mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
564 lines
21 KiB
C
564 lines
21 KiB
C
/* Definitions to make GDB run on Convex Unix (4bsd)
|
||
Copyright (C) 1989 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
GDB is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GDB is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GDB; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#define TARGET_BYTE_ORDER BIG_ENDIAN
|
||
|
||
/* I don't know if this will work for cross-debugging, even if you do get
|
||
the right files. */
|
||
/* Include certain files for dbxread.c */
|
||
#include <convex/filehdr.h>
|
||
#include <convex/opthdr.h>
|
||
#include <convex/scnhdr.h>
|
||
#include <nlist.h>
|
||
|
||
/* Define this if the C compiler puts an underscore at the front
|
||
of external names before giving them to the linker. */
|
||
|
||
#define NAMES_HAVE_UNDERSCORE
|
||
|
||
/* Debugger information will be in DBX format. */
|
||
|
||
#define READ_DBX_FORMAT
|
||
|
||
/* There is come problem with the debugging symbols generated by the
|
||
compiler such that the debugging symbol for the first line of a
|
||
function overlap with the function prologue. */
|
||
#define PROLOGUE_FIRSTLINE_OVERLAP
|
||
|
||
/* When convex pcc says CHAR or SHORT, it provides the correct address. */
|
||
|
||
#define BELIEVE_PCC_PROMOTION 1
|
||
|
||
/* Symbol types to ignore. */
|
||
/* 0xc4 is N_MONPT. Use the numeric value for the benefit of people
|
||
with (rather) old OS's. */
|
||
#define IGNORE_SYMBOL(TYPE) \
|
||
(((TYPE) & ~N_EXT) == N_TBSS \
|
||
|| ((TYPE) & ~N_EXT) == N_TDATA \
|
||
|| ((TYPE) & ~N_EXT) == 0xc4)
|
||
|
||
/* Offset from address of function to start of its code.
|
||
Zero on most machines. */
|
||
|
||
#define FUNCTION_START_OFFSET 0
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code.
|
||
Convex prolog is:
|
||
[sub.w #-,sp] in one of 3 possible sizes
|
||
[mov psw,- fc/vc main program prolog
|
||
and #-,- (skip it because the "mov psw" saves the
|
||
mov -,psw] T bit, so continue gets a surprise trap)
|
||
[and #-,sp] fc/vc O2 main program prolog
|
||
[ld.- -(ap),-] pcc/gcc register arg loads
|
||
*/
|
||
|
||
#define SKIP_PROLOGUE(pc) \
|
||
{ int op, ix; \
|
||
op = read_memory_integer (pc, 2); \
|
||
if ((op & 0xffc7) == 0x5ac0) pc += 2; \
|
||
else if (op == 0x1580) pc += 4; \
|
||
else if (op == 0x15c0) pc += 6; \
|
||
if ((read_memory_integer (pc, 2) & 0xfff8) == 0x7c40 \
|
||
&& (read_memory_integer (pc + 2, 2) & 0xfff8) == 0x1240 \
|
||
&& (read_memory_integer (pc + 8, 2) & 0xfff8) == 0x7c48) \
|
||
pc += 10; \
|
||
if (read_memory_integer (pc, 2) == 0x1240) pc += 6; \
|
||
for (;;) { \
|
||
op = read_memory_integer (pc, 2); \
|
||
ix = (op >> 3) & 7; \
|
||
if (ix != 6) break; \
|
||
if ((op & 0xfcc0) == 0x3000) pc += 4; \
|
||
else if ((op & 0xfcc0) == 0x3040) pc += 6; \
|
||
else if ((op & 0xfcc0) == 0x2800) pc += 4; \
|
||
else if ((op & 0xfcc0) == 0x2840) pc += 6; \
|
||
else break;}}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
(ignore frame and return *$sp so we can handle both calls and callq) */
|
||
|
||
#define SAVED_PC_AFTER_CALL(frame) \
|
||
read_memory_integer (read_register (SP_REGNUM), 4)
|
||
|
||
/* Address of end of stack space.
|
||
This is ((USRSTACK + 0xfff) & -0x1000)) from <convex/vmparam.h> but
|
||
that expression depends on the kernel version; instead, fetch a
|
||
page-zero pointer and get it from that. This will be invalid if
|
||
they ever change the way bkpt signals are delivered. */
|
||
|
||
#define STACK_END_ADDR (0xfffff000 & *(unsigned *) 0x80000050)
|
||
|
||
/* User-mode traps push an extended rtn block,
|
||
then fault with one of the following PCs */
|
||
|
||
#define is_trace_pc(pc) ((unsigned) ((pc) - (*(int *) 0x80000040)) <= 4)
|
||
#define is_arith_pc(pc) ((unsigned) ((pc) - (*(int *) 0x80000044)) <= 4)
|
||
#define is_break_pc(pc) ((unsigned) ((pc) - (*(int *) 0x80000050)) <= 4)
|
||
|
||
/* We need to manipulate trap bits in the psw */
|
||
|
||
#define PSW_TRAP_FLAGS 0x69670000
|
||
#define PSW_T_BIT 0x08000000
|
||
#define PSW_S_BIT 0x01000000
|
||
|
||
/* Stack grows downward. */
|
||
|
||
#define INNER_THAN <
|
||
|
||
/* Sequence of bytes for breakpoint instruction. (bkpt) */
|
||
|
||
#define BREAKPOINT {0x7d,0x50}
|
||
|
||
/* Amount PC must be decremented by after a breakpoint.
|
||
This is often the number of bytes in BREAKPOINT but not always.
|
||
(The break PC needs to be decremented by 2, but we do it when the
|
||
break frame is recognized and popped. That way gdb can tell breaks
|
||
from trace traps with certainty.) */
|
||
|
||
#define DECR_PC_AFTER_BREAK 0
|
||
|
||
/* Nonzero if instruction at PC is a return instruction. (rtn or rtnq) */
|
||
|
||
#define ABOUT_TO_RETURN(pc) \
|
||
((read_memory_integer (pc, 2) & 0xffe0) == 0x7c80)
|
||
|
||
/* Return 1 if P points to an invalid floating point value. */
|
||
|
||
#define INVALID_FLOAT(p,len) 0
|
||
|
||
/* Say how long (ordinary) registers are. */
|
||
|
||
#define REGISTER_TYPE long long
|
||
|
||
/* Number of machine registers */
|
||
|
||
#define NUM_REGS 26
|
||
|
||
/* Initializer for an array of names of registers.
|
||
There should be NUM_REGS strings in this initializer. */
|
||
|
||
#define REGISTER_NAMES {"pc","psw","fp","ap","a5","a4","a3","a2","a1","sp",\
|
||
"s7","s6","s5","s4","s3","s2","s1","s0",\
|
||
"S7","S6","S5","S4","S3","S2","S1","S0"}
|
||
|
||
/* Register numbers of various important registers.
|
||
Note that some of these values are "real" register numbers,
|
||
and correspond to the general registers of the machine,
|
||
and some are "phony" register numbers which are too large
|
||
to be actual register numbers as far as the user is concerned
|
||
but do serve to get the desired values when passed to read_register. */
|
||
|
||
#define S0_REGNUM 25 /* the real S regs */
|
||
#define S7_REGNUM 18
|
||
#define s0_REGNUM 17 /* low-order halves of S regs */
|
||
#define s7_REGNUM 10
|
||
#define SP_REGNUM 9 /* A regs */
|
||
#define A1_REGNUM 8
|
||
#define A5_REGNUM 4
|
||
#define AP_REGNUM 3
|
||
#define FP_REGNUM 2 /* Contains address of executing stack frame */
|
||
#define PS_REGNUM 1 /* Contains processor status */
|
||
#define PC_REGNUM 0 /* Contains program counter */
|
||
|
||
/* convert dbx stab register number (from `r' declaration) to a gdb REGNUM */
|
||
|
||
#define STAB_REG_TO_REGNUM(value) \
|
||
((value) < 8 ? S0_REGNUM - (value) : SP_REGNUM - ((value) - 8))
|
||
|
||
/* Vector register numbers, not handled as ordinary regs.
|
||
They are treated as convenience variables whose values are read
|
||
from the inferior when needed. */
|
||
|
||
#define V0_REGNUM 0
|
||
#define V7_REGNUM 7
|
||
#define VM_REGNUM 8
|
||
#define VS_REGNUM 9
|
||
#define VL_REGNUM 10
|
||
|
||
/* Total amount of space needed to store our copies of the machine's
|
||
register state, the array `registers'. */
|
||
#define REGISTER_BYTES (4*10 + 8*8)
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N.
|
||
NB: must match structure of struct syscall_context for correct operation */
|
||
|
||
#define REGISTER_BYTE(N) ((N) < s7_REGNUM ? 4*(N) : \
|
||
(N) < S7_REGNUM ? 44 + 8 * ((N)-s7_REGNUM) : \
|
||
40 + 8 * ((N)-S7_REGNUM))
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
for register N. */
|
||
|
||
#define REGISTER_RAW_SIZE(N) ((N) < S7_REGNUM ? 4 : 8)
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. */
|
||
|
||
#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_RAW_SIZE 8
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
||
|
||
/* Nonzero if register N requires conversion
|
||
from raw format to virtual format. */
|
||
|
||
#define REGISTER_CONVERTIBLE(N) 0
|
||
|
||
/* Convert data from raw format for register REGNUM
|
||
to virtual format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
||
bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM));
|
||
|
||
/* Convert data from virtual format for register REGNUM
|
||
to raw format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
||
bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM));
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||
((N) < S7_REGNUM ? builtin_type_int : builtin_type_long_long)
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
|
||
#define STORE_STRUCT_RETURN(ADDR, SP) \
|
||
{ write_register (A1_REGNUM, (ADDR)); }
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||
bcopy (&((char *) REGBUF) [REGISTER_BYTE (S0_REGNUM) + \
|
||
8 - TYPE_LENGTH (TYPE)],\
|
||
VALBUF, TYPE_LENGTH (TYPE))
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. */
|
||
|
||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||
write_register_bytes (REGISTER_BYTE (S0_REGNUM), VALBUF, 8)
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
|
||
(*(int *) & ((char *) REGBUF) [REGISTER_BYTE (s0_REGNUM)])
|
||
|
||
/* Define trapped internal variable hooks to read and write
|
||
vector and communication registers. */
|
||
|
||
#define IS_TRAPPED_INTERNALVAR is_trapped_internalvar
|
||
#define VALUE_OF_TRAPPED_INTERNALVAR value_of_trapped_internalvar
|
||
#define SET_TRAPPED_INTERNALVAR set_trapped_internalvar
|
||
|
||
extern struct value *value_of_trapped_internalvar ();
|
||
|
||
/* Hooks to read data from soff exec and core files,
|
||
and to describe the files. */
|
||
|
||
#define XFER_CORE_FILE
|
||
#define FILES_INFO_HOOK print_maps
|
||
|
||
/* Hook to call to print a typeless integer value, normally printed in decimal.
|
||
For convex, use hex instead if the number looks like an address. */
|
||
|
||
#define PRINT_TYPELESS_INTEGER decout
|
||
|
||
/* For the native compiler, variables for a particular lexical context
|
||
are listed after the beginning LBRAC instead of before in the
|
||
executables list of symbols. Using "gcc_compiled." to distinguish
|
||
between GCC and native compiler doesn't work on Convex because the
|
||
linker sorts the symbols to put "gcc_compiled." in the wrong place.
|
||
desc is nonzero for native, zero for gcc. */
|
||
#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (desc != 0)
|
||
|
||
/* Pcc occaisionally puts an SO where there should be an SOL. */
|
||
#define PCC_SOL_BROKEN
|
||
|
||
/* Cannot execute with pc on the stack. */
|
||
#define CANNOT_EXECUTE_STACK
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame_info with a frame's nominal address in fi->frame,
|
||
and produces the frame's chain-pointer.
|
||
|
||
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
|
||
and produces the nominal address of the caller frame.
|
||
|
||
However, if FRAME_CHAIN_VALID returns zero,
|
||
it means the given frame is the outermost one and has no caller.
|
||
In that case, FRAME_CHAIN_COMBINE is not used. */
|
||
|
||
/* (caller fp is saved at 8(fp)) */
|
||
|
||
#define FRAME_CHAIN(fi) (read_memory_integer ((fi)->frame + 8, 4))
|
||
|
||
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
||
(chain != 0 && (outside_startup_file (FRAME_SAVED_PC (thisframe))))
|
||
|
||
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
||
|
||
/* Define other aspects of the stack frame. */
|
||
|
||
/* A macro that tells us whether the function invocation represented
|
||
by FI does not have a frame on the stack associated with it. If it
|
||
does not, FRAMELESS is set to 1, else 0.
|
||
On convex, check at the return address for `callq' -- if so, frameless,
|
||
otherwise, not. */
|
||
|
||
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
|
||
{ \
|
||
extern CORE_ADDR text_start, text_end; \
|
||
CORE_ADDR call_addr = SAVED_PC_AFTER_CALL (FI); \
|
||
(FRAMELESS) = (call_addr >= text_start && call_addr < text_end \
|
||
&& read_memory_integer (call_addr - 6, 1) == 0x22); \
|
||
}
|
||
|
||
#define FRAME_SAVED_PC(fi) (read_memory_integer ((fi)->frame, 4))
|
||
|
||
#define FRAME_ARGS_ADDRESS(fi) (read_memory_integer ((fi)->frame + 12, 4))
|
||
|
||
#define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
|
||
|
||
/* Return number of args passed to a frame.
|
||
Can return -1, meaning no way to tell. */
|
||
|
||
#define FRAME_NUM_ARGS(numargs, fi) \
|
||
{ numargs = read_memory_integer (FRAME_ARGS_ADDRESS (fi) - 4, 4); \
|
||
if (numargs < 0 || numargs >= 256) numargs = -1;}
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
|
||
#define FRAME_ARGS_SKIP 0
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
/* Normal (short) frames save only PC, FP, (callee's) AP. To reasonably
|
||
handle gcc and pcc register variables, scan the code following the
|
||
call for the instructions the compiler inserts to reload register
|
||
variables from stack slots and record the stack slots as the saved
|
||
locations of those registers. This will occasionally identify some
|
||
random load as a saved register; this is harmless. vc does not
|
||
declare its register allocation actions in the stabs. */
|
||
|
||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||
{ register int regnum; \
|
||
register int frame_length = /* 3 short, 2 long, 1 extended, 0 context */\
|
||
(read_memory_integer ((frame_info)->frame + 4, 4) >> 25) & 3; \
|
||
register CORE_ADDR frame_fp = \
|
||
read_memory_integer ((frame_info)->frame + 8, 4); \
|
||
register CORE_ADDR next_addr; \
|
||
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
||
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 0; \
|
||
(frame_saved_regs).regs[PS_REGNUM] = (frame_info)->frame + 4; \
|
||
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame + 8; \
|
||
(frame_saved_regs).regs[AP_REGNUM] = frame_fp + 12; \
|
||
next_addr = (frame_info)->frame + 12; \
|
||
if (frame_length < 3) \
|
||
for (regnum = A5_REGNUM; regnum < SP_REGNUM; ++regnum) \
|
||
(frame_saved_regs).regs[regnum] = (next_addr += 4); \
|
||
if (frame_length < 2) \
|
||
(frame_saved_regs).regs[SP_REGNUM] = (next_addr += 4); \
|
||
next_addr -= 4; \
|
||
if (frame_length < 3) \
|
||
for (regnum = S7_REGNUM; regnum < S0_REGNUM; ++regnum) \
|
||
(frame_saved_regs).regs[regnum] = (next_addr += 8); \
|
||
if (frame_length < 2) \
|
||
(frame_saved_regs).regs[S0_REGNUM] = (next_addr += 8); \
|
||
else \
|
||
(frame_saved_regs).regs[SP_REGNUM] = next_addr + 8; \
|
||
if (frame_length == 3) { \
|
||
CORE_ADDR pc = read_memory_integer ((frame_info)->frame, 4); \
|
||
int op, ix, disp; \
|
||
op = read_memory_integer (pc, 2); \
|
||
if ((op & 0xffc7) == 0x1480) pc += 4; /* add.w #-,sp */ \
|
||
else if ((op & 0xffc7) == 0x58c0) pc += 2; /* add.w #-,sp */ \
|
||
op = read_memory_integer (pc, 2); \
|
||
if ((op & 0xffc7) == 0x2a06) pc += 4; /* ld.w -,ap */ \
|
||
for (;;) { \
|
||
op = read_memory_integer (pc, 2); \
|
||
ix = (op >> 3) & 7; \
|
||
if ((op & 0xfcc0) == 0x2800) { /* ld.- -,ak */ \
|
||
regnum = SP_REGNUM - (op & 7); \
|
||
disp = read_memory_integer (pc + 2, 2); \
|
||
pc += 4;} \
|
||
else if ((op & 0xfcc0) == 0x2840) { /* ld.- -,ak */ \
|
||
regnum = SP_REGNUM - (op & 7); \
|
||
disp = read_memory_integer (pc + 2, 4); \
|
||
pc += 6;} \
|
||
if ((op & 0xfcc0) == 0x3000) { /* ld.- -,sk */ \
|
||
regnum = S0_REGNUM - (op & 7); \
|
||
disp = read_memory_integer (pc + 2, 2); \
|
||
pc += 4;} \
|
||
else if ((op & 0xfcc0) == 0x3040) { /* ld.- -,sk */ \
|
||
regnum = S0_REGNUM - (op & 7); \
|
||
disp = read_memory_integer (pc + 2, 4); \
|
||
pc += 6;} \
|
||
else if ((op & 0xff00) == 0x7100) { /* br crossjump */ \
|
||
pc += 2 * (char) op; \
|
||
continue;} \
|
||
else if (op == 0x0140) { /* jmp crossjump */ \
|
||
pc = read_memory_integer (pc + 2, 4); \
|
||
continue;} \
|
||
else break; \
|
||
if ((frame_saved_regs).regs[regnum]) \
|
||
break; \
|
||
if (ix == 7) disp += frame_fp; \
|
||
else if (ix == 6) disp += read_memory_integer (frame_fp + 12, 4); \
|
||
else if (ix != 0) break; \
|
||
(frame_saved_regs).regs[regnum] = \
|
||
disp - 8 + (1 << ((op >> 8) & 3)); \
|
||
if (regnum >= S7_REGNUM) \
|
||
(frame_saved_regs).regs[regnum - S0_REGNUM + s0_REGNUM] = \
|
||
disp - 4 + (1 << ((op >> 8) & 3)); \
|
||
} \
|
||
} \
|
||
}
|
||
|
||
/* Things needed for making the inferior call functions. */
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
#define PUSH_DUMMY_FRAME \
|
||
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
|
||
register int regnum; \
|
||
char buf[8]; \
|
||
long word; \
|
||
for (regnum = S0_REGNUM; regnum >= S7_REGNUM; --regnum) { \
|
||
read_register_bytes (REGISTER_BYTE (regnum), buf, 8); \
|
||
sp = push_bytes (sp, buf, 8);} \
|
||
for (regnum = SP_REGNUM; regnum >= FP_REGNUM; --regnum) { \
|
||
word = read_register (regnum); \
|
||
sp = push_bytes (sp, &word, 4);} \
|
||
word = (read_register (PS_REGNUM) &~ (3<<25)) | (1<<25); \
|
||
sp = push_bytes (sp, &word, 4); \
|
||
word = read_register (PC_REGNUM); \
|
||
sp = push_bytes (sp, &word, 4); \
|
||
write_register (SP_REGNUM, sp); \
|
||
write_register (FP_REGNUM, sp); \
|
||
write_register (AP_REGNUM, sp);}
|
||
|
||
/* Discard from the stack the innermost frame, restoring all registers. */
|
||
|
||
#define POP_FRAME do {\
|
||
register CORE_ADDR fp = read_register (FP_REGNUM); \
|
||
register int regnum; \
|
||
register int frame_length = /* 3 short, 2 long, 1 extended, 0 context */ \
|
||
(read_memory_integer (fp + 4, 4) >> 25) & 3; \
|
||
char buf[8]; \
|
||
write_register (PC_REGNUM, read_memory_integer (fp, 4)); \
|
||
write_register (PS_REGNUM, read_memory_integer (fp += 4, 4)); \
|
||
write_register (FP_REGNUM, read_memory_integer (fp += 4, 4)); \
|
||
write_register (AP_REGNUM, read_memory_integer (fp += 4, 4)); \
|
||
if (frame_length < 3) \
|
||
for (regnum = A5_REGNUM; regnum < SP_REGNUM; ++regnum) \
|
||
write_register (regnum, read_memory_integer (fp += 4, 4)); \
|
||
if (frame_length < 2) \
|
||
write_register (SP_REGNUM, read_memory_integer (fp += 4, 4)); \
|
||
fp -= 4; \
|
||
if (frame_length < 3) \
|
||
for (regnum = S7_REGNUM; regnum < S0_REGNUM; ++regnum) { \
|
||
read_memory (fp += 8, buf, 8); \
|
||
write_register_bytes (REGISTER_BYTE (regnum), buf, 8);} \
|
||
if (frame_length < 2) { \
|
||
read_memory (fp += 8, buf, 8); \
|
||
write_register_bytes (REGISTER_BYTE (regnum), buf, 8);} \
|
||
else write_register (SP_REGNUM, fp + 8); \
|
||
flush_cached_frames (); \
|
||
set_current_frame (create_new_frame (read_register (FP_REGNUM), \
|
||
read_pc ())); \
|
||
} while (0)
|
||
|
||
/* This sequence of words is the instructions
|
||
mov sp,ap
|
||
pshea 69696969
|
||
calls 32323232
|
||
bkpt
|
||
Note this is 16 bytes. */
|
||
|
||
#define CALL_DUMMY {0x50860d4069696969LL,0x2140323232327d50LL}
|
||
|
||
#define CALL_DUMMY_LENGTH 16
|
||
|
||
#define CALL_DUMMY_START_OFFSET 0
|
||
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME. */
|
||
|
||
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
|
||
{ *(int *)((char *) dummyname + 4) = nargs; \
|
||
*(int *)((char *) dummyname + 10) = fun; }
|
||
|
||
/* Defs to read soff symbol tables, see dbxread.c */
|
||
|
||
#define NUMBER_OF_SYMBOLS ((long) opthdr.o_nsyms)
|
||
#define STRING_TABLE_OFFSET ((long) filehdr.h_strptr)
|
||
#define SYMBOL_TABLE_OFFSET ((long) opthdr.o_symptr)
|
||
#define STRING_TABLE_SIZE ((long) filehdr.h_strsiz)
|
||
#define SIZE_OF_TEXT_SEGMENT ((long) txthdr.s_size)
|
||
#define ENTRY_POINT ((long) opthdr.o_entry)
|
||
|
||
#define READ_STRING_TABLE_SIZE(BUFFER) \
|
||
(BUFFER = STRING_TABLE_SIZE)
|
||
|
||
#define DECLARE_FILE_HEADERS \
|
||
FILEHDR filehdr; \
|
||
OPTHDR opthdr; \
|
||
SCNHDR txthdr
|
||
|
||
#define READ_FILE_HEADERS(DESC,NAME) \
|
||
{ \
|
||
int n; \
|
||
val = myread (DESC, &filehdr, sizeof filehdr); \
|
||
if (val < 0) \
|
||
perror_with_name (NAME); \
|
||
if (! IS_SOFF_MAGIC (filehdr.h_magic)) \
|
||
error ("%s: not an executable file.", NAME); \
|
||
lseek (DESC, 0L, 0); \
|
||
if (myread (DESC, &filehdr, sizeof filehdr) < 0) \
|
||
perror_with_name (NAME); \
|
||
if (myread (DESC, &opthdr, filehdr.h_opthdr) <= 0) \
|
||
perror_with_name (NAME); \
|
||
for (n = 0; n < filehdr.h_nscns; n++) \
|
||
{ \
|
||
if (myread (DESC, &txthdr, sizeof txthdr) < 0) \
|
||
perror_with_name (NAME); \
|
||
if ((txthdr.s_flags & S_TYPMASK) == S_TEXT) \
|
||
break; \
|
||
} \
|
||
}
|