mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
f865ee35b7
Code cleanup for the next patch. * arm-linux-nat.c (arm_linux_stopped_data_address): Change variable siginfo_p to siginfo, update its users incl. the linux_nat_get_siginfo call for it. * ia64-linux-nat.c (ia64_linux_stopped_data_address): Likewise. (ia64_linux_stopped_data_address): * linux-nat.c (linux_nat_get_siginfo): Add parameter siginfo, change the return value. * linux-nat.h (linux_nat_get_siginfo): Likewise. * ppc-linux-nat.c (ppc_linux_stopped_data_address): Change variable siginfo_p to siginfo, update its users incl. the linux_nat_get_siginfo call for it.
907 lines
23 KiB
C
907 lines
23 KiB
C
/* Functions specific to running gdb native on IA-64 running
|
|
GNU/Linux.
|
|
|
|
Copyright (C) 1999-2012 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "gdb_string.h"
|
|
#include "inferior.h"
|
|
#include "target.h"
|
|
#include "gdbcore.h"
|
|
#include "regcache.h"
|
|
#include "ia64-tdep.h"
|
|
#include "linux-nat.h"
|
|
|
|
#include <signal.h>
|
|
#include <sys/ptrace.h>
|
|
#include "gdb_wait.h"
|
|
#ifdef HAVE_SYS_REG_H
|
|
#include <sys/reg.h>
|
|
#endif
|
|
#include <sys/syscall.h>
|
|
#include <sys/user.h>
|
|
|
|
#include <asm/ptrace_offsets.h>
|
|
#include <sys/procfs.h>
|
|
|
|
/* Prototypes for supply_gregset etc. */
|
|
#include "gregset.h"
|
|
|
|
/* These must match the order of the register names.
|
|
|
|
Some sort of lookup table is needed because the offsets associated
|
|
with the registers are all over the board. */
|
|
|
|
static int u_offsets[] =
|
|
{
|
|
/* general registers */
|
|
-1, /* gr0 not available; i.e, it's always zero. */
|
|
PT_R1,
|
|
PT_R2,
|
|
PT_R3,
|
|
PT_R4,
|
|
PT_R5,
|
|
PT_R6,
|
|
PT_R7,
|
|
PT_R8,
|
|
PT_R9,
|
|
PT_R10,
|
|
PT_R11,
|
|
PT_R12,
|
|
PT_R13,
|
|
PT_R14,
|
|
PT_R15,
|
|
PT_R16,
|
|
PT_R17,
|
|
PT_R18,
|
|
PT_R19,
|
|
PT_R20,
|
|
PT_R21,
|
|
PT_R22,
|
|
PT_R23,
|
|
PT_R24,
|
|
PT_R25,
|
|
PT_R26,
|
|
PT_R27,
|
|
PT_R28,
|
|
PT_R29,
|
|
PT_R30,
|
|
PT_R31,
|
|
/* gr32 through gr127 not directly available via the ptrace interface. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Floating point registers */
|
|
-1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
|
|
PT_F2,
|
|
PT_F3,
|
|
PT_F4,
|
|
PT_F5,
|
|
PT_F6,
|
|
PT_F7,
|
|
PT_F8,
|
|
PT_F9,
|
|
PT_F10,
|
|
PT_F11,
|
|
PT_F12,
|
|
PT_F13,
|
|
PT_F14,
|
|
PT_F15,
|
|
PT_F16,
|
|
PT_F17,
|
|
PT_F18,
|
|
PT_F19,
|
|
PT_F20,
|
|
PT_F21,
|
|
PT_F22,
|
|
PT_F23,
|
|
PT_F24,
|
|
PT_F25,
|
|
PT_F26,
|
|
PT_F27,
|
|
PT_F28,
|
|
PT_F29,
|
|
PT_F30,
|
|
PT_F31,
|
|
PT_F32,
|
|
PT_F33,
|
|
PT_F34,
|
|
PT_F35,
|
|
PT_F36,
|
|
PT_F37,
|
|
PT_F38,
|
|
PT_F39,
|
|
PT_F40,
|
|
PT_F41,
|
|
PT_F42,
|
|
PT_F43,
|
|
PT_F44,
|
|
PT_F45,
|
|
PT_F46,
|
|
PT_F47,
|
|
PT_F48,
|
|
PT_F49,
|
|
PT_F50,
|
|
PT_F51,
|
|
PT_F52,
|
|
PT_F53,
|
|
PT_F54,
|
|
PT_F55,
|
|
PT_F56,
|
|
PT_F57,
|
|
PT_F58,
|
|
PT_F59,
|
|
PT_F60,
|
|
PT_F61,
|
|
PT_F62,
|
|
PT_F63,
|
|
PT_F64,
|
|
PT_F65,
|
|
PT_F66,
|
|
PT_F67,
|
|
PT_F68,
|
|
PT_F69,
|
|
PT_F70,
|
|
PT_F71,
|
|
PT_F72,
|
|
PT_F73,
|
|
PT_F74,
|
|
PT_F75,
|
|
PT_F76,
|
|
PT_F77,
|
|
PT_F78,
|
|
PT_F79,
|
|
PT_F80,
|
|
PT_F81,
|
|
PT_F82,
|
|
PT_F83,
|
|
PT_F84,
|
|
PT_F85,
|
|
PT_F86,
|
|
PT_F87,
|
|
PT_F88,
|
|
PT_F89,
|
|
PT_F90,
|
|
PT_F91,
|
|
PT_F92,
|
|
PT_F93,
|
|
PT_F94,
|
|
PT_F95,
|
|
PT_F96,
|
|
PT_F97,
|
|
PT_F98,
|
|
PT_F99,
|
|
PT_F100,
|
|
PT_F101,
|
|
PT_F102,
|
|
PT_F103,
|
|
PT_F104,
|
|
PT_F105,
|
|
PT_F106,
|
|
PT_F107,
|
|
PT_F108,
|
|
PT_F109,
|
|
PT_F110,
|
|
PT_F111,
|
|
PT_F112,
|
|
PT_F113,
|
|
PT_F114,
|
|
PT_F115,
|
|
PT_F116,
|
|
PT_F117,
|
|
PT_F118,
|
|
PT_F119,
|
|
PT_F120,
|
|
PT_F121,
|
|
PT_F122,
|
|
PT_F123,
|
|
PT_F124,
|
|
PT_F125,
|
|
PT_F126,
|
|
PT_F127,
|
|
/* Predicate registers - we don't fetch these individually. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* branch registers */
|
|
PT_B0,
|
|
PT_B1,
|
|
PT_B2,
|
|
PT_B3,
|
|
PT_B4,
|
|
PT_B5,
|
|
PT_B6,
|
|
PT_B7,
|
|
/* Virtual frame pointer and virtual return address pointer. */
|
|
-1, -1,
|
|
/* other registers */
|
|
PT_PR,
|
|
PT_CR_IIP, /* ip */
|
|
PT_CR_IPSR, /* psr */
|
|
PT_CFM, /* cfm */
|
|
/* kernel registers not visible via ptrace interface (?) */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* hole */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
PT_AR_RSC,
|
|
PT_AR_BSP,
|
|
PT_AR_BSPSTORE,
|
|
PT_AR_RNAT,
|
|
-1,
|
|
-1, /* Not available: FCR, IA32 floating control register. */
|
|
-1, -1,
|
|
-1, /* Not available: EFLAG */
|
|
-1, /* Not available: CSD */
|
|
-1, /* Not available: SSD */
|
|
-1, /* Not available: CFLG */
|
|
-1, /* Not available: FSR */
|
|
-1, /* Not available: FIR */
|
|
-1, /* Not available: FDR */
|
|
-1,
|
|
PT_AR_CCV,
|
|
-1, -1, -1,
|
|
PT_AR_UNAT,
|
|
-1, -1, -1,
|
|
PT_AR_FPSR,
|
|
-1, -1, -1,
|
|
-1, /* Not available: ITC */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
PT_AR_PFS,
|
|
PT_AR_LC,
|
|
PT_AR_EC,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1,
|
|
/* nat bits - not fetched directly; instead we obtain these bits from
|
|
either rnat or unat or from memory. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
};
|
|
|
|
static CORE_ADDR
|
|
ia64_register_addr (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
CORE_ADDR addr;
|
|
|
|
if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
|
|
error (_("Invalid register number %d."), regno);
|
|
|
|
if (u_offsets[regno] == -1)
|
|
addr = 0;
|
|
else
|
|
addr = (CORE_ADDR) u_offsets[regno];
|
|
|
|
return addr;
|
|
}
|
|
|
|
static int
|
|
ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
return regno < 0
|
|
|| regno >= gdbarch_num_regs (gdbarch)
|
|
|| u_offsets[regno] == -1;
|
|
}
|
|
|
|
static int
|
|
ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
/* Rationale behind not permitting stores to bspstore...
|
|
|
|
The IA-64 architecture provides bspstore and bsp which refer
|
|
memory locations in the RSE's backing store. bspstore is the
|
|
next location which will be written when the RSE needs to write
|
|
to memory. bsp is the address at which r32 in the current frame
|
|
would be found if it were written to the backing store.
|
|
|
|
The IA-64 architecture provides read-only access to bsp and
|
|
read/write access to bspstore (but only when the RSE is in
|
|
the enforced lazy mode). It should be noted that stores
|
|
to bspstore also affect the value of bsp. Changing bspstore
|
|
does not affect the number of dirty entries between bspstore
|
|
and bsp, so changing bspstore by N words will also cause bsp
|
|
to be changed by (roughly) N as well. (It could be N-1 or N+1
|
|
depending upon where the NaT collection bits fall.)
|
|
|
|
OTOH, the Linux kernel provides read/write access to bsp (and
|
|
currently read/write access to bspstore as well). But it
|
|
is definitely the case that if you change one, the other
|
|
will change at the same time. It is more useful to gdb to
|
|
be able to change bsp. So in order to prevent strange and
|
|
undesirable things from happening when a dummy stack frame
|
|
is popped (after calling an inferior function), we allow
|
|
bspstore to be read, but not written. (Note that popping
|
|
a (generic) dummy stack frame causes all registers that
|
|
were previously read from the inferior process to be written
|
|
back.) */
|
|
|
|
return regno < 0
|
|
|| regno >= gdbarch_num_regs (gdbarch)
|
|
|| u_offsets[regno] == -1
|
|
|| regno == IA64_BSPSTORE_REGNUM;
|
|
}
|
|
|
|
void
|
|
supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
|
|
{
|
|
int regi;
|
|
const greg_t *regp = (const greg_t *) gregsetp;
|
|
|
|
for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
|
|
{
|
|
regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
|
|
}
|
|
|
|
/* FIXME: NAT collection bits are at index 32; gotta deal with these
|
|
somehow... */
|
|
|
|
regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
|
|
|
|
for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
|
|
{
|
|
regcache_raw_supply (regcache, regi,
|
|
regp + 34 + (regi - IA64_BR0_REGNUM));
|
|
}
|
|
|
|
regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
|
|
regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
|
|
regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
|
|
regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
|
|
regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
|
|
regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
|
|
regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
|
|
regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
|
|
regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
|
|
regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
|
|
regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
|
|
regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
|
|
regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
|
|
}
|
|
|
|
void
|
|
fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
|
|
{
|
|
int regi;
|
|
greg_t *regp = (greg_t *) gregsetp;
|
|
|
|
#define COPY_REG(_idx_,_regi_) \
|
|
if ((regno == -1) || regno == _regi_) \
|
|
regcache_raw_collect (regcache, _regi_, regp + _idx_)
|
|
|
|
for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
|
|
{
|
|
COPY_REG (regi - IA64_GR0_REGNUM, regi);
|
|
}
|
|
|
|
/* FIXME: NAT collection bits at index 32? */
|
|
|
|
COPY_REG (33, IA64_PR_REGNUM);
|
|
|
|
for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
|
|
{
|
|
COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
|
|
}
|
|
|
|
COPY_REG (42, IA64_IP_REGNUM);
|
|
COPY_REG (43, IA64_CFM_REGNUM);
|
|
COPY_REG (44, IA64_PSR_REGNUM);
|
|
COPY_REG (45, IA64_RSC_REGNUM);
|
|
COPY_REG (46, IA64_BSP_REGNUM);
|
|
COPY_REG (47, IA64_BSPSTORE_REGNUM);
|
|
COPY_REG (48, IA64_RNAT_REGNUM);
|
|
COPY_REG (49, IA64_CCV_REGNUM);
|
|
COPY_REG (50, IA64_UNAT_REGNUM);
|
|
COPY_REG (51, IA64_FPSR_REGNUM);
|
|
COPY_REG (52, IA64_PFS_REGNUM);
|
|
COPY_REG (53, IA64_LC_REGNUM);
|
|
COPY_REG (54, IA64_EC_REGNUM);
|
|
}
|
|
|
|
/* Given a pointer to a floating point register set in /proc format
|
|
(fpregset_t *), unpack the register contents and supply them as gdb's
|
|
idea of the current floating point register values. */
|
|
|
|
void
|
|
supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
|
|
{
|
|
int regi;
|
|
const char *from;
|
|
const gdb_byte f_zero[16] = { 0 };
|
|
const gdb_byte f_one[16] =
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
|
|
|
|
/* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
|
|
did the same. So ignore whatever might be recorded in fpregset_t
|
|
for fr0/fr1 and always supply their expected values. */
|
|
|
|
/* fr0 is always read as zero. */
|
|
regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
|
|
/* fr1 is always read as one (1.0). */
|
|
regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
|
|
|
|
for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
|
|
{
|
|
from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
|
|
regcache_raw_supply (regcache, regi, from);
|
|
}
|
|
}
|
|
|
|
/* Given a pointer to a floating point register set in /proc format
|
|
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
|
of the current floating point register set. If REGNO is -1, update
|
|
them all. */
|
|
|
|
void
|
|
fill_fpregset (const struct regcache *regcache,
|
|
fpregset_t *fpregsetp, int regno)
|
|
{
|
|
int regi;
|
|
|
|
for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
|
|
{
|
|
if ((regno == -1) || (regno == regi))
|
|
regcache_raw_collect (regcache, regi,
|
|
&((*fpregsetp)[regi - IA64_FR0_REGNUM]));
|
|
}
|
|
}
|
|
|
|
#define IA64_PSR_DB (1UL << 24)
|
|
#define IA64_PSR_DD (1UL << 39)
|
|
|
|
static void
|
|
enable_watchpoints_in_psr (ptid_t ptid)
|
|
{
|
|
struct regcache *regcache = get_thread_regcache (ptid);
|
|
ULONGEST psr;
|
|
|
|
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
|
|
if (!(psr & IA64_PSR_DB))
|
|
{
|
|
psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
|
|
watchpoints and breakpoints. */
|
|
regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
|
|
}
|
|
}
|
|
|
|
static long debug_registers[8];
|
|
|
|
static void
|
|
store_debug_register (ptid_t ptid, int idx, long val)
|
|
{
|
|
int tid;
|
|
|
|
tid = TIDGET (ptid);
|
|
if (tid == 0)
|
|
tid = PIDGET (ptid);
|
|
|
|
(void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
|
|
}
|
|
|
|
static void
|
|
store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
|
|
long *dbr_mask)
|
|
{
|
|
if (dbr_addr)
|
|
store_debug_register (ptid, 2 * idx, *dbr_addr);
|
|
if (dbr_mask)
|
|
store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
|
|
}
|
|
|
|
static int
|
|
is_power_of_2 (int val)
|
|
{
|
|
int i, onecount;
|
|
|
|
onecount = 0;
|
|
for (i = 0; i < 8 * sizeof (val); i++)
|
|
if (val & (1 << i))
|
|
onecount++;
|
|
|
|
return onecount <= 1;
|
|
}
|
|
|
|
static int
|
|
ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
|
|
struct expression *cond)
|
|
{
|
|
struct lwp_info *lp;
|
|
int idx;
|
|
long dbr_addr, dbr_mask;
|
|
int max_watchpoints = 4;
|
|
|
|
if (len <= 0 || !is_power_of_2 (len))
|
|
return -1;
|
|
|
|
for (idx = 0; idx < max_watchpoints; idx++)
|
|
{
|
|
dbr_mask = debug_registers[idx * 2 + 1];
|
|
if ((dbr_mask & (0x3UL << 62)) == 0)
|
|
{
|
|
/* Exit loop if both r and w bits clear. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (idx == max_watchpoints)
|
|
return -1;
|
|
|
|
dbr_addr = (long) addr;
|
|
dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
|
|
dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
|
|
switch (rw)
|
|
{
|
|
case hw_write:
|
|
dbr_mask |= (1L << 62); /* Set w bit */
|
|
break;
|
|
case hw_read:
|
|
dbr_mask |= (1L << 63); /* Set r bit */
|
|
break;
|
|
case hw_access:
|
|
dbr_mask |= (3L << 62); /* Set both r and w bits */
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
debug_registers[2 * idx] = dbr_addr;
|
|
debug_registers[2 * idx + 1] = dbr_mask;
|
|
ALL_LWPS (lp)
|
|
{
|
|
store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
|
|
enable_watchpoints_in_psr (lp->ptid);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
|
|
struct expression *cond)
|
|
{
|
|
int idx;
|
|
long dbr_addr, dbr_mask;
|
|
int max_watchpoints = 4;
|
|
|
|
if (len <= 0 || !is_power_of_2 (len))
|
|
return -1;
|
|
|
|
for (idx = 0; idx < max_watchpoints; idx++)
|
|
{
|
|
dbr_addr = debug_registers[2 * idx];
|
|
dbr_mask = debug_registers[2 * idx + 1];
|
|
if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
|
|
{
|
|
struct lwp_info *lp;
|
|
|
|
debug_registers[2 * idx] = 0;
|
|
debug_registers[2 * idx + 1] = 0;
|
|
dbr_addr = 0;
|
|
dbr_mask = 0;
|
|
|
|
ALL_LWPS (lp)
|
|
store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
ia64_linux_new_thread (struct lwp_info *lp)
|
|
{
|
|
int i, any;
|
|
|
|
any = 0;
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
if (debug_registers[i] != 0)
|
|
any = 1;
|
|
store_debug_register (lp->ptid, i, debug_registers[i]);
|
|
}
|
|
|
|
if (any)
|
|
enable_watchpoints_in_psr (lp->ptid);
|
|
}
|
|
|
|
static int
|
|
ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
|
|
{
|
|
CORE_ADDR psr;
|
|
siginfo_t siginfo;
|
|
struct regcache *regcache = get_current_regcache ();
|
|
|
|
if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
|
|
return 0;
|
|
|
|
if (siginfo.si_signo != SIGTRAP
|
|
|| (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
|
|
return 0;
|
|
|
|
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
|
|
psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
|
|
for the next instruction. */
|
|
regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
|
|
|
|
*addr_p = (CORE_ADDR) siginfo.si_addr;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
ia64_linux_stopped_by_watchpoint (void)
|
|
{
|
|
CORE_ADDR addr;
|
|
return ia64_linux_stopped_data_address (¤t_target, &addr);
|
|
}
|
|
|
|
static int
|
|
ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Fetch register REGNUM from the inferior. */
|
|
|
|
static void
|
|
ia64_linux_fetch_register (struct regcache *regcache, int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
CORE_ADDR addr;
|
|
size_t size;
|
|
PTRACE_TYPE_RET *buf;
|
|
int pid, i;
|
|
|
|
/* r0 cannot be fetched but is always zero. */
|
|
if (regnum == IA64_GR0_REGNUM)
|
|
{
|
|
const gdb_byte zero[8] = { 0 };
|
|
|
|
gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
|
|
regcache_raw_supply (regcache, regnum, zero);
|
|
return;
|
|
}
|
|
|
|
/* fr0 cannot be fetched but is always zero. */
|
|
if (regnum == IA64_FR0_REGNUM)
|
|
{
|
|
const gdb_byte f_zero[16] = { 0 };
|
|
|
|
gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
|
|
regcache_raw_supply (regcache, regnum, f_zero);
|
|
return;
|
|
}
|
|
|
|
/* fr1 cannot be fetched but is always one (1.0). */
|
|
if (regnum == IA64_FR1_REGNUM)
|
|
{
|
|
const gdb_byte f_one[16] =
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
|
|
|
|
gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
|
|
regcache_raw_supply (regcache, regnum, f_one);
|
|
return;
|
|
}
|
|
|
|
if (ia64_cannot_fetch_register (gdbarch, regnum))
|
|
{
|
|
regcache_raw_supply (regcache, regnum, NULL);
|
|
return;
|
|
}
|
|
|
|
/* Cater for systems like GNU/Linux, that implement threads as
|
|
separate processes. */
|
|
pid = ptid_get_lwp (inferior_ptid);
|
|
if (pid == 0)
|
|
pid = ptid_get_pid (inferior_ptid);
|
|
|
|
/* This isn't really an address, but ptrace thinks of it as one. */
|
|
addr = ia64_register_addr (gdbarch, regnum);
|
|
size = register_size (gdbarch, regnum);
|
|
|
|
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
|
|
buf = alloca (size);
|
|
|
|
/* Read the register contents from the inferior a chunk at a time. */
|
|
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
|
|
{
|
|
errno = 0;
|
|
buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
|
|
if (errno != 0)
|
|
error (_("Couldn't read register %s (#%d): %s."),
|
|
gdbarch_register_name (gdbarch, regnum),
|
|
regnum, safe_strerror (errno));
|
|
|
|
addr += sizeof (PTRACE_TYPE_RET);
|
|
}
|
|
regcache_raw_supply (regcache, regnum, buf);
|
|
}
|
|
|
|
/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
|
|
for all registers. */
|
|
|
|
static void
|
|
ia64_linux_fetch_registers (struct target_ops *ops,
|
|
struct regcache *regcache, int regnum)
|
|
{
|
|
if (regnum == -1)
|
|
for (regnum = 0;
|
|
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
|
|
regnum++)
|
|
ia64_linux_fetch_register (regcache, regnum);
|
|
else
|
|
ia64_linux_fetch_register (regcache, regnum);
|
|
}
|
|
|
|
/* Store register REGNUM into the inferior. */
|
|
|
|
static void
|
|
ia64_linux_store_register (const struct regcache *regcache, int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
CORE_ADDR addr;
|
|
size_t size;
|
|
PTRACE_TYPE_RET *buf;
|
|
int pid, i;
|
|
|
|
if (ia64_cannot_store_register (gdbarch, regnum))
|
|
return;
|
|
|
|
/* Cater for systems like GNU/Linux, that implement threads as
|
|
separate processes. */
|
|
pid = ptid_get_lwp (inferior_ptid);
|
|
if (pid == 0)
|
|
pid = ptid_get_pid (inferior_ptid);
|
|
|
|
/* This isn't really an address, but ptrace thinks of it as one. */
|
|
addr = ia64_register_addr (gdbarch, regnum);
|
|
size = register_size (gdbarch, regnum);
|
|
|
|
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
|
|
buf = alloca (size);
|
|
|
|
/* Write the register contents into the inferior a chunk at a time. */
|
|
regcache_raw_collect (regcache, regnum, buf);
|
|
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
|
|
{
|
|
errno = 0;
|
|
ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
|
|
if (errno != 0)
|
|
error (_("Couldn't write register %s (#%d): %s."),
|
|
gdbarch_register_name (gdbarch, regnum),
|
|
regnum, safe_strerror (errno));
|
|
|
|
addr += sizeof (PTRACE_TYPE_RET);
|
|
}
|
|
}
|
|
|
|
/* Store register REGNUM back into the inferior. If REGNUM is -1, do
|
|
this for all registers. */
|
|
|
|
static void
|
|
ia64_linux_store_registers (struct target_ops *ops,
|
|
struct regcache *regcache, int regnum)
|
|
{
|
|
if (regnum == -1)
|
|
for (regnum = 0;
|
|
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
|
|
regnum++)
|
|
ia64_linux_store_register (regcache, regnum);
|
|
else
|
|
ia64_linux_store_register (regcache, regnum);
|
|
}
|
|
|
|
|
|
static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
|
|
const char *, gdb_byte *,
|
|
const gdb_byte *, ULONGEST, LONGEST);
|
|
|
|
static LONGEST
|
|
ia64_linux_xfer_partial (struct target_ops *ops,
|
|
enum target_object object,
|
|
const char *annex,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf,
|
|
ULONGEST offset, LONGEST len)
|
|
{
|
|
if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
|
|
return syscall (__NR_getunwind, readbuf, len);
|
|
|
|
return super_xfer_partial (ops, object, annex, readbuf, writebuf,
|
|
offset, len);
|
|
}
|
|
|
|
/* For break.b instruction ia64 CPU forgets the immediate value and generates
|
|
SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
|
|
ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
|
|
difference for the signals here. */
|
|
|
|
static int
|
|
ia64_linux_status_is_event (int status)
|
|
{
|
|
return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
|
|
|| WSTOPSIG (status) == SIGILL);
|
|
}
|
|
|
|
void _initialize_ia64_linux_nat (void);
|
|
|
|
void
|
|
_initialize_ia64_linux_nat (void)
|
|
{
|
|
struct target_ops *t;
|
|
|
|
/* Fill in the generic GNU/Linux methods. */
|
|
t = linux_target ();
|
|
|
|
/* Override the default fetch/store register routines. */
|
|
t->to_fetch_registers = ia64_linux_fetch_registers;
|
|
t->to_store_registers = ia64_linux_store_registers;
|
|
|
|
/* Override the default to_xfer_partial. */
|
|
super_xfer_partial = t->to_xfer_partial;
|
|
t->to_xfer_partial = ia64_linux_xfer_partial;
|
|
|
|
/* Override watchpoint routines. */
|
|
|
|
/* The IA-64 architecture can step over a watch point (without triggering
|
|
it again) if the "dd" (data debug fault disable) bit in the processor
|
|
status word is set.
|
|
|
|
This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
|
|
code there has determined that a hardware watchpoint has indeed
|
|
been hit. The CPU will then be able to execute one instruction
|
|
without triggering a watchpoint. */
|
|
|
|
t->to_have_steppable_watchpoint = 1;
|
|
t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
|
|
t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
|
|
t->to_stopped_data_address = ia64_linux_stopped_data_address;
|
|
t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
|
|
t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
|
|
|
|
/* Register the target. */
|
|
linux_nat_add_target (t);
|
|
linux_nat_set_new_thread (t, ia64_linux_new_thread);
|
|
linux_nat_set_status_is_event (t, ia64_linux_status_is_event);
|
|
}
|