5, 5);
}
/* extract the immediate field from a break instruction */
unsigned
extract_5r_store (word)
unsigned word;
{
return (word & MASK_5);
}
/* extract the immediate field from a {sr}sm instruction */
unsigned
extract_5R_store (word)
unsigned word;
{
return (word >> 16 & MASK_5);
}
/* extract an 11 bit immediate field */
int
extract_11 (word)
unsigned word;
{
return low_sign_extend (word & MASK_11, 11);
}
/* extract a 14 bit immediate field */
int
extract_14 (word)
unsigned word;
{
return low_sign_extend (word & MASK_14, 14);
}
/* deposit a 14 bit constant in a word */
unsigned
deposit_14 (opnd, word)
int opnd;
unsigned word;
{
unsigned sign = (opnd < 0 ? 1 : 0);
return word | ((unsigned)opnd << 1 & MASK_14) | sign;
}
/* extract a 21 bit constant */
int
extract_21 (word)
unsigned word;
{
int val;
word &= MASK_21;
word <<= 11;
val = GET_FIELD (word, 20, 20);
val <<= 11;
val |= GET_FIELD (word, 9, 19);
val <<= 2;
val |= GET_FIELD (word, 5, 6);
val <<= 5;
val |= GET_FIELD (word, 0, 4);
val <<= 2;
val |= GET_FIELD (word, 7, 8);
return sign_extend (val, 21) << 11;
}
/* deposit a 21 bit constant in a word. Although 21 bit constants are
usually the top 21 bits of a 32 bit constant, we assume that only
the low 21 bits of opnd are relevant */
unsigned
deposit_21 (opnd, word)
unsigned opnd, word;
{
unsigned val = 0;
val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
val <<= 2;
val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
val <<= 2;
val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
val <<= 11;
val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
val <<= 1;
val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
return word | val;
}
/* extract a 12 bit constant from branch instructions */
int
extract_12 (word)
unsigned word;
{
return sign_extend (GET_FIELD (word, 19, 28) |
GET_FIELD (word, 29, 29) << 10 |
(word & 0x1) << 11, 12) << 2;
}
/* extract a 17 bit constant from branch instructions, returning the
19 bit signed value. */
int
extract_17 (word)
unsigned word;
{
return sign_extend (GET_FIELD (word, 19, 28) |
GET_FIELD (word, 29, 29) << 10 |
GET_FIELD (word, 11, 15) << 11 |
(word & 0x1) << 16, 17) << 2;
}
/* Lookup the unwind (stack backtrace) info for the given PC. We search all
of the objfiles seeking the unwind table entry for this PC. Each objfile
contains a sorted list of struct unwind_table_entry. Since we do a binary
search of the unwind tables, we depend upon them to be sorted. */
static struct unwind_table_entry *
find_unwind_entry(pc)
CORE_ADDR pc;
{
int first, middle, last;
struct objfile *objfile;
ALL_OBJFILES (objfile)
{
struct obj_unwind_info *ui;
ui = OBJ_UNWIND_INFO (objfile);
if (!ui)
continue;
/* First, check the cache */
if (ui->cache
&& pc >= ui->cache->region_start
&& pc <= ui->cache->region_end)
return ui->cache;
/* Not in the cache, do a binary search */
first = 0;
last = ui->last;
while (first <= last)
{
middle = (first + last) / 2;
if (pc >= ui->table[middle].region_start
&& pc <= ui->table[middle].region_end)
{
ui->cache = &ui->table[middle];
return &ui->table[middle];
}
if (pc < ui->table[middle].region_start)
last = middle - 1;
else
first = middle + 1;
}
} /* ALL_OBJFILES() */
return NULL;
}
/* Called when no unwind descriptor was found for PC. Returns 1 if it
appears that PC is in a linker stub. */
static int pc_in_linker_stub PARAMS ((CORE_ADDR));
static int
pc_in_linker_stub (pc)
CORE_ADDR pc;
{
int found_magic_instruction = 0;
int i;
char buf[4];
/* If unable to read memory, assume pc is not in a linker stub. */
if (target_read_memory (pc, buf, 4) != 0)
return 0;
/* We are looking for something like
; $$dyncall jams RP into this special spot in the frame (RP')
; before calling the "call stub"
ldw -18(sp),rp
ldsid (rp),r1 ; Get space associated with RP into r1
mtsp r1,sp ; Move it into space register 0
be,n 0(sr0),rp) ; back to your regularly scheduled program
*/
/* Maximum known linker stub size is 4 instructions. Search forward
from the given PC, then backward. */
for (i = 0; i < 4; i++)
{
/* If we hit something with an unwind, stop searching this direction. */
if (find_unwind_entry (pc + i * 4) != 0)
break;
/* Check for ldsid (rp),r1 which is the magic instruction for a
return from a cross-space function call. */
if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
{
found_magic_instruction = 1;
break;
}
/* Add code to handle long call/branch and argument relocation stubs
here. */
}
if (found_magic_instruction != 0)
return 1;
/* Now look backward. */
for (i = 0; i < 4; i++)
{
/* If we hit something with an unwind, stop searching this direction. */
if (find_unwind_entry (pc - i * 4) != 0)
break;
/* Check for ldsid (rp),r1 which is the magic instruction for a
return from a cross-space function call. */
if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
{
found_magic_instruction = 1;
break;
}
/* Add code to handle long call/branch and argument relocation stubs
here. */
}
return found_magic_instruction;
}
static int
find_return_regnum(pc)
CORE_ADDR pc;
{
struct unwind_table_entry *u;
u = find_unwind_entry (pc);
if (!u)
return RP_REGNUM;
if (u->Millicode)
return 31;
return RP_REGNUM;
}
/* Return size of frame, or -1 if we should use a frame pointer. */
int
find_proc_framesize(pc)
CORE_ADDR pc;
{
struct unwind_table_entry *u;
u = find_unwind_entry (pc);
if (!u)
{
if (pc_in_linker_stub (pc))
/* Linker stubs have a zero size frame. */
return 0;
else
return -1;
}
if (u->Save_SP)
/* If this bit is set, it means there is a frame pointer and we should
use it. */
return -1;
return u->Total_frame_size << 3;
}
/* Return offset from sp at which rp is saved, or 0 if not saved. */
static int rp_saved PARAMS ((CORE_ADDR));
static int
rp_saved (pc)
CORE_ADDR pc;
{
struct unwind_table_entry *u;
u = find_unwind_entry (pc);
if (!u)
{
if (pc_in_linker_stub (pc))
/* This is the so-called RP'. */
return -24;
else
return 0;
}
if (u->Save_RP)
return -20;
else
return 0;
}
int
frameless_function_invocation (frame)
FRAME frame;
{
struct unwind_table_entry *u;
u = find_unwind_entry (frame->pc);
if (u == 0)
return frameless_look_for_prologue (frame);
return (u->Total_frame_size == 0);
}
CORE_ADDR
saved_pc_after_call (frame)
FRAME frame;
{
int ret_regnum;
ret_regnum = find_return_regnum (get_frame_pc (frame));
return read_register (ret_regnum) & ~0x3;
}
CORE_ADDR
frame_saved_pc (frame)
FRAME frame;
{
CORE_ADDR pc = get_frame_pc (frame);
if (frameless_function_invocation (frame))
{
int ret_regnum;
ret_regnum = find_return_regnum (pc);
return read_register (ret_regnum) & ~0x3;
}
else
{
int rp_offset = rp_saved (pc);
if (rp_offset == 0)
return read_register (RP_REGNUM) & ~0x3;
else
return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
}
}
/* We need to correct the PC and the FP for the outermost frame when we are
in a system call. */
void
init_extra_frame_info (fromleaf, frame)
int fromleaf;
struct frame_info *frame;
{
int flags;
int framesize;
if (frame->next) /* Only do this for outermost frame */
return;
flags = read_register (FLAGS_REGNUM);
if (flags & 2) /* In system call? */
frame->pc = read_register (31) & ~0x3;
/* The outermost frame is always derived from PC-framesize */
framesize = find_proc_framesize(frame->pc);
if (framesize == -1)
frame->frame = read_register (FP_REGNUM);
else
frame->frame = read_register (SP_REGNUM) - framesize;
if (!frameless_function_invocation (frame)) /* Frameless? */
return; /* No, quit now */
/* For frameless functions, we need to look at the caller's frame */
framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
if (framesize != -1)
frame->frame -= framesize;
}
/* Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
This may involve searching through prologues for several functions
at boundaries where GCC calls HP C code, or where code which has
a frame pointer calls code without a frame pointer. */
FRAME_ADDR
frame_chain (frame)
struct frame_info *frame;
{
int my_framesize, caller_framesize;
struct unwind_table_entry *u;
/* Get frame sizes for the current frame and the frame of the
caller. */
my_framesize = find_proc_framesize (frame->pc);
caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
/* If caller does not have a frame pointer, then its frame
can be found at current_frame - caller_framesize. */
if (caller_framesize != -1)
return frame->frame - caller_framesize;
/* Both caller and callee have frame pointers and are GCC compiled
(SAVE_SP bit in unwind descriptor is on for both functions.
The previous frame pointer is found at the top of the current frame. */
if (caller_framesize == -1 && my_framesize == -1)
return read_memory_integer (frame->frame, 4);
/* Caller has a frame pointer, but callee does not. This is a little
more difficult as GCC and HP C lay out locals and callee register save
areas very differently.
The previous frame pointer could be in a register, or in one of
several areas on the stack.
Walk from the current frame to the innermost frame examining
unwind descriptors to determine if %r4 ever gets saved into the
stack. If so return whatever value got saved into the stack.
If it was never saved in the stack, then the value in %r4 is still
valid, so use it.
We use information from unwind descriptors to determine if %r4
is saved into the stack (Entry_GR field has this information). */
while (frame)
{
u = find_unwind_entry (frame->pc);
if (!u)
{
/* We could find this information by examining prologues. I don't
think anyone has actually written any tools (not even "strip")
which leave them out of an executable, so maybe this is a moot
point. */
warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
return 0;
}
/* Entry_GR specifies the number of callee-saved general registers
saved in the stack. It starts at %r3, so %r4 would be 2. */
if (u->Entry_GR >= 2 || u->Save_SP)
break;
else
frame = frame->next;
}
if (frame)
{
/* We may have walked down the chain into a function with a frame
pointer. */
if (u->Save_SP)
return read_memory_integer (frame->frame, 4);
/* %r4 was saved somewhere in the stack. Dig it out. */
else
return dig_fp_from_stack (frame, u);
}
else
{
/* The value in %r4 was never saved into the stack (thus %r4 still
holds the value of the previous frame pointer). */
return read_register (4);
}
}
/* Given a frame and an unwind descriptor return the value for %fr (aka fp)
which was saved into the stack. FIXME: Why can't we just use the standard
saved_regs stuff? */
static FRAME_ADDR
dig_fp_from_stack (frame, u)
FRAME frame;
struct unwind_table_entry *u;
{
CORE_ADDR pc = u->region_start;
/* Search the function for the save of %r4. */
while (pc != u->region_end)
{
char buf[4];
unsigned long inst;
int status;
/* We need only look for the standard stw %r4,X(%sp) instruction,
the other variants (eg stwm) are only used on the first register
save (eg %r3). */
status = target_read_memory (pc, buf, 4);
inst = extract_unsigned_integer (buf, 4);
if (status != 0)
memory_error (status, pc);
/* Check for stw %r4,X(%sp). */
if ((inst & 0xffffc000) == 0x6bc40000)
{
/* Found the instruction which saves %r4. The offset (relative
to this frame) is framesize + immed14 (derived from the
store instruction). */
int offset = (u->Total_frame_size << 3) + extract_14 (inst);
return read_memory_integer (frame->frame + offset, 4);
}
/* Keep looking. */
pc += 4;
}
warning ("Unable to find %%r4 in stack.\n");
return 0;
}
/* To see if a frame chain is valid, see if the caller looks like it
was compiled with gcc. */
int
frame_chain_valid (chain, thisframe)
FRAME_ADDR chain;
FRAME thisframe;
{
struct minimal_symbol *msym_us;
struct minimal_symbol *msym_start;
struct unwind_table_entry *u;
if (!chain)
return 0;
u = find_unwind_entry (thisframe->pc);
/* We can't just check that the same of msym_us is "_start", because
someone idiotically decided that they were going to make a Ltext_end
symbol with the same address. This Ltext_end symbol is totally
indistinguishable (as nearly as I can tell) from the symbol for a function
which is (legitimately, since it is in the user's namespace)
named Ltext_end, so we can't just ignore it. */
msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
msym_start = lookup_minimal_symbol ("_start", NULL);
if (msym_us
&& msym_start
&& SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
return 0;
if (u == NULL)
return 1;
if (u->Save_SP || u->Total_frame_size)
return 1;
if (pc_in_linker_stub (thisframe->pc))
return 1;
return 0;
}
/*
* These functions deal with saving and restoring register state
* around a function call in the inferior. They keep the stack
* double-word aligned; eventually, on an hp700, the stack will have
* to be aligned to a 64-byte boundary.
*/
int
push_dummy_frame ()
{
register CORE_ADDR sp;
register int regnum;
int int_buffer;
double freg_buffer;
/* Space for "arguments"; the RP goes in here. */
sp = read_register (SP_REGNUM) + 48;
int_buffer = read_register (RP_REGNUM) | 0x3;
write_memory (sp - 20, (char *)&int_buffer, 4);
int_buffer = read_register (FP_REGNUM);
write_memory (sp, (char *)&int_buffer, 4);
write_register (FP_REGNUM, sp);
sp += 8;
for (regnum = 1; regnum < 32; regnum++)
if (regnum != RP_REGNUM && regnum != FP_REGNUM)
sp = push_word (sp, read_register (regnum));
sp += 4;
for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
{
read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
sp = push_bytes (sp, (char *)&freg_buffer, 8);
}
sp = push_word (sp, read_register (IPSW_REGNUM));
sp = push_word (sp, read_register (SAR_REGNUM));
sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
write_register (SP_REGNUM, sp);
}
find_dummy_frame_regs (frame, frame_saved_regs)
struct frame_info *frame;
struct frame_saved_regs *frame_saved_regs;
{
CORE_ADDR fp = frame->frame;
int i;
frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
frame_saved_regs->regs[FP_REGNUM] = fp;
frame_saved_regs->regs[1] = fp + 8;
for (fp += 12, i = 3; i < 32; i++)
{
if (i != FP_REGNUM)
{
frame_saved_regs->regs[i] = fp;
fp += 4;
}
}
fp += 4;
for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
frame_saved_regs->regs[i] = fp;
frame_saved_regs->regs[IPSW_REGNUM] = fp;
frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
}
int
hppa_pop_frame ()
{
register FRAME frame = get_current_frame ();
register CORE_ADDR fp;
register int regnum;
struct frame_saved_regs fsr;
struct frame_info *fi;
double freg_buffer;
fi = get_frame_info (frame);
fp = fi->frame;
get_frame_saved_regs (fi, &fsr);
if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
restore_pc_queue (&fsr);
for (regnum = 31; regnum > 0; regnum--)
if (fsr.regs[regnum])
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
if (fsr.regs[regnum])
{
read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
}
if (fsr.regs[IPSW_REGNUM])
write_register (IPSW_REGNUM,
read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
if (fsr.regs[SAR_REGNUM])
write_register (SAR_REGNUM,
read_memory_integer (fsr.regs[SAR_REGNUM], 4));
/* If the PC was explicitly saved, then just restore it. */
if (fsr.regs[PCOQ_TAIL_REGNUM])
write_register (PCOQ_TAIL_REGNUM,
read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
/* Else use the value in %rp to set the new PC. */
else
target_write_pc (read_register (RP_REGNUM));
write_register (FP_REGNUM, read_memory_integer (fp, 4));
if (fsr.regs[IPSW_REGNUM]) /* call dummy */
write_register (SP_REGNUM, fp - 48);
else
write_register (SP_REGNUM, fp);
flush_cached_frames ();
set_current_frame (create_new_frame (read_register (FP_REGNUM),
read_pc ()));
}
/*
* After returning to a dummy on the stack, restore the instruction
* queue space registers. */
static int
restore_pc_queue (fsr)
struct frame_saved_regs *fsr;
{
CORE_ADDR pc = read_pc ();
CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
int pid;
WAITTYPE w;
int insn_count;
/* Advance past break instruction in the call dummy. */
write_register (PCOQ_HEAD_REGNUM, pc + 4);
write_register (PCOQ_TAIL_REGNUM, pc + 8);
/*
* HPUX doesn't let us set the space registers or the space
* registers of the PC queue through ptrace. Boo, hiss.
* Conveniently, the call dummy has this sequence of instructions
* after the break:
* mtsp r21, sr0
* ble,n 0(sr0, r22)
*
* So, load up the registers and single step until we are in the
* right place.
*/
write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
write_register (22, new_pc);
for (insn_count = 0; insn_count < 3; insn_count++)
{
/* FIXME: What if the inferior gets a signal right now? Want to
merge this into wait_for_inferior (as a special kind of
watchpoint? By setting a breakpoint at the end? Is there
any other choice? Is there *any* way to do this stuff with
ptrace() or some equivalent?). */
resume (1, 0);
target_wait(inferior_pid, &w);
if (!WIFSTOPPED (w))
{
stop_signal = WTERMSIG (w);
terminal_ours_for_output ();
printf ("\nProgram terminated with signal %d, %s\n",
stop_signal, safe_strsignal (stop_signal));
fflush (stdout);
return 0;
}
}
target_terminal_ours ();
fetch_inferior_registers (-1);
return 1;
}
CORE_ADDR
hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
int nargs;
value *args;
CORE_ADDR sp;
int struct_return;
CORE_ADDR struct_addr;
{
/* array of arguments' offsets */
int *offset = (int *)alloca(nargs * sizeof (int));
int cum = 0;
int i, alignment;
for (i = 0; i < nargs; i++)
{
/* Coerce chars to int & float to double if necessary */
args[i] = value_arg_coerce (args[i]);
cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
/* value must go at proper alignment. Assume alignment is a
power of two.*/
alignment = hppa_alignof (VALUE_TYPE (args[i]));
if (cum % alignment)
cum = (cum + alignment) & -alignment;
offset[i] = -cum;
}
sp += max ((cum + 7) & -8, 16);
for (i = 0; i < nargs; i++)
write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
TYPE_LENGTH (VALUE_TYPE (args[i])));
if (struct_return)
write_register (28, struct_addr);
return sp + 32;
}
/*
* Insert the specified number of args and function address
* into a call sequence of the above form stored at DUMMYNAME.
*
* On the hppa we need to call the stack dummy through $$dyncall.
* Therefore our version of FIX_CALL_DUMMY takes an extra argument,
* real_pc, which is the location where gdb should start up the
* inferior to do the function call.
*/
CORE_ADDR
hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
REGISTER_TYPE *dummy;
CORE_ADDR pc;
CORE_ADDR fun;
int nargs;
value *args;
struct type *type;
int gcc_p;
{
CORE_ADDR dyncall_addr, sr4export_addr;
struct minimal_symbol *msymbol;
int flags = read_register (FLAGS_REGNUM);
msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
if (msymbol == NULL)
error ("Can't find an address for $$dyncall trampoline");
dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
if (msymbol == NULL)
error ("Can't find an address for _sr4export trampoline");
sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
dummy[9] = deposit_21 (fun >> 11, dummy[9]);
dummy[10] = deposit_14 (fun & MASK_11, dummy[10]);
dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]);
dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]);
write_register (22, pc);
/* If we are in a syscall, then we should call the stack dummy
directly. $$dyncall is not needed as the kernel sets up the
space id registers properly based on the value in %r31. In
fact calling $$dyncall will not work because the value in %r22
will be clobbered on the syscall exit path. */
if (flags & 2)
return pc;
else
return dyncall_addr;
}
/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
bits. */
CORE_ADDR
target_read_pc ()
{
int flags = read_register (FLAGS_REGNUM);
if (flags & 2)
return read_register (31) & ~0x3;
return read_register (PC_REGNUM) & ~0x3;
}
/* Write out the PC. If currently in a syscall, then also write the new
PC value into %r31. */
void
target_write_pc (v)
CORE_ADDR v;
{
int flags = read_register (FLAGS_REGNUM);
/* If in a syscall, then set %r31. Also make sure to get the
privilege bits set correctly. */
if (flags & 2)
write_register (31, (long) (v | 0x3));
write_register (PC_REGNUM, (long) v);
write_register (NPC_REGNUM, (long) v + 4);
}
/* return the alignment of a type in bytes. Structures have the maximum
alignment required by their fields. */
static int
hppa_alignof (arg)
struct type *arg;
{
int max_align, align, i;
switch (TYPE_CODE (arg))
{
case TYPE_CODE_PTR:
case TYPE_CODE_INT:
case TYPE_CODE_FLT:
return TYPE_LENGTH (arg);
case TYPE_CODE_ARRAY:
return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
max_align = 2;
for (i = 0; i < TYPE_NFIELDS (arg); i++)
{
/* Bit fields have no real alignment. */
if (!TYPE_FIELD_BITPOS (arg, i))
{
align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
max_align = max (max_align, align);
}
}
return max_align;
default:
return 4;
}
}
/* Print the register regnum, or all registers if regnum is -1 */
pa_do_registers_info (regnum, fpregs)
int regnum;
int fpregs;
{
char raw_regs [REGISTER_BYTES];
int i;
for (i = 0; i < NUM_REGS; i++)
read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
if (regnum == -1)
pa_print_registers (raw_regs, regnum, fpregs);
else if (regnum < FP0_REGNUM)
printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
REGISTER_BYTE (regnum)));
else
pa_print_fp_reg (regnum);
}
pa_print_registers (raw_regs, regnum, fpregs)
char *raw_regs;
int regnum;
int fpregs;
{
int i;
for (i = 0; i < 18; i++)
printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
reg_names[i],
*(int *)(raw_regs + REGISTER_BYTE (i)),
reg_names[i + 18],
*(int *)(raw_regs + REGISTER_BYTE (i + 18)),
reg_names[i + 36],
*(int *)(raw_regs + REGISTER_BYTE (i + 36)),
reg_names[i + 54],
*(int *)(raw_regs + REGISTER_BYTE (i + 54)));
if (fpregs)
for (i = 72; i < NUM_REGS; i++)
pa_print_fp_reg (i);
}
pa_print_fp_reg (i)
int i;
{
unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
REGISTER_TYPE val;
/* Get the data in raw format, then convert also to virtual format. */
read_relative_register_raw_bytes (i, raw_buffer);
REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
fputs_filtered (reg_names[i], stdout);
print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0,
1, 0, Val_pretty_default);
printf_filtered ("\n");
}
/* Function calls that pass into a new compilation unit must pass through a
small piece of code that does long format (`external' in HPPA parlance)
jumps. We figure out where the trampoline is going to end up, and return
the PC of the final destination. If we aren't in a trampoline, we just
return NULL.
For computed calls, we just extract the new PC from r22. */
CORE_ADDR
skip_trampoline_code (pc, name)
CORE_ADDR pc;
char *name;
{
long inst0, inst1;
static CORE_ADDR dyncall = 0;
struct minimal_symbol *msym;
/* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
if (!dyncall)
{
msym = lookup_minimal_symbol ("$$dyncall", NULL);
if (msym)
dyncall = SYMBOL_VALUE_ADDRESS (msym);
else
dyncall = -1;
}
if (pc == dyncall)
return (CORE_ADDR)(read_register (22) & ~0x3);
inst0 = read_memory_integer (pc, 4);
inst1 = read_memory_integer (pc+4, 4);
if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
&& (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
pc = extract_21 (inst0) + extract_17 (inst1);
else
pc = (CORE_ADDR)NULL;
return pc;
}
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
/* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
CORE_ADDR
skip_prologue(pc)
CORE_ADDR pc;
{
char buf[4];
unsigned long inst;
int status;
status = target_read_memory (pc, buf, 4);
inst = extract_unsigned_integer (buf, 4);
if (status != 0)
return pc;
if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
{
if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
pc += 16;
else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
pc += 8;
}
else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
pc += 12;
else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
pc += 4;
return pc;
}
#ifdef MAINTENANCE_CMDS
static void
unwind_command (exp, from_tty)
char *exp;
int from_tty;
{
CORE_ADDR address;
union
{
int *foo;
struct unwind_table_entry *u;
} xxx;
/* If we have an expression, evaluate it and use it as the address. */
if (exp != 0 && *exp != 0)
address = parse_and_eval_address (exp);
else
return;
xxx.u = find_unwind_entry (address);
if (!xxx.u)
{
printf ("Can't find unwind table entry for PC 0x%x\n", address);
return;
}
printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
xxx.foo[3]);
}
#endif /* MAINTENANCE_CMDS */
void
_initialize_hppa_tdep ()
{
#ifdef MAINTENANCE_CMDS
add_cmd ("unwind", class_maintenance, unwind_command,
"Print unwind table entry at given address.",
&maintenanceprintlist);
#endif /* MAINTENANCE_CMDS */
}