mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
870f88f755
gdb/ChangeLog: 2016-05-07 Trevor Saunders <tbsaunde+binutils@tbsaunde.org> * aarch64-linux-tdep.c (aarch64_linux_sigframe_init): Remove unused variables. * aarch64-tdep.c (aarch64_skip_prologue): Likewise. (aarch64_scan_prologue): Likewise. (aarch64_prologue_prev_register): Likewise. (aarch64_dwarf2_prev_register): Likewise. (pass_in_v): Likewise. (aarch64_push_dummy_call): Likewise. (aarch64_breakpoint_from_pc): Likewise. (aarch64_return_in_memory): Likewise. (aarch64_return_value): Likewise. (aarch64_displaced_step_b_cond): Likewise. (aarch64_displaced_step_cb): Likewise. (aarch64_displaced_step_tb): Likewise. (aarch64_gdbarch_init): Likewise. (aarch64_process_record): Likewise. * alpha-mdebug-tdep.c (alpha_mdebug_init_abi): Likewise. * alpha-tdep.c (_initialize_alpha_tdep): Likewise. * amd64-dicos-tdep.c (amd64_dicos_init_abi): Likewise. * amd64-linux-tdep.c (amd64_dtrace_parse_probe_argument): Likewise. * amd64-tdep.c (fixup_riprel): Likewise. * amd64-windows-tdep.c (amd64_windows_frame_decode_epilogue): Likewise. (amd64_windows_frame_decode_insns): Likewise. (amd64_windows_frame_cache): Likewise. (amd64_windows_frame_prev_register): Likewise. (amd64_windows_frame_this_id): Likewise. (amd64_windows_init_abi): Likewise. * arm-linux-tdep.c (arm_linux_get_syscall_number): Likewise. (arm_linux_get_next_pcs_syscall_next_pc): Likewise. * arm-symbian-tdep.c (arm_symbian_init_abi): Likewise. * arm-tdep.c (arm_make_epilogue_frame_cache): Likewise. (arm_epilogue_frame_prev_register): Likewise. (arm_record_vdata_transfer_insn): Likewise. (arm_record_exreg_ld_st_insn): Likewise. * auto-load.c (execute_script_contents): Likewise. (print_scripts): Likewise. * avr-tdep.c (avr_frame_prev_register): Likewise. (avr_push_dummy_call): Likewise. * bfin-linux-tdep.c (bfin_linux_sigframe_init): Likewise. * bfin-tdep.c (bfin_gdbarch_init): Likewise. * blockframe.c (find_pc_partial_function_gnu_ifunc): Likewise. * break-catch-throw.c (fetch_probe_arguments): Likewise. * breakpoint.c (breakpoint_xfer_memory): Likewise. (breakpoint_init_inferior): Likewise. (breakpoint_inserted_here_p): Likewise. (software_breakpoint_inserted_here_p): Likewise. (hardware_breakpoint_inserted_here_p): Likewise. (bpstat_what): Likewise. (break_range_command): Likewise. (save_breakpoints): Likewise. * coffread.c (coff_symfile_read): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. (cris_scan_prologue): Likewise. (cris_register_size): Likewise. (_initialize_cris_tdep): Likewise. * d-exp.y: Likewise. * dbxread.c (dbx_read_symtab): Likewise. (process_one_symbol): Likewise. (coffstab_build_psymtabs): Likewise. (elfstab_build_psymtabs): Likewise. * dicos-tdep.c (dicos_init_abi): Likewise. * disasm.c (do_mixed_source_and_assembly): Likewise. (gdb_disassembly): Likewise. * dtrace-probe.c (dtrace_process_dof): Likewise. * dwarf2read.c (error_check_comp_unit_head): Likewise. (build_type_psymtabs_1): Likewise. (skip_one_die): Likewise. (process_imported_unit_die): Likewise. (dwarf2_physname): Likewise. (read_file_scope): Likewise. (setup_type_unit_groups): Likewise. (create_dwo_cu_reader): Likewise. (create_dwo_cu): Likewise. (create_dwo_unit_in_dwp_v1): Likewise. (create_dwo_unit_in_dwp_v2): Likewise. (lookup_dwo_unit_in_dwp): Likewise. (free_dwo_file): Likewise. (check_producer): Likewise. (dwarf2_add_typedef): Likewise. (dwarf2_add_member_fn): Likewise. (read_unsigned_leb128): Likewise. (read_signed_leb128): Likewise. (dwarf2_const_value): Likewise. (follow_die_sig_1): Likewise. (dwarf_decode_macro_bytes): Likewise. * extension.c (restore_active_ext_lang): Likewise. * frv-linux-tdep.c (frv_linux_sigtramp_frame_cache): Likewise. * ft32-tdep.c (ft32_analyze_prologue): Likewise. * gdbtypes.c (lookup_typename): Likewise. (resolve_dynamic_range): Likewise. (check_typedef): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Likewise. (h8300_gdbarch_init): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa_frame_this_id): Likewise. (_initialize_hppa_tdep): Likewise. * hppanbsd-tdep.c (hppanbsd_sigtramp_cache_init): Likewise. * hppaobsd-tdep.c (hppaobsd_supply_fpregset): Likewise. * i386-dicos-tdep.c (i386_dicos_init_abi): Likewise. * i386-tdep.c (i386_bnd_type): Likewise. (i386_gdbarch_init): Likewise. (i386_mpx_bd_base): Likewise. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Likewise. * i386obsd-tdep.c (i386obsd_elf_init_abi): Likewise. * ia64-tdep.c (examine_prologue): Likewise. (ia64_frame_cache): Likewise. (ia64_push_dummy_call): Likewise. * infcmd.c (finish_command_fsm_async_reply_reason): Likewise. (default_print_one_register_info): Likewise. * infrun.c (infrun_thread_ptid_changed): Likewise. (thread_still_needs_step_over): Likewise. (stop_all_threads): Likewise. (restart_threads): Likewise. (keep_going_stepped_thread): Likewise. * iq2000-tdep.c (iq2000_scan_prologue): Likewise. * language.c (language_init_primitive_type_symbols): Likewise. * linespec.c (add_sal_to_sals): Likewise. * linux-nat.c (status_callback): Likewise. (kill_unfollowed_fork_children): Likewise. (linux_nat_kill): Likewise. * linux-tdep.c (linux_fill_prpsinfo): Likewise. * linux-thread-db.c (thread_db_notice_clone): Likewise. (record_thread): Likewise. * location.c (string_to_event_location_basic): Likewise. * m32c-tdep.c (m32c_prev_register): Likewise. * m32r-linux-tdep.c (m32r_linux_init_abi): Likewise. * m32r-tdep.c (decode_prologue): Likewise. * m68klinux-tdep.c (m68k_linux_sigtramp_frame_cache): Likewise. * machoread.c (macho_symtab_read): Likewise. (macho_symfile_read): Likewise. (macho_symfile_offsets): Likewise. * maint.c (set_per_command_cmd): Likewise. * mi/mi-cmd-stack.c (mi_cmd_stack_list_locals): Likewise. (mi_cmd_stack_list_variables): Likewise. * mi/mi-main.c (mi_cmd_exec_run): Likewise. (output_register): Likewise. (mi_cmd_execute): Likewise. (mi_cmd_trace_define_variable): Likewise. (print_variable_or_computed): Likewise. * minsyms.c (prim_record_minimal_symbol_full): Likewise. * mn10300-tdep.c (mn10300_frame_prev_register): Likewise. * msp430-tdep.c (msp430_pseudo_register_write): Likewise. * mt-tdep.c (mt_registers_info): Likewise. * nios2-tdep.c (nios2_analyze_prologue): Likewise. (nios2_push_dummy_call): Likewise. (nios2_frame_unwind_cache): Likewise. (nios2_stub_frame_cache): Likewise. (nios2_stub_frame_sniffer): Likewise. (nios2_gdbarch_init): Likewise. * ppc-ravenscar-thread.c: Likewise. * ppcfbsd-tdep.c (ppcfbsd_sigtramp_frame_cache): Likewise. * python/py-evts.c (add_new_registry): Likewise. * python/py-finishbreakpoint.c (bpfinishpy_init): Likewise. (bpfinishpy_detect_out_scope_cb): Likewise. * python/py-framefilter.c (py_print_value): Likewise. * python/py-inferior.c (infpy_write_memory): Likewise. * python/py-infevents.c (create_inferior_call_event_object): Likewise. * python/py-infthread.c (thpy_get_ptid): Likewise. * python/py-linetable.c (ltpy_get_pcs_for_line): Likewise. (ltpy_get_all_source_lines): Likewise. (ltpy_is_valid): Likewise. (ltpy_iternext): Likewise. * python/py-symtab.c (symtab_and_line_to_sal_object): Likewise. * python/py-unwind.c (pyuw_object_attribute_to_pointer): Likewise. (unwind_infopy_str): Likewise. * python/py-varobj.c (py_varobj_get_iterator): Likewise. * ravenscar-thread.c (ravenscar_inferior_created): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Likewise. * s390-linux-tdep.c (s390_supply_tdb_regset): Likewise. (s390_frame_prev_register): Likewise. (s390_dwarf2_frame_init_reg): Likewise. (s390_record_vr): Likewise. (s390_process_record): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. (score3_analyze_prologue): Likewise. * sh-tdep.c (sh_extract_return_value_nofpu): Likewise. * sh64-tdep.c (sh64_analyze_prologue): Likewise. (sh64_push_dummy_call): Likewise. (sh64_extract_return_value): Likewise. (sh64_do_fp_register): Likewise. * solib-aix.c (solib_aix_get_section_offsets): Likewise. * solib-darwin.c (darwin_read_exec_load_addr_from_dyld): Likewise. (darwin_solib_read_all_image_info_addr): Likewise. * solib-dsbt.c (enable_break): Likewise. * solib-frv.c (enable_break2): Likewise. (frv_fdpic_find_canonical_descriptor): Likewise. * solib-svr4.c (svr4_handle_solib_event): Likewise. * sparc-tdep.c (sparc_skip_stack_check): Likewise. * sparc64-linux-tdep.c (sparc64_linux_get_longjmp_target): Likewise. * sparcobsd-tdep.c (sparc32obsd_init_abi): Likewise. * spu-tdep.c (info_spu_dma_cmdlist): Likewise. * stack.c (read_frame_local): Likewise. * symfile.c (symbol_file_add_separate): Likewise. (remove_symbol_file_command): Likewise. * symmisc.c (maintenance_print_one_line_table): Likewise. * symtab.c (symbol_cache_flush): Likewise. (basic_lookup_transparent_type): Likewise. (sort_search_symbols_remove_dups): Likewise. * target.c (target_memory_map): Likewise. (target_detach): Likewise. (target_resume): Likewise. (acquire_fileio_fd): Likewise. (target_store_registers): Likewise. * thread.c (print_thread_info_1): Likewise. * tic6x-tdep.c (tic6x_analyze_prologue): Likewise. * tilegx-linux-tdep.c (tilegx_linux_sigframe_init): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. (tilegx_analyze_prologue): Likewise. (tilegx_stack_frame_destroyed_p): Likewise. (tilegx_frame_cache): Likewise. * tracefile.c (trace_save): Likewise. * tracepoint.c (encode_actions_and_make_cleanup): Likewise. (start_tracing): Likewise. (print_one_static_tracepoint_marker): Likewise. * tui/tui.c (tui_enable): Likewise. * valops.c (value_struct_elt_bitpos): Likewise. (find_overload_match): Likewise. (find_oload_champ): Likewise. * value.c (value_contents_copy_raw): Likewise. * windows-tdep.c (windows_get_tlb_type): Likewise. * x86-linux-nat.c (x86_linux_enable_btrace): Likewise. * xcoffread.c (record_minimal_symbol): Likewise. (scan_xcoff_symtab): Likewise. * xtensa-tdep.c (execute_code): Likewise. (xtensa_gdbarch_init): Likewise. (_initialize_xtensa_tdep): Likewise.
1253 lines
35 KiB
C
1253 lines
35 KiB
C
/* Copyright (C) 2009-2016 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "osabi.h"
|
|
#include "amd64-tdep.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcore.h"
|
|
#include "regcache.h"
|
|
#include "windows-tdep.h"
|
|
#include "frame.h"
|
|
#include "objfiles.h"
|
|
#include "frame-unwind.h"
|
|
#include "coff/internal.h"
|
|
#include "coff/i386.h"
|
|
#include "coff/pe.h"
|
|
#include "libcoff.h"
|
|
#include "value.h"
|
|
|
|
/* The registers used to pass integer arguments during a function call. */
|
|
static int amd64_windows_dummy_call_integer_regs[] =
|
|
{
|
|
AMD64_RCX_REGNUM, /* %rcx */
|
|
AMD64_RDX_REGNUM, /* %rdx */
|
|
AMD64_R8_REGNUM, /* %r8 */
|
|
AMD64_R9_REGNUM /* %r9 */
|
|
};
|
|
|
|
/* Return nonzero if an argument of type TYPE should be passed
|
|
via one of the integer registers. */
|
|
|
|
static int
|
|
amd64_windows_passed_by_integer_register (struct type *type)
|
|
{
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
case TYPE_CODE_ENUM:
|
|
case TYPE_CODE_BOOL:
|
|
case TYPE_CODE_RANGE:
|
|
case TYPE_CODE_CHAR:
|
|
case TYPE_CODE_PTR:
|
|
case TYPE_CODE_REF:
|
|
case TYPE_CODE_STRUCT:
|
|
case TYPE_CODE_UNION:
|
|
return (TYPE_LENGTH (type) == 1
|
|
|| TYPE_LENGTH (type) == 2
|
|
|| TYPE_LENGTH (type) == 4
|
|
|| TYPE_LENGTH (type) == 8);
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Return nonzero if an argument of type TYPE should be passed
|
|
via one of the XMM registers. */
|
|
|
|
static int
|
|
amd64_windows_passed_by_xmm_register (struct type *type)
|
|
{
|
|
return ((TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
|
&& (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8));
|
|
}
|
|
|
|
/* Return non-zero iff an argument of the given TYPE should be passed
|
|
by pointer. */
|
|
|
|
static int
|
|
amd64_windows_passed_by_pointer (struct type *type)
|
|
{
|
|
if (amd64_windows_passed_by_integer_register (type))
|
|
return 0;
|
|
|
|
if (amd64_windows_passed_by_xmm_register (type))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* For each argument that should be passed by pointer, reserve some
|
|
stack space, store a copy of the argument on the stack, and replace
|
|
the argument by its address. Return the new Stack Pointer value.
|
|
|
|
NARGS is the number of arguments. ARGS is the array containing
|
|
the value of each argument. SP is value of the Stack Pointer. */
|
|
|
|
static CORE_ADDR
|
|
amd64_windows_adjust_args_passed_by_pointer (struct value **args,
|
|
int nargs, CORE_ADDR sp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
if (amd64_windows_passed_by_pointer (value_type (args[i])))
|
|
{
|
|
struct type *type = value_type (args[i]);
|
|
const gdb_byte *valbuf = value_contents (args[i]);
|
|
const int len = TYPE_LENGTH (type);
|
|
|
|
/* Store a copy of that argument on the stack, aligned to
|
|
a 16 bytes boundary, and then use the copy's address as
|
|
the argument. */
|
|
|
|
sp -= len;
|
|
sp &= ~0xf;
|
|
write_memory (sp, valbuf, len);
|
|
|
|
args[i]
|
|
= value_addr (value_from_contents_and_address (type, valbuf, sp));
|
|
}
|
|
|
|
return sp;
|
|
}
|
|
|
|
/* Store the value of ARG in register REGNO (right-justified).
|
|
REGCACHE is the register cache. */
|
|
|
|
static void
|
|
amd64_windows_store_arg_in_reg (struct regcache *regcache,
|
|
struct value *arg, int regno)
|
|
{
|
|
struct type *type = value_type (arg);
|
|
const gdb_byte *valbuf = value_contents (arg);
|
|
gdb_byte buf[8];
|
|
|
|
gdb_assert (TYPE_LENGTH (type) <= 8);
|
|
memset (buf, 0, sizeof buf);
|
|
memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8));
|
|
regcache_cooked_write (regcache, regno, buf);
|
|
}
|
|
|
|
/* Push the arguments for an inferior function call, and return
|
|
the updated value of the SP (Stack Pointer).
|
|
|
|
All arguments are identical to the arguments used in
|
|
amd64_windows_push_dummy_call. */
|
|
|
|
static CORE_ADDR
|
|
amd64_windows_push_arguments (struct regcache *regcache, int nargs,
|
|
struct value **args, CORE_ADDR sp,
|
|
int struct_return)
|
|
{
|
|
int reg_idx = 0;
|
|
int i;
|
|
struct value **stack_args = XALLOCAVEC (struct value *, nargs);
|
|
int num_stack_args = 0;
|
|
int num_elements = 0;
|
|
int element = 0;
|
|
|
|
/* First, handle the arguments passed by pointer.
|
|
|
|
These arguments are replaced by pointers to a copy we are making
|
|
in inferior memory. So use a copy of the ARGS table, to avoid
|
|
modifying the original one. */
|
|
{
|
|
struct value **args1 = XALLOCAVEC (struct value *, nargs);
|
|
|
|
memcpy (args1, args, nargs * sizeof (struct value *));
|
|
sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
|
|
args = args1;
|
|
}
|
|
|
|
/* Reserve a register for the "hidden" argument. */
|
|
if (struct_return)
|
|
reg_idx++;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct type *type = value_type (args[i]);
|
|
int len = TYPE_LENGTH (type);
|
|
int on_stack_p = 1;
|
|
|
|
if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
|
|
{
|
|
if (amd64_windows_passed_by_integer_register (type))
|
|
{
|
|
amd64_windows_store_arg_in_reg
|
|
(regcache, args[i],
|
|
amd64_windows_dummy_call_integer_regs[reg_idx]);
|
|
on_stack_p = 0;
|
|
reg_idx++;
|
|
}
|
|
else if (amd64_windows_passed_by_xmm_register (type))
|
|
{
|
|
amd64_windows_store_arg_in_reg
|
|
(regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
|
|
/* In case of varargs, these parameters must also be
|
|
passed via the integer registers. */
|
|
amd64_windows_store_arg_in_reg
|
|
(regcache, args[i],
|
|
amd64_windows_dummy_call_integer_regs[reg_idx]);
|
|
on_stack_p = 0;
|
|
reg_idx++;
|
|
}
|
|
}
|
|
|
|
if (on_stack_p)
|
|
{
|
|
num_elements += ((len + 7) / 8);
|
|
stack_args[num_stack_args++] = args[i];
|
|
}
|
|
}
|
|
|
|
/* Allocate space for the arguments on the stack, keeping it
|
|
aligned on a 16 byte boundary. */
|
|
sp -= num_elements * 8;
|
|
sp &= ~0xf;
|
|
|
|
/* Write out the arguments to the stack. */
|
|
for (i = 0; i < num_stack_args; i++)
|
|
{
|
|
struct type *type = value_type (stack_args[i]);
|
|
const gdb_byte *valbuf = value_contents (stack_args[i]);
|
|
|
|
write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type));
|
|
element += ((TYPE_LENGTH (type) + 7) / 8);
|
|
}
|
|
|
|
return sp;
|
|
}
|
|
|
|
/* Implement the "push_dummy_call" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
amd64_windows_push_dummy_call
|
|
(struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args,
|
|
CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte buf[8];
|
|
|
|
/* Pass arguments. */
|
|
sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
|
|
struct_return);
|
|
|
|
/* Pass "hidden" argument". */
|
|
if (struct_return)
|
|
{
|
|
/* The "hidden" argument is passed throught the first argument
|
|
register. */
|
|
const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
|
|
|
|
store_unsigned_integer (buf, 8, byte_order, struct_addr);
|
|
regcache_cooked_write (regcache, arg_regnum, buf);
|
|
}
|
|
|
|
/* Reserve some memory on the stack for the integer-parameter
|
|
registers, as required by the ABI. */
|
|
sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
|
|
|
|
/* Store return address. */
|
|
sp -= 8;
|
|
store_unsigned_integer (buf, 8, byte_order, bp_addr);
|
|
write_memory (sp, buf, 8);
|
|
|
|
/* Update the stack pointer... */
|
|
store_unsigned_integer (buf, 8, byte_order, sp);
|
|
regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
|
|
|
|
/* ...and fake a frame pointer. */
|
|
regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
|
|
|
|
return sp + 16;
|
|
}
|
|
|
|
/* Implement the "return_value" gdbarch method for amd64-windows. */
|
|
|
|
static enum return_value_convention
|
|
amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
int regnum = -1;
|
|
|
|
/* See if our value is returned through a register. If it is, then
|
|
store the associated register number in REGNUM. */
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_FLT:
|
|
case TYPE_CODE_DECFLOAT:
|
|
/* __m128, __m128i, __m128d, floats, and doubles are returned
|
|
via XMM0. */
|
|
if (len == 4 || len == 8 || len == 16)
|
|
regnum = AMD64_XMM0_REGNUM;
|
|
break;
|
|
default:
|
|
/* All other values that are 1, 2, 4 or 8 bytes long are returned
|
|
via RAX. */
|
|
if (len == 1 || len == 2 || len == 4 || len == 8)
|
|
regnum = AMD64_RAX_REGNUM;
|
|
break;
|
|
}
|
|
|
|
if (regnum < 0)
|
|
{
|
|
/* RAX contains the address where the return value has been stored. */
|
|
if (readbuf)
|
|
{
|
|
ULONGEST addr;
|
|
|
|
regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
|
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
|
}
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
|
}
|
|
else
|
|
{
|
|
/* Extract the return value from the register where it was stored. */
|
|
if (readbuf)
|
|
regcache_raw_read_part (regcache, regnum, 0, len, readbuf);
|
|
if (writebuf)
|
|
regcache_raw_write_part (regcache, regnum, 0, len, writebuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
/* Check that the code pointed to by PC corresponds to a call to
|
|
__main, skip it if so. Return PC otherwise. */
|
|
|
|
static CORE_ADDR
|
|
amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte op;
|
|
|
|
target_read_memory (pc, &op, 1);
|
|
if (op == 0xe8)
|
|
{
|
|
gdb_byte buf[4];
|
|
|
|
if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
|
|
{
|
|
struct bound_minimal_symbol s;
|
|
CORE_ADDR call_dest;
|
|
|
|
call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
|
|
s = lookup_minimal_symbol_by_pc (call_dest);
|
|
if (s.minsym != NULL
|
|
&& MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
|
|
&& strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
|
|
pc += 5;
|
|
}
|
|
}
|
|
|
|
return pc;
|
|
}
|
|
|
|
struct amd64_windows_frame_cache
|
|
{
|
|
/* ImageBase for the module. */
|
|
CORE_ADDR image_base;
|
|
|
|
/* Function start and end rva. */
|
|
CORE_ADDR start_rva;
|
|
CORE_ADDR end_rva;
|
|
|
|
/* Next instruction to be executed. */
|
|
CORE_ADDR pc;
|
|
|
|
/* Current sp. */
|
|
CORE_ADDR sp;
|
|
|
|
/* Address of saved integer and xmm registers. */
|
|
CORE_ADDR prev_reg_addr[16];
|
|
CORE_ADDR prev_xmm_addr[16];
|
|
|
|
/* These two next fields are set only for machine info frames. */
|
|
|
|
/* Likewise for RIP. */
|
|
CORE_ADDR prev_rip_addr;
|
|
|
|
/* Likewise for RSP. */
|
|
CORE_ADDR prev_rsp_addr;
|
|
|
|
/* Address of the previous frame. */
|
|
CORE_ADDR prev_sp;
|
|
};
|
|
|
|
/* Convert a Windows register number to gdb. */
|
|
static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
|
|
{
|
|
AMD64_RAX_REGNUM,
|
|
AMD64_RCX_REGNUM,
|
|
AMD64_RDX_REGNUM,
|
|
AMD64_RBX_REGNUM,
|
|
AMD64_RSP_REGNUM,
|
|
AMD64_RBP_REGNUM,
|
|
AMD64_RSI_REGNUM,
|
|
AMD64_RDI_REGNUM,
|
|
AMD64_R8_REGNUM,
|
|
AMD64_R9_REGNUM,
|
|
AMD64_R10_REGNUM,
|
|
AMD64_R11_REGNUM,
|
|
AMD64_R12_REGNUM,
|
|
AMD64_R13_REGNUM,
|
|
AMD64_R14_REGNUM,
|
|
AMD64_R15_REGNUM
|
|
};
|
|
|
|
/* Return TRUE iff PC is the the range of the function corresponding to
|
|
CACHE. */
|
|
|
|
static int
|
|
pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
|
|
{
|
|
return (pc >= cache->image_base + cache->start_rva
|
|
&& pc < cache->image_base + cache->end_rva);
|
|
}
|
|
|
|
/* Try to recognize and decode an epilogue sequence.
|
|
|
|
Return -1 if we fail to read the instructions for any reason.
|
|
Return 1 if an epilogue sequence was recognized, 0 otherwise. */
|
|
|
|
static int
|
|
amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
|
|
struct amd64_windows_frame_cache *cache)
|
|
{
|
|
/* According to MSDN an epilogue "must consist of either an add RSP,constant
|
|
or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
|
|
register pops and a return or a jmp".
|
|
|
|
Furthermore, according to RtlVirtualUnwind, the complete list of
|
|
epilog marker is:
|
|
- ret [c3]
|
|
- ret n [c2 imm16]
|
|
- rep ret [f3 c3]
|
|
- jmp imm8 | imm32 [eb rel8] or [e9 rel32]
|
|
- jmp qword ptr imm32 - not handled
|
|
- rex.w jmp reg [4X ff eY]
|
|
*/
|
|
|
|
CORE_ADDR pc = cache->pc;
|
|
CORE_ADDR cur_sp = cache->sp;
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte op;
|
|
gdb_byte rex;
|
|
|
|
/* We don't care about the instruction deallocating the frame:
|
|
if it hasn't been executed, the pc is still in the body,
|
|
if it has been executed, the following epilog decoding will work. */
|
|
|
|
/* First decode:
|
|
- pop reg [41 58-5f] or [58-5f]. */
|
|
|
|
while (1)
|
|
{
|
|
/* Read opcode. */
|
|
if (target_read_memory (pc, &op, 1) != 0)
|
|
return -1;
|
|
|
|
if (op >= 0x40 && op <= 0x4f)
|
|
{
|
|
/* REX prefix. */
|
|
rex = op;
|
|
|
|
/* Read opcode. */
|
|
if (target_read_memory (pc + 1, &op, 1) != 0)
|
|
return -1;
|
|
}
|
|
else
|
|
rex = 0;
|
|
|
|
if (op >= 0x58 && op <= 0x5f)
|
|
{
|
|
/* pop reg */
|
|
gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
|
|
|
|
cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
|
|
cur_sp += 8;
|
|
pc += rex ? 2 : 1;
|
|
}
|
|
else
|
|
break;
|
|
|
|
/* Allow the user to break this loop. This shouldn't happen as the
|
|
number of consecutive pop should be small. */
|
|
QUIT;
|
|
}
|
|
|
|
/* Then decode the marker. */
|
|
|
|
/* Read opcode. */
|
|
if (target_read_memory (pc, &op, 1) != 0)
|
|
return -1;
|
|
|
|
switch (op)
|
|
{
|
|
case 0xc3:
|
|
/* Ret. */
|
|
cache->prev_rip_addr = cur_sp;
|
|
cache->prev_sp = cur_sp + 8;
|
|
return 1;
|
|
|
|
case 0xeb:
|
|
{
|
|
/* jmp rel8 */
|
|
gdb_byte rel8;
|
|
CORE_ADDR npc;
|
|
|
|
if (target_read_memory (pc + 1, &rel8, 1) != 0)
|
|
return -1;
|
|
npc = pc + 2 + (signed char) rel8;
|
|
|
|
/* If the jump is within the function, then this is not a marker,
|
|
otherwise this is a tail-call. */
|
|
return !pc_in_range (npc, cache);
|
|
}
|
|
|
|
case 0xec:
|
|
{
|
|
/* jmp rel32 */
|
|
gdb_byte rel32[4];
|
|
CORE_ADDR npc;
|
|
|
|
if (target_read_memory (pc + 1, rel32, 4) != 0)
|
|
return -1;
|
|
npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
|
|
|
|
/* If the jump is within the function, then this is not a marker,
|
|
otherwise this is a tail-call. */
|
|
return !pc_in_range (npc, cache);
|
|
}
|
|
|
|
case 0xc2:
|
|
{
|
|
/* ret n */
|
|
gdb_byte imm16[2];
|
|
|
|
if (target_read_memory (pc + 1, imm16, 2) != 0)
|
|
return -1;
|
|
cache->prev_rip_addr = cur_sp;
|
|
cache->prev_sp = cur_sp
|
|
+ extract_unsigned_integer (imm16, 4, byte_order);
|
|
return 1;
|
|
}
|
|
|
|
case 0xf3:
|
|
{
|
|
/* rep; ret */
|
|
gdb_byte op1;
|
|
|
|
if (target_read_memory (pc + 2, &op1, 1) != 0)
|
|
return -1;
|
|
if (op1 != 0xc3)
|
|
return 0;
|
|
|
|
cache->prev_rip_addr = cur_sp;
|
|
cache->prev_sp = cur_sp + 8;
|
|
return 1;
|
|
}
|
|
|
|
case 0x40:
|
|
case 0x41:
|
|
case 0x42:
|
|
case 0x43:
|
|
case 0x44:
|
|
case 0x45:
|
|
case 0x46:
|
|
case 0x47:
|
|
case 0x48:
|
|
case 0x49:
|
|
case 0x4a:
|
|
case 0x4b:
|
|
case 0x4c:
|
|
case 0x4d:
|
|
case 0x4e:
|
|
case 0x4f:
|
|
/* Got a REX prefix, read next byte. */
|
|
rex = op;
|
|
if (target_read_memory (pc + 1, &op, 1) != 0)
|
|
return -1;
|
|
|
|
if (op == 0xff)
|
|
{
|
|
/* rex jmp reg */
|
|
gdb_byte op1;
|
|
|
|
if (target_read_memory (pc + 2, &op1, 1) != 0)
|
|
return -1;
|
|
return (op1 & 0xf8) == 0xe0;
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
default:
|
|
/* Not REX, so unknown. */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Decode and execute unwind insns at UNWIND_INFO. */
|
|
|
|
static void
|
|
amd64_windows_frame_decode_insns (struct frame_info *this_frame,
|
|
struct amd64_windows_frame_cache *cache,
|
|
CORE_ADDR unwind_info)
|
|
{
|
|
CORE_ADDR save_addr = 0;
|
|
CORE_ADDR cur_sp = cache->sp;
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int first = 1;
|
|
|
|
/* There are at least 3 possibilities to share an unwind info entry:
|
|
1. Two different runtime_function entries (in .pdata) can point to the
|
|
same unwind info entry. There is no such indication while unwinding,
|
|
so we don't really care about that case. We suppose this scheme is
|
|
used to save memory when the unwind entries are exactly the same.
|
|
2. Chained unwind_info entries, with no unwind codes (no prologue).
|
|
There is a major difference with the previous case: the pc range for
|
|
the function is different (in case 1, the pc range comes from the
|
|
runtime_function entry; in case 2, the pc range for the chained entry
|
|
comes from the first unwind entry). Case 1 cannot be used instead as
|
|
the pc is not in the prologue. This case is officially documented.
|
|
(There might be unwind code in the first unwind entry to handle
|
|
additional unwinding). GCC (at least until gcc 5.0) doesn't chain
|
|
entries.
|
|
3. Undocumented unwind info redirection. Hard to know the exact purpose,
|
|
so it is considered as a memory optimization of case 2.
|
|
*/
|
|
|
|
if (unwind_info & 1)
|
|
{
|
|
/* Unofficially documented unwind info redirection, when UNWIND_INFO
|
|
address is odd (http://www.codemachine.com/article_x64deepdive.html).
|
|
*/
|
|
struct external_pex64_runtime_function d;
|
|
|
|
if (target_read_memory (cache->image_base + (unwind_info & ~1),
|
|
(gdb_byte *) &d, sizeof (d)) != 0)
|
|
return;
|
|
|
|
cache->start_rva
|
|
= extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
|
|
cache->end_rva
|
|
= extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
|
|
unwind_info
|
|
= extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
struct external_pex64_unwind_info ex_ui;
|
|
/* There are at most 256 16-bit unwind insns. */
|
|
gdb_byte insns[2 * 256];
|
|
gdb_byte *p;
|
|
gdb_byte *end_insns;
|
|
unsigned char codes_count;
|
|
unsigned char frame_reg;
|
|
CORE_ADDR start;
|
|
|
|
/* Read and decode header. */
|
|
if (target_read_memory (cache->image_base + unwind_info,
|
|
(gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
|
|
return;
|
|
|
|
if (frame_debug)
|
|
fprintf_unfiltered
|
|
(gdb_stdlog,
|
|
"amd64_windows_frame_decodes_insn: "
|
|
"%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
|
|
paddress (gdbarch, unwind_info),
|
|
ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
|
|
ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
|
|
|
|
/* Check version. */
|
|
if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
|
|
&& PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
|
|
return;
|
|
|
|
start = cache->image_base + cache->start_rva;
|
|
if (first
|
|
&& !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue))
|
|
{
|
|
/* We want to detect if the PC points to an epilogue. This needs
|
|
to be checked only once, and an epilogue can be anywhere but in
|
|
the prologue. If so, the epilogue detection+decoding function is
|
|
sufficient. Otherwise, the unwinder will consider that the PC
|
|
is in the body of the function and will need to decode unwind
|
|
info. */
|
|
if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
|
|
return;
|
|
|
|
/* Not in an epilog. Clear possible side effects. */
|
|
memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
|
|
}
|
|
|
|
codes_count = ex_ui.CountOfCodes;
|
|
frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
|
|
|
|
if (frame_reg != 0)
|
|
{
|
|
/* According to msdn:
|
|
If an FP reg is used, then any unwind code taking an offset must
|
|
only be used after the FP reg is established in the prolog. */
|
|
gdb_byte buf[8];
|
|
int frreg = amd64_windows_w2gdb_regnum[frame_reg];
|
|
|
|
get_frame_register (this_frame, frreg, buf);
|
|
save_addr = extract_unsigned_integer (buf, 8, byte_order);
|
|
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n",
|
|
gdbarch_register_name (gdbarch, frreg),
|
|
paddress (gdbarch, save_addr));
|
|
}
|
|
|
|
/* Read opcodes. */
|
|
if (codes_count != 0
|
|
&& target_read_memory (cache->image_base + unwind_info
|
|
+ sizeof (ex_ui),
|
|
insns, codes_count * 2) != 0)
|
|
return;
|
|
|
|
end_insns = &insns[codes_count * 2];
|
|
p = insns;
|
|
|
|
/* Skip opcodes 6 of version 2. This opcode is not documented. */
|
|
if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
|
|
{
|
|
for (; p < end_insns; p += 2)
|
|
if (PEX64_UNWCODE_CODE (p[1]) != 6)
|
|
break;
|
|
}
|
|
|
|
for (; p < end_insns; p += 2)
|
|
{
|
|
int reg;
|
|
|
|
/* Virtually execute the operation if the pc is after the
|
|
corresponding instruction (that does matter in case of break
|
|
within the prologue). Note that for chained info (!first), the
|
|
prologue has been fully executed. */
|
|
if (cache->pc >= start + p[0] || cache->pc < start)
|
|
{
|
|
if (frame_debug)
|
|
fprintf_unfiltered
|
|
(gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n",
|
|
(unsigned) (p - insns), p[0], p[1]);
|
|
|
|
/* If there is no frame registers defined, the current value of
|
|
rsp is used instead. */
|
|
if (frame_reg == 0)
|
|
save_addr = cur_sp;
|
|
|
|
reg = -1;
|
|
|
|
switch (PEX64_UNWCODE_CODE (p[1]))
|
|
{
|
|
case UWOP_PUSH_NONVOL:
|
|
/* Push pre-decrements RSP. */
|
|
reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
|
|
cache->prev_reg_addr[reg] = cur_sp;
|
|
cur_sp += 8;
|
|
break;
|
|
case UWOP_ALLOC_LARGE:
|
|
if (PEX64_UNWCODE_INFO (p[1]) == 0)
|
|
cur_sp +=
|
|
8 * extract_unsigned_integer (p + 2, 2, byte_order);
|
|
else if (PEX64_UNWCODE_INFO (p[1]) == 1)
|
|
cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
|
|
else
|
|
return;
|
|
break;
|
|
case UWOP_ALLOC_SMALL:
|
|
cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
|
|
break;
|
|
case UWOP_SET_FPREG:
|
|
cur_sp = save_addr
|
|
- PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
|
|
break;
|
|
case UWOP_SAVE_NONVOL:
|
|
reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
|
|
cache->prev_reg_addr[reg] = save_addr
|
|
+ 8 * extract_unsigned_integer (p + 2, 2, byte_order);
|
|
break;
|
|
case UWOP_SAVE_NONVOL_FAR:
|
|
reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
|
|
cache->prev_reg_addr[reg] = save_addr
|
|
+ 8 * extract_unsigned_integer (p + 2, 4, byte_order);
|
|
break;
|
|
case UWOP_SAVE_XMM128:
|
|
cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
|
|
save_addr
|
|
- 16 * extract_unsigned_integer (p + 2, 2, byte_order);
|
|
break;
|
|
case UWOP_SAVE_XMM128_FAR:
|
|
cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
|
|
save_addr
|
|
- 16 * extract_unsigned_integer (p + 2, 4, byte_order);
|
|
break;
|
|
case UWOP_PUSH_MACHFRAME:
|
|
if (PEX64_UNWCODE_INFO (p[1]) == 0)
|
|
{
|
|
cache->prev_rip_addr = cur_sp + 0;
|
|
cache->prev_rsp_addr = cur_sp + 24;
|
|
cur_sp += 40;
|
|
}
|
|
else if (PEX64_UNWCODE_INFO (p[1]) == 1)
|
|
{
|
|
cache->prev_rip_addr = cur_sp + 8;
|
|
cache->prev_rsp_addr = cur_sp + 32;
|
|
cur_sp += 48;
|
|
}
|
|
else
|
|
return;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* Display address where the register was saved. */
|
|
if (frame_debug && reg >= 0)
|
|
fprintf_unfiltered
|
|
(gdb_stdlog, " [reg %s at %s]\n",
|
|
gdbarch_register_name (gdbarch, reg),
|
|
paddress (gdbarch, cache->prev_reg_addr[reg]));
|
|
}
|
|
|
|
/* Adjust with the length of the opcode. */
|
|
switch (PEX64_UNWCODE_CODE (p[1]))
|
|
{
|
|
case UWOP_PUSH_NONVOL:
|
|
case UWOP_ALLOC_SMALL:
|
|
case UWOP_SET_FPREG:
|
|
case UWOP_PUSH_MACHFRAME:
|
|
break;
|
|
case UWOP_ALLOC_LARGE:
|
|
if (PEX64_UNWCODE_INFO (p[1]) == 0)
|
|
p += 2;
|
|
else if (PEX64_UNWCODE_INFO (p[1]) == 1)
|
|
p += 4;
|
|
else
|
|
return;
|
|
break;
|
|
case UWOP_SAVE_NONVOL:
|
|
case UWOP_SAVE_XMM128:
|
|
p += 2;
|
|
break;
|
|
case UWOP_SAVE_NONVOL_FAR:
|
|
case UWOP_SAVE_XMM128_FAR:
|
|
p += 4;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
|
|
{
|
|
/* End of unwind info. */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* Read the chained unwind info. */
|
|
struct external_pex64_runtime_function d;
|
|
CORE_ADDR chain_vma;
|
|
|
|
/* Not anymore the first entry. */
|
|
first = 0;
|
|
|
|
/* Stay aligned on word boundary. */
|
|
chain_vma = cache->image_base + unwind_info
|
|
+ sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2;
|
|
|
|
if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
|
|
return;
|
|
|
|
/* Decode begin/end. This may be different from .pdata index, as
|
|
an unwind info may be shared by several functions (in particular
|
|
if many functions have the same prolog and handler. */
|
|
cache->start_rva =
|
|
extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
|
|
cache->end_rva =
|
|
extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
|
|
unwind_info =
|
|
extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
|
|
|
|
if (frame_debug)
|
|
fprintf_unfiltered
|
|
(gdb_stdlog,
|
|
"amd64_windows_frame_decodes_insn (next in chain):"
|
|
" unwind_data=%s, start_rva=%s, end_rva=%s\n",
|
|
paddress (gdbarch, unwind_info),
|
|
paddress (gdbarch, cache->start_rva),
|
|
paddress (gdbarch, cache->end_rva));
|
|
}
|
|
|
|
/* Allow the user to break this loop. */
|
|
QUIT;
|
|
}
|
|
/* PC is saved by the call. */
|
|
if (cache->prev_rip_addr == 0)
|
|
cache->prev_rip_addr = cur_sp;
|
|
cache->prev_sp = cur_sp + 8;
|
|
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n",
|
|
paddress (gdbarch, cache->prev_sp),
|
|
paddress (gdbarch, cache->prev_rip_addr));
|
|
}
|
|
|
|
/* Find SEH unwind info for PC, returning 0 on success.
|
|
|
|
UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
|
|
to the base address of the corresponding image, and START_RVA
|
|
to the rva of the function containing PC. */
|
|
|
|
static int
|
|
amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
|
|
CORE_ADDR *unwind_info,
|
|
CORE_ADDR *image_base,
|
|
CORE_ADDR *start_rva,
|
|
CORE_ADDR *end_rva)
|
|
{
|
|
struct obj_section *sec;
|
|
pe_data_type *pe;
|
|
IMAGE_DATA_DIRECTORY *dir;
|
|
struct objfile *objfile;
|
|
unsigned long lo, hi;
|
|
CORE_ADDR base;
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
/* Get the corresponding exception directory. */
|
|
sec = find_pc_section (pc);
|
|
if (sec == NULL)
|
|
return -1;
|
|
objfile = sec->objfile;
|
|
pe = pe_data (sec->objfile->obfd);
|
|
dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
|
|
|
|
base = pe->pe_opthdr.ImageBase
|
|
+ ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
|
*image_base = base;
|
|
|
|
/* Find the entry.
|
|
|
|
Note: This does not handle dynamically added entries (for JIT
|
|
engines). For this, we would need to ask the kernel directly,
|
|
which means getting some info from the native layer. For the
|
|
rest of the code, however, it's probably faster to search
|
|
the entry ourselves. */
|
|
lo = 0;
|
|
hi = dir->Size / sizeof (struct external_pex64_runtime_function);
|
|
*unwind_info = 0;
|
|
while (lo <= hi)
|
|
{
|
|
unsigned long mid = lo + (hi - lo) / 2;
|
|
struct external_pex64_runtime_function d;
|
|
CORE_ADDR sa, ea;
|
|
|
|
if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
|
|
(gdb_byte *) &d, sizeof (d)) != 0)
|
|
return -1;
|
|
|
|
sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
|
|
ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
|
|
if (pc < base + sa)
|
|
hi = mid - 1;
|
|
else if (pc >= base + ea)
|
|
lo = mid + 1;
|
|
else if (pc >= base + sa && pc < base + ea)
|
|
{
|
|
/* Got it. */
|
|
*start_rva = sa;
|
|
*end_rva = ea;
|
|
*unwind_info =
|
|
extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
|
|
break;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (frame_debug)
|
|
fprintf_unfiltered
|
|
(gdb_stdlog,
|
|
"amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n",
|
|
paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Fill THIS_CACHE using the native amd64-windows unwinding data
|
|
for THIS_FRAME. */
|
|
|
|
static struct amd64_windows_frame_cache *
|
|
amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct amd64_windows_frame_cache *cache;
|
|
gdb_byte buf[8];
|
|
CORE_ADDR pc;
|
|
CORE_ADDR unwind_info = 0;
|
|
|
|
if (*this_cache)
|
|
return (struct amd64_windows_frame_cache *) *this_cache;
|
|
|
|
cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
|
|
*this_cache = cache;
|
|
|
|
/* Get current PC and SP. */
|
|
pc = get_frame_pc (this_frame);
|
|
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
|
cache->sp = extract_unsigned_integer (buf, 8, byte_order);
|
|
cache->pc = pc;
|
|
|
|
if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
|
|
&cache->image_base,
|
|
&cache->start_rva,
|
|
&cache->end_rva))
|
|
return cache;
|
|
|
|
if (unwind_info == 0)
|
|
{
|
|
/* Assume a leaf function. */
|
|
cache->prev_sp = cache->sp + 8;
|
|
cache->prev_rip_addr = cache->sp;
|
|
}
|
|
else
|
|
{
|
|
/* Decode unwind insns to compute saved addresses. */
|
|
amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
|
|
}
|
|
return cache;
|
|
}
|
|
|
|
/* Implement the "prev_register" method of struct frame_unwind
|
|
using the standard Windows x64 SEH info. */
|
|
|
|
static struct value *
|
|
amd64_windows_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_cache, int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct amd64_windows_frame_cache *cache =
|
|
amd64_windows_frame_cache (this_frame, this_cache);
|
|
CORE_ADDR prev;
|
|
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"amd64_windows_frame_prev_register %s for sp=%s\n",
|
|
gdbarch_register_name (gdbarch, regnum),
|
|
paddress (gdbarch, cache->prev_sp));
|
|
|
|
if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
|
|
prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
|
|
else if (regnum == AMD64_RSP_REGNUM)
|
|
{
|
|
prev = cache->prev_rsp_addr;
|
|
if (prev == 0)
|
|
return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
|
|
}
|
|
else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
|
|
prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
|
|
else if (regnum == AMD64_RIP_REGNUM)
|
|
prev = cache->prev_rip_addr;
|
|
else
|
|
prev = 0;
|
|
|
|
if (prev && frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev));
|
|
|
|
if (prev)
|
|
{
|
|
/* Register was saved. */
|
|
return frame_unwind_got_memory (this_frame, regnum, prev);
|
|
}
|
|
else
|
|
{
|
|
/* Register is either volatile or not modified. */
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
|
}
|
|
}
|
|
|
|
/* Implement the "this_id" method of struct frame_unwind using
|
|
the standard Windows x64 SEH info. */
|
|
|
|
static void
|
|
amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct amd64_windows_frame_cache *cache =
|
|
amd64_windows_frame_cache (this_frame, this_cache);
|
|
|
|
*this_id = frame_id_build (cache->prev_sp,
|
|
cache->image_base + cache->start_rva);
|
|
}
|
|
|
|
/* Windows x64 SEH unwinder. */
|
|
|
|
static const struct frame_unwind amd64_windows_frame_unwind =
|
|
{
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
&amd64_windows_frame_this_id,
|
|
&amd64_windows_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
/* Implement the "skip_prologue" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr;
|
|
CORE_ADDR unwind_info = 0;
|
|
CORE_ADDR image_base, start_rva, end_rva;
|
|
struct external_pex64_unwind_info ex_ui;
|
|
|
|
/* Use prologue size from unwind info. */
|
|
if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
|
|
&image_base, &start_rva, &end_rva) == 0)
|
|
{
|
|
if (unwind_info == 0)
|
|
{
|
|
/* Leaf function. */
|
|
return pc;
|
|
}
|
|
else if (target_read_memory (image_base + unwind_info,
|
|
(gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
|
|
&& PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
|
|
return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
|
|
}
|
|
|
|
/* See if we can determine the end of the prologue via the symbol
|
|
table. If so, then return either the PC, or the PC after
|
|
the prologue, whichever is greater. */
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
|
{
|
|
CORE_ADDR post_prologue_pc
|
|
= skip_prologue_using_sal (gdbarch, func_addr);
|
|
|
|
if (post_prologue_pc != 0)
|
|
return max (pc, post_prologue_pc);
|
|
}
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* Check Win64 DLL jmp trampolines and find jump destination. */
|
|
|
|
static CORE_ADDR
|
|
amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR destination = 0;
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
/* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
|
|
if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
|
|
{
|
|
/* Get opcode offset and see if we can find a reference in our data. */
|
|
ULONGEST offset
|
|
= read_memory_unsigned_integer (pc + 2, 4, byte_order);
|
|
|
|
/* Get address of function pointer at end of pc. */
|
|
CORE_ADDR indirect_addr = pc + offset + 6;
|
|
|
|
struct minimal_symbol *indsym
|
|
= (indirect_addr
|
|
? lookup_minimal_symbol_by_pc (indirect_addr).minsym
|
|
: NULL);
|
|
const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL;
|
|
|
|
if (symname)
|
|
{
|
|
if (startswith (symname, "__imp_")
|
|
|| startswith (symname, "_imp_"))
|
|
destination
|
|
= read_memory_unsigned_integer (indirect_addr, 8, byte_order);
|
|
}
|
|
}
|
|
|
|
return destination;
|
|
}
|
|
|
|
/* Implement the "auto_wide_charset" gdbarch method. */
|
|
|
|
static const char *
|
|
amd64_windows_auto_wide_charset (void)
|
|
{
|
|
return "UTF-16";
|
|
}
|
|
|
|
static void
|
|
amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|
{
|
|
/* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
|
|
preferred over the SEH one. The reasons are:
|
|
- binaries without SEH but with dwarf2 debug info are correcly handled
|
|
(although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
|
|
info).
|
|
- dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
|
|
handled if the dwarf2 unwinder is used).
|
|
|
|
The call to amd64_init_abi appends default unwinders, that aren't
|
|
compatible with the SEH one.
|
|
*/
|
|
frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
|
|
|
|
amd64_init_abi (info, gdbarch);
|
|
|
|
windows_init_abi (info, gdbarch);
|
|
|
|
/* On Windows, "long"s are only 32bit. */
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
|
|
/* Function calls. */
|
|
set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
|
|
set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
|
|
set_gdbarch_skip_trampoline_code (gdbarch,
|
|
amd64_windows_skip_trampoline_code);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
|
|
|
|
set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
|
|
}
|
|
|
|
/* -Wmissing-prototypes */
|
|
extern initialize_file_ftype _initialize_amd64_windows_tdep;
|
|
|
|
void
|
|
_initialize_amd64_windows_tdep (void)
|
|
{
|
|
gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
|
|
amd64_windows_init_abi);
|
|
}
|