binutils-gdb/gdb/stubs/z80-stub.c
Sergey Belyashov 3dab9e15d3 Add basic Z80 CPU support
Supported ISAs:
- Z80 (all undocumented instructions)
- Z180
- eZ80 (Z80 mode only)

Datasheets:
Z80: https://www.zilog.com/manage_directlink.php?filepath=docs/z80/um0080&extn=.pdf
Z180: https://www.zilog.com/manage_directlink.php?filepath=docs/z180/ps0140&extn=.pdf
eZ80: http://www.zilog.com/force_download.php?filepath=YUhSMGNEb3ZMM2QzZHk1NmFXeHZaeTVqYjIwdlpHOWpjeTlWVFRBd056Y3VjR1Jt

To debug Z80 programs using GDB you must configure and embed
z80-stub.c to your program (SDCC compiler is required). Or
you may use some simulator with GDB support.

gdb/ChangeLog:

	* Makefile.in (ALL_TARGET_OBS): Add z80-tdep.c.
	* NEWS: Mention z80 support.
	* configure.tgt: Handle z80*.
	* features/Makefile (XMLTOC): Add z80.xml.
	* features/z80-cpu.xml: New.
	* features/z80.c: Generate.
	* features/z80.xml: New.
	* z80-tdep.c: New file.
	* z80-tdep.h: New file.

gdb/stubs/ChangeLog:

	* z80-stub.c: New file.

Change-Id: Id0b7a6e210c3f93c6853c5e3031b7bcee47d0db9
2021-07-17 10:17:30 -04:00

1356 lines
29 KiB
C

/* Debug stub for Z80.
Copyright (C) 2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Usage:
1. Copy this file to project directory
2. Configure it commenting/uncommenting macros below or define DBG_CONFIGURED
and all required macros and then include this file to one of your C-source
files.
3. Implement getDebugChar() and putDebugChar(), functions must not return
until data received or sent.
4. Implement all optional functions used to toggle breakpoints/watchpoints,
if supported. Do not write fuctions to toggle software breakpoints if
you unsure (GDB will do itself).
5. Implement serial port initialization routine called at program start.
6. Add necessary debugger entry points to your program, for example:
.org 0x08 ;RST 8 handler
jp _debug_swbreak
...
.org 0x66 ;NMI handler
jp _debug_nmi
...
main_loop:
halt
call isDbgInterrupt
jr z,101$
ld hl, 2 ;EX_SIGINT
push hl
call _debug_exception
101$:
...
7. Compile file using SDCC (supported ports are: z80, z180, z80n, gbz80 and
ez80_z80), do not use --peep-asm option. For example:
$ sdcc -mz80 --opt-code-size --max-allocs-per-node 50000 z80-stub.c
*/
/******************************************************************************\
Configuration
\******************************************************************************/
#ifndef DBG_CONFIGURED
/* Uncomment this line, if stub size is critical for you */
//#define DBG_MIN_SIZE
/* Comment this line out if software breakpoints are unsupported.
If you have special function to toggle software breakpoints, then provide
here name of these function. Expected prototype:
int toggle_swbreak(int set, void *addr);
function must return 0 on success. */
//#define DBG_SWBREAK toggle_swbreak
#define DBG_SWBREAK
/* Define if one of standard RST handlers is used as software
breakpoint entry point */
//#define DBG_SWBREAK_RST 0x08
/* if platform supports hardware breakpoints then define following macro
by name of function. Fuction must have next prototype:
int toggle_hwbreak(int set, void *addr);
function must return 0 on success. */
//#define DBG_HWBREAK toggle_hwbreak
/* if platform supports hardware watchpoints then define all or some of
following macros by names of functions. Fuctions prototypes:
int toggle_watch(int set, void *addr, size_t size); // memory write watch
int toggle_rwatch(int set, void *addr, size_t size); // memory read watch
int toggle_awatch(int set, void *addr, size_t size); // memory access watch
function must return 0 on success. */
//#define DBG_WWATCH toggle_watch
//#define DBG_RWATCH toggle_rwatch
//#define DBG_AWATCH toggle_awatch
/* Size of hardware breakpoint. Required to correct PC. */
#define DBG_HWBREAK_SIZE 0
/* Define following macro if you need custom memory read/write routine.
Function should return non-zero on success, and zero on failure
(for example, write to ROM area).
Useful with overlays (bank switching).
Do not forget to define:
_ovly_table - overlay table
_novlys - number of items in _ovly_table
or
_ovly_region_table - overlay regions table
_novly_regions - number of items in _ovly_region_table
_ovly_debug_prepare - function is called before overlay mapping
_ovly_debug_event - function is called after overlay mapping
*/
//#define DBG_MEMCPY memcpy
/* define dedicated stack size if required */
//#define DBG_STACK_SIZE 256
/* max GDB packet size
should be much less that DBG_STACK_SIZE because it will be allocated on stack
*/
#define DBG_PACKET_SIZE 150
/* Uncomment if required to use trampoline when resuming operation.
Useful with dedicated stack when stack pointer do not point to the stack or
stack is not writable */
//#define DBG_USE_TRAMPOLINE
/* Uncomment following macro to enable debug printing to debugger console */
//#define DBG_PRINT
#define DBG_NMI_EX EX_HWBREAK
#define DBG_INT_EX EX_SIGINT
/* Define following macro to statement, which will be exectuted after entering to
stub_main function. Statement should include semicolon. */
//#define DBG_ENTER debug_enter();
/* Define following macro to instruction(s), which will be execute before return
control to the program. It is useful when gdb-stub is placed in one of overlays.
This procedure must not change any register. On top of stack before invocation
will be return address of the program. */
//#define DBG_RESUME jp _restore_bank
/* Define following macro to the string containing memory map definition XML.
GDB will use it to select proper breakpoint type (HW or SW). */
/*#define DBG_MEMORY_MAP "\
<memory-map>\
<memory type=\"rom\" start=\"0x0000\" length=\"0x4000\"/>\
<!-- <memory type=\"flash\" start=\"0x4000\" length=\"0x4000\">\
<property name=\"blocksize\">128</property>\
</memory> -->\
<memory type=\"ram\" start=\"0x8000\" length=\"0x8000\"/>\
</memory-map>\
"
*/
#endif /* DBG_CONFIGURED */
/******************************************************************************\
Public Interface
\******************************************************************************/
/* Enter to debug mode from software or hardware breakpoint.
Assume address of next instruction after breakpoint call is on top of stack.
Do JP _debug_swbreak or JP _debug_hwbreak from RST handler, for example.
*/
void debug_swbreak (void);
void debug_hwbreak (void);
/* Jump to this function from NMI handler. Just replace RETN instruction by
JP _debug_nmi
Use if NMI detects request to enter to debug mode.
*/
void debug_nmi (void);
/* Jump to this function from INT handler. Just replace EI+RETI instructions by
JP _debug_int
Use if INT detects request to enter to debug mode.
*/
void debug_int (void);
#define EX_SWBREAK 0 /* sw breakpoint */
#define EX_HWBREAK -1 /* hw breakpoint */
#define EX_WWATCH -2 /* memory write watch */
#define EX_RWATCH -3 /* memory read watch */
#define EX_AWATCH -4 /* memory access watch */
#define EX_SIGINT 2
#define EX_SIGTRAP 5
#define EX_SIGABRT 6
#define EX_SIGBUS 10
#define EX_SIGSEGV 11
/* or any standard *nix signal value */
/* Enter to debug mode (after receiving BREAK from GDB, for example)
* Assume:
* program PC in (SP+0)
* caught signal in (SP+2)
* program SP is SP+4
*/
void debug_exception (int ex);
/* Prints to debugger console. */
void debug_print(const char *str);
/******************************************************************************\
Required functions
\******************************************************************************/
extern int getDebugChar (void);
extern void putDebugChar (int ch);
#ifdef DBG_SWBREAK
#define DO_EXPAND(VAL) VAL ## 123456
#define EXPAND(VAL) DO_EXPAND(VAL)
#if EXPAND(DBG_SWBREAK) != 123456
#define DBG_SWBREAK_PROC DBG_SWBREAK
extern int DBG_SWBREAK(int set, void *addr);
#endif
#undef EXPAND
#undef DO_EXPAND
#endif /* DBG_SWBREAK */
#ifdef DBG_HWBREAK
extern int DBG_HWBREAK(int set, void *addr);
#endif
#ifdef DBG_MEMCPY
extern void* DBG_MEMCPY (void *dest, const void *src, unsigned n);
#endif
#ifdef DBG_WWATCH
extern int DBG_WWATCH(int set, void *addr, unsigned size);
#endif
#ifdef DBG_RWATCH
extern int DBG_RWATCH(int set, void *addr, unsigned size);
#endif
#ifdef DBG_AWATCH
extern int DBG_AWATCH(int set, void *addr, unsigned size);
#endif
/******************************************************************************\
IMPLEMENTATION
\******************************************************************************/
#include <string.h>
#ifndef NULL
# define NULL (void*)0
#endif
typedef unsigned char byte;
typedef unsigned short word;
/* CPU state */
#ifdef __SDCC_ez80_adl
# define REG_SIZE 3
#else
# define REG_SIZE 2
#endif /* __SDCC_ez80_adl */
#define R_AF (0*REG_SIZE)
#define R_BC (1*REG_SIZE)
#define R_DE (2*REG_SIZE)
#define R_HL (3*REG_SIZE)
#define R_SP (4*REG_SIZE)
#define R_PC (5*REG_SIZE)
#ifndef __SDCC_gbz80
#define R_IX (6*REG_SIZE)
#define R_IY (7*REG_SIZE)
#define R_AF_ (8*REG_SIZE)
#define R_BC_ (9*REG_SIZE)
#define R_DE_ (10*REG_SIZE)
#define R_HL_ (11*REG_SIZE)
#define R_IR (12*REG_SIZE)
#ifdef __SDCC_ez80_adl
#define R_SPS (13*REG_SIZE)
#define NUMREGBYTES (14*REG_SIZE)
#else
#define NUMREGBYTES (13*REG_SIZE)
#endif /* __SDCC_ez80_adl */
#else
#define NUMREGBYTES (6*REG_SIZE)
#define FASTCALL
#endif /*__SDCC_gbz80 */
static byte state[NUMREGBYTES];
#if DBG_PACKET_SIZE < (NUMREGBYTES*2+5)
#error "Too small DBG_PACKET_SIZE"
#endif
#ifndef FASTCALL
#define FASTCALL __z88dk_fastcall
#endif
/* dedicated stack */
#ifdef DBG_STACK_SIZE
#define LOAD_SP ld sp, #_stack + DBG_STACK_SIZE
static char stack[DBG_STACK_SIZE];
#else
#undef DBG_USE_TRAMPOLINE
#define LOAD_SP
#endif
#ifndef DBG_ENTER
#define DBG_ENTER
#endif
#ifndef DBG_RESUME
#define DBG_RESUME ret
#endif
static signed char sigval;
static void stub_main (int sigval, int pc_adj);
static char high_hex (byte v) FASTCALL;
static char low_hex (byte v) FASTCALL;
static char put_packet_info (const char *buffer) FASTCALL;
static void save_cpu_state (void);
static void rest_cpu_state (void);
/******************************************************************************/
#ifdef DBG_SWBREAK
#ifdef DBG_SWBREAK_RST
#define DBG_SWBREAK_SIZE 1
#else
#define DBG_SWBREAK_SIZE 3
#endif
void
debug_swbreak (void) __naked
{
__asm
ld (#_state + R_SP), sp
LOAD_SP
call _save_cpu_state
ld hl, #-DBG_SWBREAK_SIZE
push hl
ld hl, #EX_SWBREAK
push hl
call _stub_main
.globl _break_handler
#ifdef DBG_SWBREAK_RST
_break_handler = DBG_SWBREAK_RST
#else
_break_handler = _debug_swbreak
#endif
__endasm;
}
#endif /* DBG_SWBREAK */
/******************************************************************************/
#ifdef DBG_HWBREAK
#ifndef DBG_HWBREAK_SIZE
#define DBG_HWBREAK_SIZE 0
#endif /* DBG_HWBREAK_SIZE */
void
debug_hwbreak (void) __naked
{
__asm
ld (#_state + R_SP), sp
LOAD_SP
call _save_cpu_state
ld hl, #-DBG_HWBREAK_SIZE
push hl
ld hl, #EX_HWBREAK
push hl
call _stub_main
__endasm;
}
#endif /* DBG_HWBREAK_SET */
/******************************************************************************/
void
debug_exception (int ex) __naked
{
__asm
ld (#_state + R_SP), sp
LOAD_SP
call _save_cpu_state
ld hl, #0
push hl
#ifdef __SDCC_gbz80
ld hl, #_state + R_SP
ld a, (hl+)
ld h, (hl)
ld l, a
#else
ld hl, (#_state + R_SP)
#endif
inc hl
inc hl
ld e, (hl)
inc hl
ld d, (hl)
push de
call _stub_main
__endasm;
(void)ex;
}
/******************************************************************************/
#ifndef __SDCC_gbz80
void
debug_nmi(void) __naked
{
__asm
ld (#_state + R_SP), sp
LOAD_SP
call _save_cpu_state
ld hl, #0 ;pc_adj
push hl
ld hl, #DBG_NMI_EX
push hl
ld hl, #_stub_main
push hl
push hl
retn
__endasm;
}
#endif
/******************************************************************************/
void
debug_int(void) __naked
{
__asm
ld (#_state + R_SP), sp
LOAD_SP
call _save_cpu_state
ld hl, #0 ;pc_adj
push hl
ld hl, #DBG_INT_EX
push hl
ld hl, #_stub_main
push hl
push hl
ei
reti
__endasm;
}
/******************************************************************************/
#ifdef DBG_PRINT
void
debug_print(const char *str)
{
putDebugChar ('$');
putDebugChar ('O');
char csum = 'O';
for (; *str != '\0'; )
{
char c = high_hex (*str);
csum += c;
putDebugChar (c);
c = low_hex (*str++);
csum += c;
putDebugChar (c);
}
putDebugChar ('#');
putDebugChar (high_hex (csum));
putDebugChar (low_hex (csum));
}
#endif /* DBG_PRINT */
/******************************************************************************/
static void store_pc_sp (int pc_adj) FASTCALL;
#define get_reg_value(mem) (*(void* const*)(mem))
#define set_reg_value(mem,val) do { (*(void**)(mem) = (val)); } while (0)
static char* byte2hex(char *buf, byte val);
static int hex2int (const char **buf) FASTCALL;
static char* int2hex (char *buf, int v);
static void get_packet (char *buffer);
static void put_packet (const char *buffer);
static char process (char *buffer) FASTCALL;
static void rest_cpu_state (void);
static void
stub_main (int ex, int pc_adj)
{
char buffer[DBG_PACKET_SIZE+1];
sigval = (signed char)ex;
store_pc_sp (pc_adj);
DBG_ENTER
/* after starting gdb_stub must always return stop reason */
*buffer = '?';
for (; process (buffer);)
{
put_packet (buffer);
get_packet (buffer);
}
put_packet (buffer);
rest_cpu_state ();
}
static void
get_packet (char *buffer)
{
byte csum;
char ch;
char *p;
byte esc;
#if DBG_PACKET_SIZE <= 256
byte count; /* it is OK to use up to 256 here */
#else
unsigned count;
#endif
for (;; putDebugChar ('-'))
{
/* wait for packet start character */
while (getDebugChar () != '$');
retry:
csum = 0;
esc = 0;
p = buffer;
count = DBG_PACKET_SIZE;
do
{
ch = getDebugChar ();
switch (ch)
{
case '$':
goto retry;
case '#':
goto finish;
case '}':
esc = 0x20;
break;
default:
*p++ = ch ^ esc;
esc = 0;
--count;
}
csum += ch;
}
while (count != 0);
finish:
*p = '\0';
if (ch != '#') /* packet is too large */
continue;
ch = getDebugChar ();
if (ch != high_hex (csum))
continue;
ch = getDebugChar ();
if (ch != low_hex (csum))
continue;
break;
}
putDebugChar ('+');
}
static void
put_packet (const char *buffer)
{
/* $<packet info>#<checksum>. */
for (;;)
{
putDebugChar ('$');
char checksum = put_packet_info (buffer);
putDebugChar ('#');
putDebugChar (high_hex(checksum));
putDebugChar (low_hex(checksum));
for (;;)
{
char c = getDebugChar ();
switch (c)
{
case '+': return;
case '-': break;
default:
putDebugChar (c);
continue;
}
break;
}
}
}
static char
put_packet_info (const char *src) FASTCALL
{
char ch;
char checksum = 0;
for (;;)
{
ch = *src++;
if (ch == '\0')
break;
if (ch == '}' || ch == '*' || ch == '#' || ch == '$')
{
/* escape special characters */
putDebugChar ('}');
checksum += '}';
ch ^= 0x20;
}
putDebugChar (ch);
checksum += ch;
}
return checksum;
}
static void
store_pc_sp (int pc_adj) FASTCALL
{
byte *sp = get_reg_value (&state[R_SP]);
byte *pc = get_reg_value (sp);
pc += pc_adj;
set_reg_value (&state[R_PC], pc);
set_reg_value (&state[R_SP], sp + REG_SIZE);
}
static char *mem2hex (char *buf, const byte *mem, unsigned bytes);
static char *hex2mem (byte *mem, const char *buf, unsigned bytes);
/* Command processors. Takes pointer to buffer (begins from command symbol),
modifies buffer, returns: -1 - empty response (ignore), 0 - success,
positive: error code. */
#ifdef DBG_MIN_SIZE
static signed char
process_question (char *p) FASTCALL
{
signed char sig;
*p++ = 'S';
sig = sigval;
if (sig <= 0)
sig = EX_SIGTRAP;
p = byte2hex (p, (byte)sig);
*p = '\0';
return 0;
}
#else /* DBG_MIN_SIZE */
static char *format_reg_value (char *p, unsigned reg_num, const byte *value);
static signed char
process_question (char *p) FASTCALL
{
signed char sig;
*p++ = 'T';
sig = sigval;
if (sig <= 0)
sig = EX_SIGTRAP;
p = byte2hex (p, (byte)sig);
p = format_reg_value(p, R_AF/REG_SIZE, &state[R_AF]);
p = format_reg_value(p, R_SP/REG_SIZE, &state[R_SP]);
p = format_reg_value(p, R_PC/REG_SIZE, &state[R_PC]);
#if defined(DBG_SWBREAK_PROC) || defined(DBG_HWBREAK) || defined(DBG_WWATCH) || defined(DBG_RWATCH) || defined(DBG_AWATCH)
const char *reason;
unsigned addr = 0;
switch (sigval)
{
#ifdef DBG_SWBREAK_PROC
case EX_SWBREAK:
reason = "swbreak";
break;
#endif
#ifdef DBG_HWBREAK
case EX_HWBREAK:
reason = "hwbreak";
break;
#endif
#ifdef DBG_WWATCH
case EX_WWATCH:
reason = "watch";
addr = 1;
break;
#endif
#ifdef DBG_RWATCH
case EX_RWATCH:
reason = "rwatch";
addr = 1;
break;
#endif
#ifdef DBG_AWATCH
case EX_AWATCH:
reason = "awatch";
addr = 1;
break;
#endif
default:
goto finish;
}
while ((*p++ = *reason++))
;
--p;
*p++ = ':';
if (addr != 0)
p = int2hex(p, addr);
*p++ = ';';
finish:
#endif /* DBG_HWBREAK, DBG_WWATCH, DBG_RWATCH, DBG_AWATCH */
*p++ = '\0';
return 0;
}
#endif /* DBG_MINSIZE */
#define STRING2(x) #x
#define STRING1(x) STRING2(x)
#define STRING(x) STRING1(x)
#ifdef DBG_MEMORY_MAP
static void read_memory_map (char *buffer, unsigned offset, unsigned length);
#endif
static signed char
process_q (char *buffer) FASTCALL
{
char *p;
if (memcmp (buffer + 1, "Supported", 9) == 0)
{
memcpy (buffer, "PacketSize=", 11);
p = int2hex (&buffer[11], DBG_PACKET_SIZE);
#ifndef DBG_MIN_SIZE
#ifdef DBG_SWBREAK_PROC
memcpy (p, ";swbreak+", 9);
p += 9;
#endif
#ifdef DBG_HWBREAK
memcpy (p, ";hwbreak+", 9);
p += 9;
#endif
#endif /* DBG_MIN_SIZE */
#ifdef DBG_MEMORY_MAP
memcpy (p, ";qXfer:memory-map:read+", 23);
p += 23;
#endif
*p = '\0';
return 0;
}
#ifdef DBG_MEMORY_MAP
if (memcmp (buffer + 1, "Xfer:memory-map:read:", 21) == 0)
{
p = strchr (buffer + 1 + 21, ':');
if (p == NULL)
return 1;
++p;
unsigned offset = hex2int (&p);
if (*p++ != ',')
return 2;
unsigned length = hex2int (&p);
if (length == 0)
return 3;
if (length > DBG_PACKET_SIZE)
return 4;
read_memory_map (buffer, offset, length);
return 0;
}
#endif
#ifndef DBG_MIN_SIZE
if (memcmp (&buffer[1], "Attached", 9) == 0)
{
/* Just report that GDB attached to existing process
if it is not applicable for you, then send patches */
memcpy(buffer, "1", 2);
return 0;
}
#endif /* DBG_MIN_SIZE */
*buffer = '\0';
return -1;
}
static signed char
process_g (char *buffer) FASTCALL
{
mem2hex (buffer, state, NUMREGBYTES);
return 0;
}
static signed char
process_G (char *buffer) FASTCALL
{
hex2mem (state, &buffer[1], NUMREGBYTES);
/* OK response */
*buffer = '\0';
return 0;
}
static signed char
process_m (char *buffer) FASTCALL
{/* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
char *p = &buffer[1];
byte *addr = (void*)hex2int(&p);
if (*p++ != ',')
return 1;
unsigned len = (unsigned)hex2int(&p);
if (len == 0)
return 2;
if (len > DBG_PACKET_SIZE/2)
return 3;
p = buffer;
#ifdef DBG_MEMCPY
do
{
byte tmp[16];
unsigned tlen = sizeof(tmp);
if (tlen > len)
tlen = len;
if (!DBG_MEMCPY(tmp, addr, tlen))
return 4;
p = mem2hex (p, tmp, tlen);
addr += tlen;
len -= tlen;
}
while (len);
#else
p = mem2hex (p, addr, len);
#endif
return 0;
}
static signed char
process_M (char *buffer) FASTCALL
{/* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
char *p = &buffer[1];
byte *addr = (void*)hex2int(&p);
if (*p != ',')
return 1;
++p;
unsigned len = (unsigned)hex2int(&p);
if (*p++ != ':')
return 2;
if (len == 0)
goto end;
if (len*2 + (p - buffer) > DBG_PACKET_SIZE)
return 3;
#ifdef DBG_MEMCPY
do
{
byte tmp[16];
unsigned tlen = sizeof(tmp);
if (tlen > len)
tlen = len;
p = hex2mem (tmp, p, tlen);
if (!DBG_MEMCPY(addr, tmp, tlen))
return 4;
addr += tlen;
len -= tlen;
}
while (len);
#else
hex2mem (addr, p, len);
#endif
end:
/* OK response */
*buffer = '\0';
return 0;
}
#ifndef DBG_MIN_SIZE
static signed char
process_X (char *buffer) FASTCALL
{/* XAA..AA,LLLL: Write LLLL binary bytes at address AA.AA return OK */
char *p = &buffer[1];
byte *addr = (void*)hex2int(&p);
if (*p != ',')
return 1;
++p;
unsigned len = (unsigned)hex2int(&p);
if (*p++ != ':')
return 2;
if (len == 0)
goto end;
if (len + (p - buffer) > DBG_PACKET_SIZE)
return 3;
#ifdef DBG_MEMCPY
if (!DBG_MEMCPY(addr, p, len))
return 4;
#else
memcpy (addr, p, len);
#endif
end:
/* OK response */
*buffer = '\0';
return 0;
}
#else /* DBG_MIN_SIZE */
static signed char
process_X (char *buffer) FASTCALL
{
(void)buffer;
return -1;
}
#endif /* DBG_MIN_SIZE */
static signed char
process_c (char *buffer) FASTCALL
{/* 'cAAAA' - Continue at address AAAA(optional) */
const char *p = &buffer[1];
if (*p != '\0')
{
void *addr = (void*)hex2int(&p);
set_reg_value (&state[R_PC], addr);
}
rest_cpu_state ();
return 0;
}
static signed char
process_D (char *buffer) FASTCALL
{/* 'D' - detach the program: continue execution */
*buffer = '\0';
return -2;
}
static signed char
process_k (char *buffer) FASTCALL
{/* 'k' - Kill the program */
set_reg_value (&state[R_PC], 0);
rest_cpu_state ();
(void)buffer;
return 0;
}
static signed char
process_v (char *buffer) FASTCALL
{
#ifndef DBG_MIN_SIZE
if (memcmp (&buffer[1], "Cont", 4) == 0)
{
if (buffer[5] == '?')
{
/* result response will be "vCont;c;C"; C action must be
supported too, because GDB reguires at lease both of them */
memcpy (&buffer[5], ";c;C", 5);
return 0;
}
buffer[0] = '\0';
if (buffer[5] == ';' && (buffer[6] == 'c' || buffer[6] == 'C'))
return -2; /* resume execution */
return 1;
}
#endif /* DBG_MIN_SIZE */
return -1;
}
static signed char
process_zZ (char *buffer) FASTCALL
{ /* insert/remove breakpoint */
#if defined(DBG_SWBREAK_PROC) || defined(DBG_HWBREAK) || \
defined(DBG_WWATCH) || defined(DBG_RWATCH) || defined(DBG_AWATCH)
const byte set = (*buffer == 'Z');
const char *p = &buffer[3];
void *addr = (void*)hex2int(&p);
if (*p != ',')
return 1;
p++;
int kind = hex2int(&p);
*buffer = '\0';
switch (buffer[1])
{
#ifdef DBG_SWBREAK_PROC
case '0': /* sw break */
return DBG_SWBREAK_PROC(set, addr);
#endif
#ifdef DBG_HWBREAK
case '1': /* hw break */
return DBG_HWBREAK(set, addr);
#endif
#ifdef DBG_WWATCH
case '2': /* write watch */
return DBG_WWATCH(set, addr, kind);
#endif
#ifdef DBG_RWATCH
case '3': /* read watch */
return DBG_RWATCH(set, addr, kind);
#endif
#ifdef DBG_AWATCH
case '4': /* access watch */
return DBG_AWATCH(set, addr, kind);
#endif
default:; /* not supported */
}
#endif
(void)buffer;
return -1;
}
static signed char
do_process (char *buffer) FASTCALL
{
switch (*buffer)
{
case '?': return process_question (buffer);
case 'G': return process_G (buffer);
case 'k': return process_k (buffer);
case 'M': return process_M (buffer);
case 'X': return process_X (buffer);
case 'Z': return process_zZ (buffer);
case 'c': return process_c (buffer);
case 'D': return process_D (buffer);
case 'g': return process_g (buffer);
case 'm': return process_m (buffer);
case 'q': return process_q (buffer);
case 'v': return process_v (buffer);
case 'z': return process_zZ (buffer);
default: return -1; /* empty response */
}
}
static char
process (char *buffer) FASTCALL
{
signed char err = do_process (buffer);
char *p = buffer;
char ret = 1;
if (err == -2)
{
ret = 0;
err = 0;
}
if (err > 0)
{
*p++ = 'E';
p = byte2hex (p, err);
*p = '\0';
}
else if (err < 0)
{
*p = '\0';
}
else if (*p == '\0')
memcpy(p, "OK", 3);
return ret;
}
static char *
byte2hex (char *p, byte v)
{
*p++ = high_hex (v);
*p++ = low_hex (v);
return p;
}
static signed char
hex2val (unsigned char hex) FASTCALL
{
if (hex <= '9')
return hex - '0';
hex &= 0xdf; /* make uppercase */
hex -= 'A' - 10;
return (hex >= 10 && hex < 16) ? hex : -1;
}
static int
hex2byte (const char *p) FASTCALL
{
signed char h = hex2val (p[0]);
signed char l = hex2val (p[1]);
if (h < 0 || l < 0)
return -1;
return (byte)((byte)h << 4) | (byte)l;
}
static int
hex2int (const char **buf) FASTCALL
{
word r = 0;
for (;; (*buf)++)
{
signed char a = hex2val(**buf);
if (a < 0)
break;
r <<= 4;
r += (byte)a;
}
return (int)r;
}
static char *
int2hex (char *buf, int v)
{
buf = byte2hex(buf, (word)v >> 8);
return byte2hex(buf, (byte)v);
}
static char
high_hex (byte v) FASTCALL
{
return low_hex(v >> 4);
}
static char
low_hex (byte v) FASTCALL
{
/*
__asm
ld a, l
and a, #0x0f
add a, #0x90
daa
adc a, #0x40
daa
ld l, a
__endasm;
(void)v;
*/
v &= 0x0f;
v += '0';
if (v < '9'+1)
return v;
return v + 'a' - '0' - 10;
}
/* convert the memory, pointed to by mem into hex, placing result in buf */
/* return a pointer to the last char put in buf (null) */
static char *
mem2hex (char *buf, const byte *mem, unsigned bytes)
{
char *d = buf;
if (bytes != 0)
{
do
{
d = byte2hex (d, *mem++);
}
while (--bytes);
}
*d = 0;
return d;
}
/* convert the hex array pointed to by buf into binary, to be placed in mem
return a pointer to the character after the last byte written */
static const char *
hex2mem (byte *mem, const char *buf, unsigned bytes)
{
if (bytes != 0)
{
do
{
*mem++ = hex2byte (buf);
buf += 2;
}
while (--bytes);
}
return buf;
}
#ifdef DBG_MEMORY_MAP
static void
read_memory_map (char *buffer, unsigned offset, unsigned length)
{
const char *map = DBG_MEMORY_MAP;
const unsigned map_sz = strlen(map);
if (offset >= map_sz)
{
buffer[0] = 'l';
buffer[1] = '\0';
return;
}
if (offset + length > map_sz)
length = map_sz - offset;
buffer[0] = 'm';
memcpy (&buffer[1], &map[offset], length);
buffer[1+length] = '\0';
}
#endif
/* write string like " nn:0123" and return pointer after it */
#ifndef DBG_MIN_SIZE
static char *
format_reg_value (char *p, unsigned reg_num, const byte *value)
{
char *d = p;
unsigned char i;
d = byte2hex(d, reg_num);
*d++ = ':';
value += REG_SIZE;
i = REG_SIZE;
do
{
d = byte2hex(d, *--value);
}
while (--i != 0);
*d++ = ';';
return d;
}
#endif /* DBG_MIN_SIZE */
#ifdef __SDCC_gbz80
/* saves all state.except PC and SP */
static void
save_cpu_state() __naked
{
__asm
push af
ld a, l
ld (#_state + R_HL + 0), a
ld a, h
ld (#_state + R_HL + 1), a
ld hl, #_state + R_HL - 1
ld (hl), d
dec hl
ld (hl), e
dec hl
ld (hl), b
dec hl
ld (hl), c
dec hl
pop bc
ld (hl), b
dec hl
ld (hl), c
ret
__endasm;
}
/* restore CPU state and continue execution */
static void
rest_cpu_state() __naked
{
__asm
;restore SP
ld a, (#_state + R_SP + 0)
ld l,a
ld a, (#_state + R_SP + 1)
ld h,a
ld sp, hl
;push PC value as return address
ld a, (#_state + R_PC + 0)
ld l, a
ld a, (#_state + R_PC + 1)
ld h, a
push hl
;restore registers
ld hl, #_state + R_AF
ld c, (hl)
inc hl
ld b, (hl)
inc hl
push bc
ld c, (hl)
inc hl
ld b, (hl)
inc hl
ld e, (hl)
inc hl
ld d, (hl)
inc hl
ld a, (hl)
inc hl
ld h, (hl)
ld l, a
pop af
ret
__endasm;
}
#else
/* saves all state.except PC and SP */
static void
save_cpu_state() __naked
{
__asm
ld (#_state + R_HL), hl
ld (#_state + R_DE), de
ld (#_state + R_BC), bc
push af
pop hl
ld (#_state + R_AF), hl
ld a, r ;R is increased by 7 or by 8 if called via RST
ld l, a
sub a, #7
xor a, l
and a, #0x7f
xor a, l
#ifdef __SDCC_ez80_adl
ld hl, i
ex de, hl
ld hl, #_state + R_IR
ld (hl), a
inc hl
ld (hl), e
inc hl
ld (hl), d
ld a, MB
ld (#_state + R_AF+2), a
#else
ld l, a
ld a, i
ld h, a
ld (#_state + R_IR), hl
#endif /* __SDCC_ez80_adl */
ld (#_state + R_IX), ix
ld (#_state + R_IY), iy
ex af, af' ;'
exx
ld (#_state + R_HL_), hl
ld (#_state + R_DE_), de
ld (#_state + R_BC_), bc
push af
pop hl
ld (#_state + R_AF_), hl
ret
__endasm;
}
/* restore CPU state and continue execution */
static void
rest_cpu_state() __naked
{
__asm
#ifdef DBG_USE_TRAMPOLINE
ld sp, _stack + DBG_STACK_SIZE
ld hl, (#_state + R_PC)
push hl /* resume address */
#ifdef __SDCC_ez80_adl
ld hl, 0xc30000 ; use 0xc34000 for jp.s
#else
ld hl, 0xc300
#endif
push hl /* JP opcode */
#endif /* DBG_USE_TRAMPOLINE */
ld hl, (#_state + R_AF_)
push hl
pop af
ld bc, (#_state + R_BC_)
ld de, (#_state + R_DE_)
ld hl, (#_state + R_HL_)
exx
ex af, af' ;'
ld iy, (#_state + R_IY)
ld ix, (#_state + R_IX)
#ifdef __SDCC_ez80_adl
ld a, (#_state + R_AF + 2)
ld MB, a
ld hl, (#_state + R_IR + 1) ;I register
ld i, hl
ld a, (#_state + R_IR + 0) ; R register
ld l, a
#else
ld hl, (#_state + R_IR)
ld a, h
ld i, a
ld a, l
#endif /* __SDCC_ez80_adl */
sub a, #10 ;number of M1 cycles after ld r,a
xor a, l
and a, #0x7f
xor a, l
ld r, a
ld de, (#_state + R_DE)
ld bc, (#_state + R_BC)
ld hl, (#_state + R_AF)
push hl
pop af
ld sp, (#_state + R_SP)
#ifndef DBG_USE_TRAMPOLINE
ld hl, (#_state + R_PC)
push hl
ld hl, (#_state + R_HL)
DBG_RESUME
#else
ld hl, (#_state + R_HL)
#ifdef __SDCC_ez80_adl
jp #_stack + DBG_STACK_SIZE - 4
#else
jp #_stack + DBG_STACK_SIZE - 3
#endif
#endif /* DBG_USE_TRAMPOLINE */
__endasm;
}
#endif /* __SDCC_gbz80 */