binutils-gdb/gdb/testsuite/lib/dwarf.exp
Andrew Burgess 61dee7220e gdb/testsuite: fix fission support in the Dwarf assembler
This commit fixes fission support in the Dwarf assembler. I added the
new test gdb.dwarf2/fission-absolute-dwo.exp which is a simple example
of using the fission support.  I also rewrote the existing test
gdb.dwarf2/fission-multi-cu.exp to use the new functionality (instead
of using an x86-64 only assembler file).

To better support compiling the assembler files produced by the Dwarf
assembler I have added the new proc build_executable_and_dwo_files in
lib/dwarf.exp, this replaces build_executable_from_fission_assembler,
all the tests that used the old proc have been updated.  Where the old
proc assumed a single .S source file which contained the entire test,
the new proc allows for multiple source files.

The Dwarf assembler already had some fission support, however, this
was not actually used in any tests, and when I tried using it there
were a few issues.

The biggest change is that we now generate DW_FORM_GNU_addr_index
instead of DW_FORM_addr for the low and high pc in
_handle_macro_at_range, support for the DW_FORM_GNU_addr_index is new
in this commit.

gdb/testsuite/ChangeLog:

	* gdb.dwarf2/fission-absolute-dwo.c: New file.
	* gdb.dwarf2/fission-absolute-dwo.exp: New file.
	* gdb.dwarf2/fission-base.exp: Use build_executable_and_dwo_files
	instead of build_executable_from_fission_assembler.
	* gdb.dwarf2/fission-loclists-pie.exp: Likewise.
	* gdb.dwarf2/fission-loclists.exp: Likewise.
2021-04-07 11:41:49 +01:00

2280 lines
60 KiB
Plaintext

# Copyright 2010-2021 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Return true if the target supports DWARF-2 and uses gas.
# For now pick a sampling of likely targets.
proc dwarf2_support {} {
if {[istarget *-*-linux*]
|| [istarget *-*-gnu*]
|| [istarget *-*-elf*]
|| [istarget *-*-openbsd*]
|| [istarget arm*-*-eabi*]
|| [istarget powerpc-*-eabi*]} {
return 1
}
return 0
}
# Use 'objcopy --extract-dwo to extract DWO information from
# OBJECT_FILE and place it into DWO_FILE.
#
# Return 0 on success, otherwise, return -1.
proc extract_dwo_information { object_file dwo_file } {
set objcopy [gdb_find_objcopy]
set command "$objcopy --extract-dwo $object_file $dwo_file"
verbose -log "Executing $command"
set result [catch "exec $command" output]
verbose -log "objcopy --extract-dwo output: $output"
if { $result == 1 } {
return -1
}
return 0
}
# Use 'objcopy --strip-dwo to remove DWO information from
# FILENAME.
#
# Return 0 on success, otherwise, return -1.
proc strip_dwo_information { filename } {
set objcopy [gdb_find_objcopy]
set command "$objcopy --strip-dwo $filename"
verbose -log "Executing $command"
set result [catch "exec $command" output]
verbose -log "objcopy --strip-dwo output: $output"
if { $result == 1 } {
return -1
}
return 0
}
# Build an executable, with the debug information split out into a
# separate .dwo file.
#
# This function is based on build_executable_from_specs in
# lib/gdb.exp, but with threading support, and rust support removed.
#
# TESTNAME is the name of the test; this is passed to 'untested' if
# something fails.
#
# EXECUTABLE is the executable to create, this can be an absolute
# path, or a relative path, in which case the EXECUTABLE will be
# created in the standard output directory.
#
# OPTIONS is passed to the final link, using gdb_compile. If OPTIONS
# contains any option that indicates threads is required, of if the
# option rust is included, then this function will return failure.
#
# ARGS is a series of lists. Each list is a spec for one source file
# that will be compiled to make EXECUTABLE. Each spec in ARGS has the
# form:
# [ SOURCE OPTIONS ]
# or:
# [ SOURCE OPTIONS OBJFILE ]
#
# Where SOURCE is the path to the source file to compile. This can be
# absolute, or relative to the standard global ${subdir}/${srcdir}/
# path.
#
# OPTIONS are the options to use when compiling SOURCE into an object
# file.
#
# OBJFILE is optional, if present this is the name of the object file
# to create for SOURCE. If this is not provided then a suitable name
# will be auto-generated.
#
# If OPTIONS contains the option 'split-dwo' then the debug
# information is extracted from the object file created by compiling
# SOURCE and placed into a file with a dwo extension. The name of
# this file is generated based on the name of the object file that was
# created (with the .o replaced with .dwo).
proc build_executable_and_dwo_files { testname executable options args } {
global subdir
global srcdir
if { ! [regexp "^/" "$executable"] } then {
set binfile [standard_output_file $executable]
} else {
set binfile $executable
}
set info_options ""
if { [lsearch -exact $options "c++"] >= 0 } {
set info_options "c++"
}
if [get_compiler_info ${info_options}] {
return -1
}
set func gdb_compile
if {[lsearch -regexp $options \
{^(pthreads|shlib|shlib_pthreads|openmp)$}] != -1} {
# Currently don't support compiling thread based tests here.
# If this is required then look to build_executable_from_specs
# for inspiration.
return -1
}
if {[lsearch -exact $options rust] != -1} {
# Currently don't support compiling rust tests here. If this
# is required then look to build_executable_from_specs for
# inspiration.
return -1
}
# Must be run on local host due to use of objcopy.
if [is_remote host] {
return -1
}
set objects {}
set i 0
foreach spec $args {
if {[llength $spec] < 2} {
error "invalid spec length"
return -1
}
verbose -log "APB: SPEC: $spec"
set s [lindex $spec 0]
set local_options [lindex $spec 1]
if { ! [regexp "^/" "$s"] } then {
set s "$srcdir/$subdir/$s"
}
if {[llength $spec] > 2} {
set objfile [lindex $spec 2]
} else {
set objfile "${binfile}${i}.o"
incr i
}
if { [$func "${s}" "${objfile}" object $local_options] != "" } {
untested $testname
return -1
}
lappend objects "$objfile"
if {[lsearch -exact $local_options "split-dwo"] >= 0} {
# Split out the DWO file.
set dwo_file "[file rootname ${objfile}].dwo"
if { [extract_dwo_information $objfile $dwo_file] == -1 } {
untested $testname
return -1
}
if { [strip_dwo_information $objfile] == -1 } {
untested $testname
return -1
}
}
}
verbose -log "APB: OBJECTS = $objects"
set ret [$func $objects "${binfile}" executable $options]
if { $ret != "" } {
untested $testname
return -1
}
return 0
}
# Return a list of expressions about function FUNC's address and length.
# The first expression is the address of function FUNC, and the second
# one is FUNC's length. SRC is the source file having function FUNC.
# An internal label ${func}_label must be defined inside FUNC:
#
# int main (void)
# {
# asm ("main_label: .globl main_label");
# return 0;
# }
#
# This label is needed to compute the start address of function FUNC.
# If the compiler is gcc, we can do the following to get function start
# and end address too:
#
# asm ("func_start: .globl func_start");
# static void func (void) {}
# asm ("func_end: .globl func_end");
#
# however, this isn't portable, because other compilers, such as clang,
# may not guarantee the order of global asms and function. The code
# becomes:
#
# asm ("func_start: .globl func_start");
# asm ("func_end: .globl func_end");
# static void func (void) {}
#
proc function_range { func src {options {debug}} } {
global decimal gdb_prompt
set exe [standard_temp_file func_addr[pid].x]
gdb_compile $src $exe executable $options
gdb_exit
gdb_start
gdb_load "$exe"
# Compute the label offset, and we can get the function start address
# by "${func}_label - $func_label_offset".
set func_label_offset ""
set test "p ${func}_label - ${func}"
gdb_test_multiple $test $test {
-re ".* = ($decimal)\r\n$gdb_prompt $" {
set func_label_offset $expect_out(1,string)
}
}
# Compute the function length.
global hex
set func_length ""
set test "disassemble $func"
gdb_test_multiple $test $test {
-re ".*$hex <\\+($decimal)>:\[^\r\n\]+\r\nEnd of assembler dump\.\r\n$gdb_prompt $" {
set func_length $expect_out(1,string)
}
}
# Compute the size of the last instruction.
if { $func_length == 0 } then {
set func_pattern "$func"
} else {
set func_pattern "$func\\+$func_length"
}
set test "x/2i $func+$func_length"
gdb_test_multiple $test $test {
-re ".*($hex) <$func_pattern>:\[^\r\n\]+\r\n\[ \]+($hex).*\.\r\n$gdb_prompt $" {
set start $expect_out(1,string)
set end $expect_out(2,string)
set func_length [expr $func_length + $end - $start]
}
}
return [list "${func}_label - $func_label_offset" $func_length]
}
# Extract the start, length, and end for function called NAME and
# create suitable variables in the callers scope.
proc get_func_info { name {options {debug}} } {
global srcdir subdir srcfile
upvar 1 "${name}_start" func_start
upvar 1 "${name}_len" func_len
upvar 1 "${name}_end" func_end
lassign [function_range ${name} \
[list ${srcdir}/${subdir}/$srcfile] \
${options}] \
func_start func_len
set func_end "$func_start + $func_len"
}
# A DWARF assembler.
#
# All the variables in this namespace are private to the
# implementation. Also, any procedure whose name starts with "_" is
# private as well. Do not use these.
#
# Exported functions are documented at their definition.
#
# In addition to the hand-written functions documented below, this
# module automatically generates a function for each DWARF tag. For
# most tags, two forms are made: a full name, and one with the
# "DW_TAG_" prefix stripped. For example, you can use either
# 'DW_TAG_compile_unit' or 'compile_unit' interchangeably.
#
# There are two exceptions to this rule: DW_TAG_variable and
# DW_TAG_namespace. For these, the full name must always be used,
# as the short name conflicts with Tcl builtins. (Should future
# versions of Tcl or DWARF add more conflicts, this list will grow.
# If you want to be safe you should always use the full names.)
#
# Each tag procedure is defined like:
#
# proc DW_TAG_mumble {{attrs {}} {children {}}} { ... }
#
# ATTRS is an optional list of attributes.
# It is run through 'subst' in the caller's context before processing.
#
# Each attribute in the list has one of two forms:
# 1. { NAME VALUE }
# 2. { NAME VALUE FORM }
#
# In each case, NAME is the attribute's name.
# This can either be the full name, like 'DW_AT_name', or a shortened
# name, like 'name'. These are fully equivalent.
#
# Besides DWARF standard attributes, assembler supports 'macro' attribute
# which will be substituted by one or more standard or macro attributes.
# supported macro attributes are:
#
# - MACRO_AT_range { FUNC }
# It is substituted by DW_AT_low_pc and DW_AT_high_pc with the start and
# end address of function FUNC in file $srcdir/$subdir/$srcfile.
#
# - MACRO_AT_func { FUNC }
# It is substituted by DW_AT_name with FUNC and MACRO_AT_range.
#
# If FORM is given, it should name a DW_FORM_ constant.
# This can either be the short form, like 'DW_FORM_addr', or a
# shortened version, like 'addr'. If the form is given, VALUE
# is its value; see below. In some cases, additional processing
# is done; for example, DW_FORM_strp manages the .debug_str
# section automatically.
#
# If FORM is 'SPECIAL_expr', then VALUE is treated as a location
# expression. The effective form is then DW_FORM_block or DW_FORM_exprloc
# for DWARF version >= 4, and VALUE is passed to the (internal)
# '_location' proc to be translated.
# This proc implements a miniature DW_OP_ assembler.
#
# If FORM is not given, it is guessed:
# * If VALUE starts with the "@" character, the rest of VALUE is
# looked up as a DWARF constant, and DW_FORM_sdata is used. For
# example, '@DW_LANG_c89' could be used.
# * If VALUE starts with the ":" character, then it is a label
# reference. The rest of VALUE is taken to be the name of a label,
# and DW_FORM_ref4 is used. See 'new_label' and 'define_label'.
# * If VALUE starts with the "%" character, then it is a label
# reference too, but DW_FORM_ref_addr is used.
# * Otherwise, if the attribute name has a default form (f.i. DW_FORM_addr for
# DW_AT_low_pc), then that one is used.
# * Otherwise, an error is reported. Either specify a form explicitly, or
# add a default for the the attribute name in _default_form.
#
# CHILDREN is just Tcl code that can be used to define child DIEs. It
# is evaluated in the caller's context.
#
# Currently this code is missing nice support for CFA handling, and
# probably other things as well.
namespace eval Dwarf {
# True if the module has been initialized.
variable _initialized 0
# Constants from dwarf2.h.
variable _constants
# DW_AT short names.
variable _AT
# DW_FORM short names.
variable _FORM
# DW_OP short names.
variable _OP
# The current output file.
variable _output_file
# Note: The _cu_ values here also apply to type units (TUs).
# Think of a TU as a special kind of CU.
# Current CU count.
variable _cu_count
# The current CU's base label.
variable _cu_label
# The current CU's version.
variable _cu_version
# The current CU's address size.
variable _cu_addr_size
# The current CU's offset size.
variable _cu_offset_size
# Label generation number.
variable _label_num
# The deferred output array. The index is the section name; the
# contents hold the data for that section.
variable _deferred_output
# If empty, we should write directly to the output file.
# Otherwise, this is the name of a section to write to.
variable _defer
# The abbrev section. Typically .debug_abbrev but can be .debug_abbrev.dwo
# for Fission.
variable _abbrev_section
# The next available abbrev number in the current CU's abbrev
# table.
variable _abbrev_num
# The string table for this assembly. The key is the string; the
# value is the label for that string.
variable _strings
# Current .debug_line unit count.
variable _line_count
# Whether a file_name entry was seen.
variable _line_saw_file
# Whether a line table program has been seen.
variable _line_saw_program
# A Label for line table header generation.
variable _line_header_end_label
# The address size for debug ranges section.
variable _debug_ranges_64_bit
# The index into the .debug_addr section (used for fission
# generation).
variable _debug_addr_index
# Flag, true if the current CU is contains fission information,
# otherwise false.
variable _cu_is_fission
proc _process_one_constant {name value} {
variable _constants
variable _AT
variable _FORM
variable _OP
set _constants($name) $value
if {![regexp "^DW_(\[A-Z\]+)_(\[A-Za-z0-9_\]+)$" $name \
ignore prefix name2]} {
error "non-matching name: $name"
}
if {$name2 == "lo_user" || $name2 == "hi_user"} {
return
}
# We only try to shorten some very common things.
# FIXME: CFA?
switch -exact -- $prefix {
TAG {
# Create two procedures for the tag. These call
# _handle_DW_TAG with the full tag name baked in; this
# does all the actual work.
proc $name {{attrs {}} {children {}}} \
"_handle_DW_TAG $name \$attrs \$children"
# Filter out ones that are known to clash.
if {$name2 == "variable" || $name2 == "namespace"} {
set name2 "tag_$name2"
}
if {[info commands $name2] != {}} {
error "duplicate proc name: from $name"
}
proc $name2 {{attrs {}} {children {}}} \
"_handle_DW_TAG $name \$attrs \$children"
}
AT {
set _AT($name2) $name
}
FORM {
set _FORM($name2) $name
}
OP {
set _OP($name2) $name
}
default {
return
}
}
}
proc _read_constants {} {
global srcdir hex decimal
# DWARF name-matching regexp.
set dwrx "DW_\[a-zA-Z0-9_\]+"
# Whitespace regexp.
set ws "\[ \t\]+"
set fd [open [file join $srcdir .. .. include dwarf2.h]]
while {![eof $fd]} {
set line [gets $fd]
if {[regexp -- "^${ws}($dwrx)${ws}=${ws}($hex|$decimal),?$" \
$line ignore name value ignore2]} {
_process_one_constant $name $value
}
}
close $fd
set fd [open [file join $srcdir .. .. include dwarf2.def]]
while {![eof $fd]} {
set line [gets $fd]
if {[regexp -- \
"^DW_\[A-Z_\]+${ws}\\(($dwrx),${ws}($hex|$decimal)\\)$" \
$line ignore name value ignore2]} {
_process_one_constant $name $value
}
}
close $fd
}
proc _quote {string} {
# FIXME
return "\"${string}\\0\""
}
proc _nz_quote {string} {
# For now, no quoting is done.
return "\"${string}\""
}
proc _handle_DW_FORM {form value} {
switch -exact -- $form {
DW_FORM_string {
_op .ascii [_quote $value]
}
DW_FORM_flag_present {
# We don't need to emit anything.
}
DW_FORM_data4 -
DW_FORM_ref4 {
_op .4byte $value
}
DW_FORM_ref_addr {
variable _cu_offset_size
variable _cu_version
variable _cu_addr_size
if {$_cu_version == 2} {
set size $_cu_addr_size
} else {
set size $_cu_offset_size
}
_op .${size}byte $value
}
DW_FORM_GNU_ref_alt -
DW_FORM_GNU_strp_alt -
DW_FORM_sec_offset {
variable _cu_offset_size
_op .${_cu_offset_size}byte $value
}
DW_FORM_ref1 -
DW_FORM_flag -
DW_FORM_data1 {
_op .byte $value
}
DW_FORM_sdata {
_op .sleb128 $value
}
DW_FORM_ref_udata -
DW_FORM_udata -
DW_FORM_loclistx -
DW_FORM_rnglistx {
_op .uleb128 $value
}
DW_FORM_addr {
variable _cu_addr_size
_op .${_cu_addr_size}byte $value
}
DW_FORM_GNU_addr_index {
variable _debug_addr_index
variable _cu_addr_size
_op .uleb128 ${_debug_addr_index}
incr _debug_addr_index
_defer_output .debug_addr {
_op .${_cu_addr_size}byte $value
}
}
DW_FORM_data2 -
DW_FORM_ref2 {
_op .2byte $value
}
DW_FORM_data8 -
DW_FORM_ref8 -
DW_FORM_ref_sig8 {
_op .8byte $value
}
DW_FORM_data16 {
_op .8byte $value
}
DW_FORM_strp {
variable _strings
variable _cu_offset_size
if {![info exists _strings($value)]} {
set _strings($value) [new_label strp]
_defer_output .debug_str {
define_label $_strings($value)
_op .ascii [_quote $value]
}
}
_op .${_cu_offset_size}byte $_strings($value) "strp: $value"
}
SPECIAL_expr {
variable _cu_version
variable _cu_addr_size
variable _cu_offset_size
set l1 [new_label "expr_start"]
set l2 [new_label "expr_end"]
_op .uleb128 "$l2 - $l1" "expression"
define_label $l1
_location $value $_cu_version $_cu_addr_size $_cu_offset_size
define_label $l2
}
DW_FORM_block1 {
set len [string length $value]
if {$len > 255} {
error "DW_FORM_block1 length too long"
}
_op .byte $len
_op .ascii [_nz_quote $value]
}
DW_FORM_block2 -
DW_FORM_block4 -
DW_FORM_block -
DW_FORM_ref2 -
DW_FORM_indirect -
DW_FORM_exprloc -
DW_FORM_strx -
DW_FORM_strx1 -
DW_FORM_strx2 -
DW_FORM_strx3 -
DW_FORM_strx4 -
DW_FORM_GNU_str_index -
default {
error "unhandled form $form"
}
}
}
proc _guess_form {value varname} {
upvar $varname new_value
switch -exact -- [string range $value 0 0] {
@ {
# Constant reference.
variable _constants
set new_value $_constants([string range $value 1 end])
# Just the simplest.
return DW_FORM_sdata
}
: {
# Label reference.
variable _cu_label
set new_value "[string range $value 1 end] - $_cu_label"
return DW_FORM_ref4
}
% {
# Label reference, an offset from .debug_info.
set new_value "[string range $value 1 end]"
return DW_FORM_ref_addr
}
default {
return ""
}
}
}
proc _default_form { attr } {
switch -exact -- $attr {
DW_AT_low_pc {
return DW_FORM_addr
}
DW_AT_producer -
DW_AT_comp_dir -
DW_AT_linkage_name -
DW_AT_MIPS_linkage_name -
DW_AT_name {
return DW_FORM_string
}
DW_AT_GNU_addr_base {
return DW_FORM_sec_offset
}
}
return ""
}
# Map NAME to its canonical form.
proc _map_name {name ary} {
variable $ary
if {[info exists ${ary}($name)]} {
set name [set ${ary}($name)]
}
return $name
}
proc _handle_attribute { attr_name attr_value attr_form } {
variable _abbrev_section
variable _constants
variable _cu_version
_handle_DW_FORM $attr_form $attr_value
_defer_output $_abbrev_section {
if { $attr_form eq "SPECIAL_expr" } {
if { $_cu_version < 4 } {
set attr_form_comment "DW_FORM_block"
} else {
set attr_form_comment "DW_FORM_exprloc"
}
} else {
set attr_form_comment $attr_form
}
_op .uleb128 $_constants($attr_name) $attr_name
_op .uleb128 $_constants($attr_form) $attr_form_comment
}
}
# Handle macro attribute MACRO_AT_range.
proc _handle_macro_at_range { attr_value } {
variable _cu_is_fission
if {[llength $attr_value] != 1} {
error "usage: MACRO_AT_range { func }"
}
set func [lindex $attr_value 0]
global srcdir subdir srcfile
set src ${srcdir}/${subdir}/${srcfile}
set result [function_range $func $src]
set form DW_FORM_addr
if { $_cu_is_fission } {
set form DW_FORM_GNU_addr_index
}
_handle_attribute DW_AT_low_pc [lindex $result 0] $form
_handle_attribute DW_AT_high_pc \
"[lindex $result 0] + [lindex $result 1]" $form
}
# Handle macro attribute MACRO_AT_func.
proc _handle_macro_at_func { attr_value } {
if {[llength $attr_value] != 1} {
error "usage: MACRO_AT_func { func file }"
}
_handle_attribute DW_AT_name [lindex $attr_value 0] DW_FORM_string
_handle_macro_at_range $attr_value
}
proc _handle_DW_TAG {tag_name {attrs {}} {children {}}} {
variable _abbrev_section
variable _abbrev_num
variable _constants
set has_children [expr {[string length $children] > 0}]
set my_abbrev [incr _abbrev_num]
# We somewhat wastefully emit a new abbrev entry for each tag.
# There's no reason for this other than laziness.
_defer_output $_abbrev_section {
_op .uleb128 $my_abbrev "Abbrev start"
_op .uleb128 $_constants($tag_name) $tag_name
_op .byte $has_children "has_children"
}
_op .uleb128 $my_abbrev "Abbrev ($tag_name)"
foreach attr $attrs {
set attr_name [_map_name [lindex $attr 0] _AT]
# When the length of ATTR is greater than 2, the last
# element of the list must be a form. The second through
# the penultimate elements are joined together and
# evaluated using subst. This allows constructs such as
# [gdb_target_symbol foo] to be used.
if {[llength $attr] > 2} {
set attr_value [uplevel 2 [list subst [join [lrange $attr 1 end-1]]]]
} else {
set attr_value [uplevel 2 [list subst [lindex $attr 1]]]
}
if { [string equal "MACRO_AT_func" $attr_name] } {
_handle_macro_at_func $attr_value
} elseif { [string equal "MACRO_AT_range" $attr_name] } {
_handle_macro_at_range $attr_value
} else {
if {[llength $attr] > 2} {
set attr_form [uplevel 2 [list subst [lindex $attr end]]]
if { [string index $attr_value 0] == ":" } {
# It is a label, get its value.
_guess_form $attr_value attr_value
}
} else {
set attr_form [_guess_form $attr_value attr_value]
if { $attr_form eq "" } {
set attr_form [_default_form $attr_name]
}
if { $attr_form eq "" } {
error "No form for $attr_name $attr_value"
}
}
set attr_form [_map_name $attr_form _FORM]
_handle_attribute $attr_name $attr_value $attr_form
}
}
_defer_output $_abbrev_section {
# Terminator.
_op .byte 0x0 "DW_AT - Terminator"
_op .byte 0x0 "DW_FORM - Terminator"
}
if {$has_children} {
uplevel 2 $children
# Terminate children.
_op .byte 0x0 "Terminate children"
}
}
proc _emit {string} {
variable _output_file
variable _defer
variable _deferred_output
if {$_defer == ""} {
puts $_output_file $string
} else {
append _deferred_output($_defer) ${string}\n
}
}
proc _section {name {flags ""} {type ""}} {
if {$flags == "" && $type == ""} {
_emit " .section $name"
} elseif {$type == ""} {
_emit " .section $name, \"$flags\""
} else {
_emit " .section $name, \"$flags\", %$type"
}
}
# SECTION_SPEC is a list of arguments to _section.
proc _defer_output {section_spec body} {
variable _defer
variable _deferred_output
set old_defer $_defer
set _defer [lindex $section_spec 0]
if {![info exists _deferred_output($_defer)]} {
set _deferred_output($_defer) ""
eval _section $section_spec
}
uplevel $body
set _defer $old_defer
}
proc _defer_to_string {body} {
variable _defer
variable _deferred_output
set old_defer $_defer
set _defer temp
set _deferred_output($_defer) ""
uplevel $body
set result $_deferred_output($_defer)
unset _deferred_output($_defer)
set _defer $old_defer
return $result
}
proc _write_deferred_output {} {
variable _output_file
variable _deferred_output
foreach section [array names _deferred_output] {
# The data already has a newline.
puts -nonewline $_output_file $_deferred_output($section)
}
# Save some memory.
unset _deferred_output
}
proc _op {name value {comment ""}} {
set text " ${name} ${value}"
if {$comment != ""} {
# Try to make stuff line up nicely.
while {[string length $text] < 40} {
append text " "
}
append text "/* ${comment} */"
}
_emit $text
}
proc _compute_label {name} {
return ".L${name}"
}
# Return a name suitable for use as a label. If BASE_NAME is
# specified, it is incorporated into the label name; this is to
# make debugging the generated assembler easier. If BASE_NAME is
# not specified a generic default is used. This proc does not
# define the label; see 'define_label'. 'new_label' attempts to
# ensure that label names are unique.
proc new_label {{base_name label}} {
variable _label_num
return [_compute_label ${base_name}[incr _label_num]]
}
# Define a label named NAME. Ordinarily, NAME comes from a call
# to 'new_label', but this is not required.
proc define_label {name} {
_emit "${name}:"
}
# A higher-level interface to label handling.
#
# ARGS is a list of label descriptors. Each one is either a
# single element, or a list of two elements -- a name and some
# text. For each descriptor, 'new_label' is invoked. If the list
# form is used, the second element in the list is passed as an
# argument. The label name is used to define a variable in the
# enclosing scope; this can be used to refer to the label later.
# The label name is also used to define a new proc whose name is
# the label name plus a trailing ":". This proc takes a body as
# an argument and can be used to define the label at that point;
# then the body, if any, is evaluated in the caller's context.
#
# For example:
#
# declare_labels int_label
# something { ... $int_label } ;# refer to the label
# int_label: constant { ... } ;# define the label
proc declare_labels {args} {
foreach arg $args {
set name [lindex $arg 0]
set text [lindex $arg 1]
if { $text == "" } {
set text $name
}
upvar $name label_var
set label_var [new_label $text]
proc ${name}: {args} [format {
define_label %s
uplevel $args
} $label_var]
}
}
# Assign elements from LINE to the elements of an array named
# "argvec" in the caller scope. The keys used are named in ARGS.
# If the wrong number of elements appear in LINE, error.
proc _get_args {line op args} {
if {[llength $line] != [llength $args] + 1} {
error "usage: $op [string toupper $args]"
}
upvar argvec argvec
foreach var $args value [lreplace $line 0 0] {
set argvec($var) $value
}
}
# This is a miniature assembler for location expressions. It is
# suitable for use in the attributes to a DIE. Its output is
# prefixed with "=" to make it automatically use DW_FORM_block.
#
# BODY is split by lines, and each line is taken to be a list.
#
# DWARF_VERSION is the DWARF version for the section where the location
# description is found.
#
# ADDR_SIZE is the length in bytes (4 or 8) of an address on the target
# machine (typically found in the header of the section where the location
# description is found).
#
# OFFSET_SIZE is the length in bytes (4 or 8) of an offset into a DWARF
# section. This typically depends on whether 32-bit or 64-bit DWARF is
# used, as indicated in the header of the section where the location
# description is found.
#
# (FIXME should use 'info complete' here.)
# Each list's first element is the opcode, either short or long
# forms are accepted.
# FIXME argument handling
# FIXME move docs
proc _location { body dwarf_version addr_size offset_size } {
variable _constants
foreach line [split $body \n] {
# Ignore blank lines, and allow embedded comments.
if {[lindex $line 0] == "" || [regexp -- {^[ \t]*#} $line]} {
continue
}
set opcode [_map_name [lindex $line 0] _OP]
_op .byte $_constants($opcode) $opcode
array unset argvec *
switch -exact -- $opcode {
DW_OP_addr {
_get_args $line $opcode size
_op .${addr_size}byte $argvec(size)
}
DW_OP_GNU_addr_index {
variable _debug_addr_index
variable _cu_addr_size
_op .uleb128 ${_debug_addr_index}
incr _debug_addr_index
_defer_output .debug_addr {
_op .${_cu_addr_size}byte [lindex $line 1]
}
}
DW_OP_regx {
_get_args $line $opcode register
_op .uleb128 $argvec(register)
}
DW_OP_pick -
DW_OP_const1u -
DW_OP_const1s {
_get_args $line $opcode const
_op .byte $argvec(const)
}
DW_OP_const2u -
DW_OP_const2s {
_get_args $line $opcode const
_op .2byte $argvec(const)
}
DW_OP_const4u -
DW_OP_const4s {
_get_args $line $opcode const
_op .4byte $argvec(const)
}
DW_OP_const8u -
DW_OP_const8s {
_get_args $line $opcode const
_op .8byte $argvec(const)
}
DW_OP_constu {
_get_args $line $opcode const
_op .uleb128 $argvec(const)
}
DW_OP_consts {
_get_args $line $opcode const
_op .sleb128 $argvec(const)
}
DW_OP_plus_uconst {
_get_args $line $opcode const
_op .uleb128 $argvec(const)
}
DW_OP_piece {
_get_args $line $opcode size
_op .uleb128 $argvec(size)
}
DW_OP_bit_piece {
_get_args $line $opcode size offset
_op .uleb128 $argvec(size)
_op .uleb128 $argvec(offset)
}
DW_OP_skip -
DW_OP_bra {
_get_args $line $opcode label
_op .2byte $argvec(label)
}
DW_OP_implicit_value {
set l1 [new_label "value_start"]
set l2 [new_label "value_end"]
_op .uleb128 "$l2 - $l1"
define_label $l1
foreach value [lrange $line 1 end] {
switch -regexp -- $value {
{^0x[[:xdigit:]]{1,2}$} {_op .byte $value}
{^0x[[:xdigit:]]{4}$} {_op .2byte $value}
{^0x[[:xdigit:]]{8}$} {_op .4byte $value}
{^0x[[:xdigit:]]{16}$} {_op .8byte $value}
default {
error "bad value '$value' in DW_OP_implicit_value"
}
}
}
define_label $l2
}
DW_OP_implicit_pointer -
DW_OP_GNU_implicit_pointer {
_get_args $line $opcode label offset
# Here label is a section offset.
if { $dwarf_version == 2 } {
_op .${addr_size}byte $argvec(label)
} else {
_op .${offset_size}byte $argvec(label)
}
_op .sleb128 $argvec(offset)
}
DW_OP_GNU_variable_value {
_get_args $line $opcode label
# Here label is a section offset.
if { $dwarf_version == 2 } {
_op .${addr_size}byte $argvec(label)
} else {
_op .${offset_size}byte $argvec(label)
}
}
DW_OP_deref_size {
_get_args $line $opcode size
_op .byte $argvec(size)
}
DW_OP_bregx {
_get_args $line $opcode register offset
_op .uleb128 $argvec(register)
_op .sleb128 $argvec(offset)
}
default {
if {[llength $line] > 1} {
error "Unimplemented: operands in location for $opcode"
}
}
}
}
}
# Return a label that references the current position in the
# .debug_addr table. When a user is creating split DWARF they
# will define two CUs, the first will be the split DWARF content,
# and the second will be the non-split stub CU. The split DWARF
# CU fills in the .debug_addr section, but the non-split CU
# includes a reference to the start of the section. The label
# returned by this proc provides that reference.
proc debug_addr_label {} {
variable _debug_addr_index
set lbl [new_label "debug_addr_idx_${_debug_addr_index}_"]
_defer_output .debug_addr {
define_label $lbl
}
return $lbl
}
# Emit a DWARF CU.
# OPTIONS is a list with an even number of elements containing
# option-name and option-value pairs.
# Current options are:
# is_64 0|1 - boolean indicating if you want to emit 64-bit DWARF
# default = 0 (32-bit)
# version n - DWARF version number to emit
# default = 4
# addr_size n - the size of addresses in bytes: 4, 8, or default
# default = default
# fission 0|1 - boolean indicating if generating Fission debug info
# default = 0
# BODY is Tcl code that emits the DIEs which make up the body of
# the CU. It is evaluated in the caller's context.
proc cu {options body} {
variable _constants
variable _cu_count
variable _abbrev_section
variable _abbrev_num
variable _cu_label
variable _cu_version
variable _cu_addr_size
variable _cu_offset_size
variable _cu_is_fission
# Establish the defaults.
set is_64 0
set _cu_version 4
set _cu_addr_size default
set _cu_is_fission 0
set section ".debug_info"
set _abbrev_section ".debug_abbrev"
foreach { name value } $options {
set value [uplevel 1 "subst \"$value\""]
switch -exact -- $name {
is_64 { set is_64 $value }
version { set _cu_version $value }
addr_size { set _cu_addr_size $value }
fission { set _cu_is_fission $value }
default { error "unknown option $name" }
}
}
if {$_cu_addr_size == "default"} {
if {[is_64_target]} {
set _cu_addr_size 8
} else {
set _cu_addr_size 4
}
}
set _cu_offset_size [expr { $is_64 ? 8 : 4 }]
if { $_cu_is_fission } {
set section ".debug_info.dwo"
set _abbrev_section ".debug_abbrev.dwo"
}
if {$_cu_version < 4} {
set _constants(SPECIAL_expr) $_constants(DW_FORM_block)
} else {
set _constants(SPECIAL_expr) $_constants(DW_FORM_exprloc)
}
_section $section
set cu_num [incr _cu_count]
set my_abbrevs [_compute_label "abbrev${cu_num}_begin"]
set _abbrev_num 1
set _cu_label [_compute_label "cu${cu_num}_begin"]
set start_label [_compute_label "cu${cu_num}_start"]
set end_label [_compute_label "cu${cu_num}_end"]
define_label $_cu_label
if {$is_64} {
_op .4byte 0xffffffff
_op .8byte "$end_label - $start_label"
} else {
_op .4byte "$end_label - $start_label"
}
define_label $start_label
_op .2byte $_cu_version Version
# The CU header for DWARF 4 and 5 are slightly different.
if { $_cu_version == 5 } {
_op .byte 0x1 "DW_UT_compile"
_op .byte $_cu_addr_size "Pointer size"
_op .${_cu_offset_size}byte $my_abbrevs Abbrevs
} else {
_op .${_cu_offset_size}byte $my_abbrevs Abbrevs
_op .byte $_cu_addr_size "Pointer size"
}
_defer_output $_abbrev_section {
define_label $my_abbrevs
}
uplevel $body
_defer_output $_abbrev_section {
# Emit the terminator.
_op .byte 0x0 "Abbrev end - Terminator"
}
define_label $end_label
}
# Emit a DWARF TU.
# OPTIONS is a list with an even number of elements containing
# option-name and option-value pairs.
# Current options are:
# is_64 0|1 - boolean indicating if you want to emit 64-bit DWARF
# default = 0 (32-bit)
# version n - DWARF version number to emit
# default = 4
# addr_size n - the size of addresses in bytes: 4, 8, or default
# default = default
# fission 0|1 - boolean indicating if generating Fission debug info
# default = 0
# SIGNATURE is the 64-bit signature of the type.
# TYPE_LABEL is the label of the type defined by this TU,
# or "" if there is no type (i.e., type stubs in Fission).
# BODY is Tcl code that emits the DIEs which make up the body of
# the TU. It is evaluated in the caller's context.
proc tu {options signature type_label body} {
variable _cu_count
variable _abbrev_section
variable _abbrev_num
variable _cu_label
variable _cu_version
variable _cu_addr_size
variable _cu_offset_size
variable _cu_is_fission
# Establish the defaults.
set is_64 0
set _cu_version 4
set _cu_addr_size default
set _cu_is_fission 0
set section ".debug_types"
set _abbrev_section ".debug_abbrev"
foreach { name value } $options {
switch -exact -- $name {
is_64 { set is_64 $value }
version { set _cu_version $value }
addr_size { set _cu_addr_size $value }
fission { set _cu_is_fission $value }
default { error "unknown option $name" }
}
}
if {$_cu_addr_size == "default"} {
if {[is_64_target]} {
set _cu_addr_size 8
} else {
set _cu_addr_size 4
}
}
set _cu_offset_size [expr { $is_64 ? 8 : 4 }]
if { $_cu_is_fission } {
set section ".debug_types.dwo"
set _abbrev_section ".debug_abbrev.dwo"
}
_section $section
set cu_num [incr _cu_count]
set my_abbrevs [_compute_label "abbrev${cu_num}_begin"]
set _abbrev_num 1
set _cu_label [_compute_label "cu${cu_num}_begin"]
set start_label [_compute_label "cu${cu_num}_start"]
set end_label [_compute_label "cu${cu_num}_end"]
define_label $_cu_label
if {$is_64} {
_op .4byte 0xffffffff
_op .8byte "$end_label - $start_label"
} else {
_op .4byte "$end_label - $start_label"
}
define_label $start_label
_op .2byte $_cu_version Version
_op .${_cu_offset_size}byte $my_abbrevs Abbrevs
_op .byte $_cu_addr_size "Pointer size"
_op .8byte $signature Signature
if { $type_label != "" } {
uplevel declare_labels $type_label
upvar $type_label my_type_label
if {$is_64} {
_op .8byte "$my_type_label - $_cu_label"
} else {
_op .4byte "$my_type_label - $_cu_label"
}
} else {
if {$is_64} {
_op .8byte 0
} else {
_op .4byte 0
}
}
_defer_output $_abbrev_section {
define_label $my_abbrevs
}
uplevel $body
_defer_output $_abbrev_section {
# Emit the terminator.
_op .byte 0x0 "Abbrev end - Terminator"
}
define_label $end_label
}
# Emit a DWARF .debug_ranges unit.
# OPTIONS is a list with an even number of elements containing
# option-name and option-value pairs.
# Current options are:
# is_64 0|1 - boolean indicating if you want to emit 64-bit DWARF
# default = 0 (32-bit)
#
# BODY is Tcl code that emits the content of the .debug_ranges
# unit, it is evaluated in the caller's context.
proc ranges {options body} {
variable _debug_ranges_64_bit
foreach { name value } $options {
switch -exact -- $name {
is_64 { set _debug_ranges_64_bit [subst $value] }
default { error "unknown option $name" }
}
}
set section ".debug_ranges"
_section $section
proc sequence { body } {
variable _debug_ranges_64_bit
# Emit the sequence of addresses.
proc base { addr } {
variable _debug_ranges_64_bit
if { $_debug_ranges_64_bit } then {
_op .8byte 0xffffffffffffffff "Base Marker"
_op .8byte $addr "Base Address"
} else {
_op .4byte 0xffffffff "Base Marker"
_op .4byte $addr "Base Address"
}
}
proc range { start end } {
variable _debug_ranges_64_bit
if { $_debug_ranges_64_bit } then {
_op .8byte $start "Start Address"
_op .8byte $end "End Address"
} else {
_op .4byte $start "Start Address"
_op .4byte $end "End Address"
}
}
uplevel $body
# End of the sequence.
if { $_debug_ranges_64_bit } then {
_op .8byte 0x0 "End of Sequence Marker (Part 1)"
_op .8byte 0x0 "End of Sequence Marker (Part 2)"
} else {
_op .4byte 0x0 "End of Sequence Marker (Part 1)"
_op .4byte 0x0 "End of Sequence Marker (Part 2)"
}
}
uplevel $body
}
# Emit a DWARF .debug_rnglists section.
#
# The target address size is based on the current target's address size.
#
# There is one mandatory positional argument, BODY, which must be Tcl code
# that emits the content of the section. It is evaluated in the caller's
# context.
#
# The following option can be used:
#
# - -is-64 true|false: Whether to use 64-bit DWARF instead of 32-bit DWARF.
# The default is 32-bit.
proc rnglists { args } {
variable _debug_rnglists_addr_size
variable _debug_rnglists_offset_size
variable _debug_rnglists_is_64_dwarf
parse_args {{"is-64" "false"}}
if { [llength $args] != 1 } {
error "rnglists proc expects one positional argument (body)"
}
lassign $args body
if [is_64_target] {
set _debug_rnglists_addr_size 8
} else {
set _debug_rnglists_addr_size 4
}
if { ${is-64} } {
set _debug_rnglists_offset_size 8
set _debug_rnglists_is_64_dwarf true
} else {
set _debug_rnglists_offset_size 4
set _debug_rnglists_is_64_dwarf false
}
_section ".debug_rnglists"
# Count of tables in the section.
variable _debug_rnglists_table_count 0
# Compute the label name for list at index LIST_IDX, for the current
# table.
proc _compute_list_label { list_idx } {
variable _debug_rnglists_table_count
return ".Lrnglists_table_${_debug_rnglists_table_count}_list_${list_idx}"
}
# Generate one table (header + offset array + range lists).
#
# Accepts one positional argument, BODY. BODY may call the LIST_
# procedure to generate rnglists.
#
# The -post-header-label option can be used to define a label just after
# the header of the table. This is the label that a DW_AT_rnglists_base
# attribute will usually refer to.
#
# The `-with-offset-array true|false` option can be used to control
# whether the headers of the location list tables have an array of
# offset. The default is true.
proc table { args } {
variable _debug_rnglists_table_count
variable _debug_rnglists_addr_size
variable _debug_rnglists_offset_size
variable _debug_rnglists_is_64_dwarf
parse_args {
{post-header-label ""}
{with-offset-array true}
}
if { [llength $args] != 1 } {
error "table proc expects one positional argument (body)"
}
lassign $args body
# Generate one range list.
#
# BODY may call the various procs defined below to generate list entries.
# They correspond to the range list entry kinds described in section 2.17.3
# of the DWARF 5 spec.
#
# To define a label pointing to the beginning of the list, use
# the conventional way of declaring and defining labels:
#
# declare_labels the_list
#
# the_list: list_ {
# ...
# }
proc list_ { body } {
variable _debug_rnglists_list_count
# Define a label for this list. It is used to build the offset
# array later.
set list_label [_compute_list_label $_debug_rnglists_list_count]
define_label $list_label
# Emit a DW_RLE_start_end entry.
proc start_end { start end } {
variable _debug_rnglists_addr_size
_op .byte 0x06 "DW_RLE_start_end"
_op .${_debug_rnglists_addr_size}byte $start "start"
_op .${_debug_rnglists_addr_size}byte $end "end"
}
uplevel $body
# Emit end of list.
_op .byte 0x00 "DW_RLE_end_of_list"
incr _debug_rnglists_list_count
}
# Count of lists in the table.
variable _debug_rnglists_list_count 0
# Generate the lists ops first, because we need to know how many
# lists there are to generate the header and offset table.
set lists_ops [_defer_to_string {
uplevel $body
}]
set post_unit_len_label \
[_compute_label "rnglists_table_${_debug_rnglists_table_count}_post_unit_len"]
set post_header_label \
[_compute_label "rnglists_table_${_debug_rnglists_table_count}_post_header"]
set table_end_label \
[_compute_label "rnglists_table_${_debug_rnglists_table_count}_end"]
# Emit the table header.
if { $_debug_rnglists_is_64_dwarf } {
_op .4byte 0xffffffff "unit length 1/2"
_op .8byte "$table_end_label - $post_unit_len_label" "unit length 2/2"
} else {
_op .4byte "$table_end_label - $post_unit_len_label" "unit length"
}
define_label $post_unit_len_label
_op .2byte 5 "dwarf version"
_op .byte $_debug_rnglists_addr_size "address size"
_op .byte 0 "segment selector size"
if { ${with-offset-array} } {
_op .4byte "$_debug_rnglists_list_count" "offset entry count"
} else {
_op .4byte 0 "offset entry count"
}
define_label $post_header_label
# Define the user post-header label, if provided.
if { ${post-header-label} != "" } {
define_label ${post-header-label}
}
# Emit the offset array.
if { ${with-offset-array} } {
for {set list_idx 0} {$list_idx < $_debug_rnglists_list_count} {incr list_idx} {
set list_label [_compute_list_label $list_idx]
_op .${_debug_rnglists_offset_size}byte "$list_label - $post_header_label" "offset of list $list_idx"
}
}
# Emit the actual list data.
_emit "$lists_ops"
define_label $table_end_label
incr _debug_rnglists_table_count
}
uplevel $body
}
# Emit a DWARF .debug_loclists section.
#
# The target address size is based on the current target's address size.
#
# There is one mandatory positional argument, BODY, which must be Tcl code
# that emits the content of the section. It is evaluated in the caller's
# context.
#
# The following option can be used:
#
# - -is-64 true|false: Whether to use 64-bit DWARF instead of 32-bit DWARF.
# The default is 32-bit.
proc loclists { args } {
variable _debug_loclists_addr_size
variable _debug_loclists_offset_size
variable _debug_loclists_is_64_dwarf
parse_args {{"is-64" "false"}}
if { [llength $args] != 1 } {
error "loclists proc expects one positional argument (body)"
}
lassign $args body
if [is_64_target] {
set _debug_loclists_addr_size 8
} else {
set _debug_loclists_addr_size 4
}
if { ${is-64} } {
set _debug_loclists_offset_size 8
set _debug_loclists_is_64_dwarf true
} else {
set _debug_loclists_offset_size 4
set _debug_loclists_is_64_dwarf false
}
_section ".debug_loclists"
# Count of tables in the section.
variable _debug_loclists_table_count 0
# Compute the label name for list at index LIST_IDX, for the current
# table.
proc _compute_list_label { list_idx } {
variable _debug_loclists_table_count
return ".Lloclists_table_${_debug_loclists_table_count}_list_${list_idx}"
}
# Generate one table (header + offset array + location lists).
#
# Accepts one position argument, BODY. BODY may call the LIST_
# procedure to generate loclists.
#
# The -post-header-label option can be used to define a label just after the
# header of the table. This is the label that a DW_AT_loclists_base
# attribute will usually refer to.
#
# The `-with-offset-array true|false` option can be used to control
# whether the headers of the location list tables have an array of
# offset. The default is true.
proc table { args } {
variable _debug_loclists_table_count
variable _debug_loclists_addr_size
variable _debug_loclists_offset_size
variable _debug_loclists_is_64_dwarf
parse_args {
{post-header-label ""}
{with-offset-array true}
}
if { [llength $args] != 1 } {
error "table proc expects one positional argument (body)"
}
lassign $args body
# Generate one location list.
#
# BODY may call the various procs defined below to generate list
# entries. They correspond to the location list entry kinds
# described in section 2.6.2 of the DWARF 5 spec.
#
# To define a label pointing to the beginning of the list, use
# the conventional way of declaring and defining labels:
#
# declare_labels the_list
#
# the_list: list_ {
# ...
# }
proc list_ { body } {
variable _debug_loclists_list_count
# Count the location descriptions in this list.
variable _debug_loclists_locdesc_count 0
# Define a label for this list. It is used to build the offset
# array later.
set list_label [_compute_list_label $_debug_loclists_list_count]
define_label $list_label
# Emit a DW_LLE_start_length entry.
proc start_length { start length locdesc } {
variable _debug_loclists_is_64_dwarf
variable _debug_loclists_addr_size
variable _debug_loclists_offset_size
variable _debug_loclists_table_count
variable _debug_loclists_list_count
variable _debug_loclists_locdesc_count
_op .byte 0x08 "DW_LLE_start_length"
# Start and end of the address range.
_op .${_debug_loclists_addr_size}byte $start "start"
_op .uleb128 $length "length"
# Length of location description.
set locdesc_start_label ".Lloclists_table_${_debug_loclists_table_count}_list_${_debug_loclists_list_count}_locdesc_${_debug_loclists_locdesc_count}_start"
set locdesc_end_label ".Lloclists_table_${_debug_loclists_table_count}_list_${_debug_loclists_list_count}_locdesc_${_debug_loclists_locdesc_count}_end"
_op .uleb128 "$locdesc_end_label - $locdesc_start_label" "locdesc length"
define_label $locdesc_start_label
set dwarf_version 5
_location $locdesc $dwarf_version $_debug_loclists_addr_size $_debug_loclists_offset_size
define_label $locdesc_end_label
incr _debug_loclists_locdesc_count
}
uplevel $body
# Emit end of list.
_op .byte 0x00 "DW_LLE_end_of_list"
incr _debug_loclists_list_count
}
# Count of lists in the table.
variable _debug_loclists_list_count 0
# Generate the lists ops first, because we need to know how many
# lists there are to generate the header and offset table.
set lists_ops [_defer_to_string {
uplevel $body
}]
set post_unit_len_label \
[_compute_label "loclists_table_${_debug_loclists_table_count}_post_unit_len"]
set post_header_label \
[_compute_label "loclists_table_${_debug_loclists_table_count}_post_header"]
set table_end_label \
[_compute_label "loclists_table_${_debug_loclists_table_count}_end"]
# Emit the table header.
if { $_debug_loclists_is_64_dwarf } {
_op .4byte 0xffffffff "unit length 1/2"
_op .8byte "$table_end_label - $post_unit_len_label" "unit length 2/2"
} else {
_op .4byte "$table_end_label - $post_unit_len_label" "unit length"
}
define_label $post_unit_len_label
_op .2byte 5 "DWARF version"
_op .byte $_debug_loclists_addr_size "address size"
_op .byte 0 "segment selector size"
if { ${with-offset-array} } {
_op .4byte "$_debug_loclists_list_count" "offset entry count"
} else {
_op .4byte 0 "offset entry count"
}
define_label $post_header_label
# Define the user post-header label, if provided.
if { ${post-header-label} != "" } {
define_label ${post-header-label}
}
# Emit the offset array.
if { ${with-offset-array} } {
for {set list_idx 0} {$list_idx < $_debug_loclists_list_count} {incr list_idx} {
set list_label [_compute_list_label $list_idx]
_op .${_debug_loclists_offset_size}byte "$list_label - $post_header_label" "offset of list $list_idx"
}
}
# Emit the actual list data.
_emit "$lists_ops"
define_label $table_end_label
incr _debug_loclists_table_count
}
uplevel $body
}
# Emit a DWARF .debug_line unit.
# OPTIONS is a list with an even number of elements containing
# option-name and option-value pairs.
# Current options are:
# is_64 0|1 - boolean indicating if you want to emit 64-bit DWARF
# default = 0 (32-bit)
# version n - DWARF version number to emit
# default = 4
# addr_size n - the size of addresses in bytes: 4, 8, or default
# default = default
#
# LABEL is the label of the current unit (which is probably
# referenced by a DW_AT_stmt_list), or "" if there is no such
# label.
#
# BODY is Tcl code that emits the parts which make up the body of
# the line unit. It is evaluated in the caller's context. The
# following commands are available for the BODY section:
#
# include_dir "dirname" -- adds a new include directory
#
# file_name "file.c" idx -- adds a new file name. IDX is a
# 1-based index referencing an include directory or 0 for
# current directory.
proc lines {options label body} {
variable _line_count
variable _line_saw_file
variable _line_saw_program
variable _line_header_end_label
# Establish the defaults.
set is_64 0
set _unit_version 4
set _unit_addr_size default
set _line_saw_program 0
set _line_saw_file 0
set _default_is_stmt 1
foreach { name value } $options {
switch -exact -- $name {
is_64 { set is_64 $value }
version { set _unit_version $value }
addr_size { set _unit_addr_size $value }
default_is_stmt { set _default_is_stmt $value }
default { error "unknown option $name" }
}
}
if {$_unit_addr_size == "default"} {
if {[is_64_target]} {
set _unit_addr_size 8
} else {
set _unit_addr_size 4
}
}
set unit_num [incr _line_count]
set section ".debug_line"
_section $section
if { "$label" != "" } {
# Define the user-provided label at this point.
$label:
}
set unit_len_label [_compute_label "line${_line_count}_start"]
set unit_end_label [_compute_label "line${_line_count}_end"]
set header_len_label [_compute_label "line${_line_count}_header_start"]
set _line_header_end_label [_compute_label "line${_line_count}_header_end"]
if {$is_64} {
_op .4byte 0xffffffff
_op .8byte "$unit_end_label - $unit_len_label" "unit_length"
} else {
_op .4byte "$unit_end_label - $unit_len_label" "unit_length"
}
define_label $unit_len_label
_op .2byte $_unit_version version
if {$is_64} {
_op .8byte "$_line_header_end_label - $header_len_label" "header_length"
} else {
_op .4byte "$_line_header_end_label - $header_len_label" "header_length"
}
define_label $header_len_label
_op .byte 1 "minimum_instruction_length"
_op .byte $_default_is_stmt "default_is_stmt"
_op .byte 1 "line_base"
_op .byte 1 "line_range"
_op .byte 10 "opcode_base"
# The standard_opcode_lengths table. The number of arguments
# for each of the standard opcodes. Generating 9 entries here
# matches the use of 10 in the opcode_base above. These 9
# entries match the 9 standard opcodes for DWARF2, making use
# of only 9 should be fine, even if we are generating DWARF3
# or DWARF4.
_op .byte 0 "standard opcode 1"
_op .byte 1 "standard opcode 2"
_op .byte 1 "standard opcode 3"
_op .byte 1 "standard opcode 4"
_op .byte 1 "standard opcode 5"
_op .byte 0 "standard opcode 6"
_op .byte 0 "standard opcode 7"
_op .byte 0 "standard opcode 8"
_op .byte 1 "standard opcode 9"
proc include_dir {dirname} {
_op .ascii [_quote $dirname]
}
proc file_name {filename diridx} {
variable _line_saw_file
if "! $_line_saw_file" {
# Terminate the dir list.
_op .byte 0 "Terminator."
set _line_saw_file 1
}
_op .ascii [_quote $filename]
_op .sleb128 $diridx
_op .sleb128 0 "mtime"
_op .sleb128 0 "length"
}
proc program {statements} {
variable _line_saw_program
variable _line_header_end_label
variable _line
set _line 1
if "! $_line_saw_program" {
# Terminate the file list.
_op .byte 0 "Terminator."
define_label $_line_header_end_label
set _line_saw_program 1
}
proc DW_LNE_set_address {addr} {
_op .byte 0
set start [new_label "set_address_start"]
set end [new_label "set_address_end"]
_op .uleb128 "${end} - ${start}"
define_label ${start}
_op .byte 2
if {[is_64_target]} {
_op .8byte ${addr}
} else {
_op .4byte ${addr}
}
define_label ${end}
}
proc DW_LNE_end_sequence {} {
variable _line
_op .byte 0
_op .uleb128 1
_op .byte 1
set _line 1
}
proc DW_LNE_user { len opcode } {
set DW_LNE_lo_usr 0x80
set DW_LNE_hi_usr 0xff
if { $DW_LNE_lo_usr <= $opcode
&& $opcode <= $DW_LNE_hi_usr } {
_op .byte 0
_op .uleb128 $len
_op .byte $opcode
for {set i 1} {$i < $len} {incr i} {
_op .byte 0
}
} else {
error "unknown vendor specific extended opcode: $opcode"
}
}
proc DW_LNS_copy {} {
_op .byte 1
}
proc DW_LNS_negate_stmt {} {
_op .byte 6
}
proc DW_LNS_advance_pc {offset} {
_op .byte 2
_op .uleb128 ${offset}
}
proc DW_LNS_advance_line {offset} {
variable _line
_op .byte 3
_op .sleb128 ${offset}
set _line [expr $_line + $offset]
}
# A pseudo line number program instruction, that can be used instead
# of DW_LNS_advance_line. Rather than writing:
# {DW_LNS_advance_line [expr $line1 - 1]}
# {DW_LNS_advance_line [expr $line2 - $line1]}
# {DW_LNS_advance_line [expr $line3 - $line2]}
# we can just write:
# {line $line1}
# {line $line2}
# {line $line3}
proc line {line} {
variable _line
set offset [expr $line - $_line]
DW_LNS_advance_line $offset
}
proc DW_LNS_set_file {num} {
_op .byte 4
_op .sleb128 ${num}
}
foreach statement $statements {
uplevel 1 $statement
}
}
uplevel $body
rename include_dir ""
rename file_name ""
# Terminate dir list if we saw no files.
if "! $_line_saw_file" {
_op .byte 0 "Terminator."
}
# Terminate the file list.
if "! $_line_saw_program" {
_op .byte 0 "Terminator."
define_label $_line_header_end_label
}
define_label $unit_end_label
}
proc _empty_array {name} {
upvar $name the_array
catch {unset the_array}
set the_array(_) {}
unset the_array(_)
}
# Emit a .gnu_debugaltlink section with the given file name and
# build-id. The buildid should be represented as a hexadecimal
# string, like "ffeeddcc".
proc gnu_debugaltlink {filename buildid} {
_defer_output .gnu_debugaltlink {
_op .ascii [_quote $filename]
foreach {a b} [split $buildid {}] {
_op .byte 0x$a$b
}
}
}
proc _note {type name hexdata} {
set namelen [expr [string length $name] + 1]
# Name size.
_op .4byte $namelen
# Data size.
_op .4byte [expr [string length $hexdata] / 2]
# Type.
_op .4byte $type
# The name.
_op .ascii [_quote $name]
# Alignment.
set align 2
set total [expr {($namelen + (1 << $align) - 1) & -(1 << $align)}]
for {set i $namelen} {$i < $total} {incr i} {
_op .byte 0
}
# The data.
foreach {a b} [split $hexdata {}] {
_op .byte 0x$a$b
}
}
# Emit a note section holding the given build-id.
proc build_id {buildid} {
_defer_output {.note.gnu.build-id a note} {
# From elf/common.h.
set NT_GNU_BUILD_ID 3
_note $NT_GNU_BUILD_ID GNU $buildid
}
}
# The top-level interface to the DWARF assembler.
# FILENAME is the name of the file where the generated assembly
# code is written.
# BODY is Tcl code to emit the assembly. It is evaluated via
# "eval" -- not uplevel as you might expect, because it is
# important to run the body in the Dwarf namespace.
#
# A typical invocation is something like:
# Dwarf::assemble $file {
# cu 0 2 8 {
# compile_unit {
# ...
# }
# }
# cu 0 2 8 {
# ...
# }
# }
proc assemble {filename body} {
variable _initialized
variable _output_file
variable _deferred_output
variable _defer
variable _label_num
variable _strings
variable _cu_count
variable _line_count
variable _line_saw_file
variable _line_saw_program
variable _line_header_end_label
variable _debug_ranges_64_bit
variable _debug_addr_index
if {!$_initialized} {
_read_constants
set _initialized 1
}
set _output_file [open $filename w]
set _cu_count 0
_empty_array _deferred_output
set _defer ""
set _label_num 0
_empty_array _strings
set _line_count 0
set _line_saw_file 0
set _line_saw_program 0
set _debug_ranges_64_bit [is_64_target]
set _debug_addr_index 0
# Not "uplevel" here, because we want to evaluate in this
# namespace. This is somewhat bad because it means we can't
# readily refer to outer variables.
eval $body
_write_deferred_output
catch {close $_output_file}
set _output_file {}
}
}