2
0
mirror of https://sourceware.org/git/binutils-gdb.git synced 2025-01-12 12:16:04 +08:00
binutils-gdb/gdb/alpha-nbsd-tdep.c
Alan Hayward a616bb9450 Split size in regset section iterators
In the existing code, when using the regset section iteration functions, the
size parameter is used in different ways.

With collect, size is used to create the buffer in which to write the regset.
(see linux-tdep.c::linux_collect_regset_section_cb).

With supply, size is used to confirm the existing regset is the correct size.
If REGSET_VARIABLE_SIZE is set then the regset can be bigger than size.
Effectively, size is the minimum possible size of the regset.
(see corelow.c::get_core_register_section).

There are currently no targets with both REGSET_VARIABLE_SIZE and a collect
function.
In SVE, a corefile can contain one of two formats after the header, both of
which are different sizes. However, when writing a core file, we always want
to write out the full bigger size.

To allow support of collects for REGSET_VARIABLE_SIZE we need two sizes.
This is done by adding supply_size and collect_size.

gdb/

	* aarch64-fbsd-tdep.c
	(aarch64_fbsd_iterate_over_regset_sections): Add supply_size and
	collect_size.
	* aarch64-linux-tdep.c
	(aarch64_linux_iterate_over_regset_sections): Likewise.
	* alpha-linux-tdep.c
	(alpha_linux_iterate_over_regset_sections):
	* alpha-nbsd-tdep.c
	(alphanbsd_iterate_over_regset_sections): Likewise.
	* amd64-fbsd-tdep.c
	(amd64fbsd_iterate_over_regset_sections): Likewise.
	* amd64-linux-tdep.c
	(amd64_linux_iterate_over_regset_sections): Likewise.
	* arm-bsd-tdep.c
	(armbsd_iterate_over_regset_sections): Likewise.
	* arm-fbsd-tdep.c
	(arm_fbsd_iterate_over_regset_sections): Likewise.
	* arm-linux-tdep.c
	(arm_linux_iterate_over_regset_sections): Likewise.
	* corelow.c (get_core_registers_cb): Likewise.
	(core_target::fetch_registers): Likewise.
	* fbsd-tdep.c (fbsd_collect_regset_section_cb): Likewise.
	* frv-linux-tdep.c (frv_linux_iterate_over_regset_sections): Likewise.
	* gdbarch.h (void): Regenerate.
	* gdbarch.sh: Add supply_size and collect_size.
	* hppa-linux-tdep.c (hppa_linux_iterate_over_regset_sections): Likewise.
	* hppa-nbsd-tdep.c (hppanbsd_iterate_over_regset_sections): Likewise.
	* hppa-obsd-tdep.c (hppaobsd_iterate_over_regset_sections): Likewise.
	* i386-fbsd-tdep.c (i386fbsd_iterate_over_regset_sections): Likewise.
	* i386-linux-tdep.c (i386_linux_iterate_over_regset_sections): Likewise.
	* i386-tdep.c (i386_iterate_over_regset_sections): Likewise.
	* ia64-linux-tdep.c (ia64_linux_iterate_over_regset_sections): Likewise.
	* linux-tdep.c (linux_collect_regset_section_cb): Likewise.
	* m32r-linux-tdep.c (m32r_linux_iterate_over_regset_sections): Likewise.
	* m68k-bsd-tdep.c (m68kbsd_iterate_over_regset_sections): Likewise.
	* m68k-linux-tdep.c (m68k_linux_iterate_over_regset_sections): Likewise.
	* mips-fbsd-tdep.c (mips_fbsd_iterate_over_regset_sections): Likewise.
	* mips-linux-tdep.c (mips_linux_iterate_over_regset_sections): Likewise.
	* mips-nbsd-tdep.c (mipsnbsd_iterate_over_regset_sections): Likewise.
	* mips64-obsd-tdep.c (mips64obsd_iterate_over_regset_sections): Likewise.
	* mn10300-linux-tdep.c (am33_iterate_over_regset_sections): Likewise.
	* nios2-linux-tdep.c (nios2_iterate_over_regset_sections): Likewise.
	* ppc-fbsd-tdep.c (ppcfbsd_iterate_over_regset_sections): Likewise.
	* ppc-linux-tdep.c (ppc_linux_iterate_over_regset_sections): Likewise.
	* ppc-nbsd-tdep.c (ppcnbsd_iterate_over_regset_sections): Likewise.
	* ppc-obsd-tdep.c (ppcobsd_iterate_over_regset_sections): Likewise.
	* riscv-linux-tdep.c (riscv_linux_iterate_over_regset_sections): Likewise.
	* rs6000-aix-tdep.c (rs6000_aix_iterate_over_regset_sections): Likewise.
	* s390-linux-tdep.c (s390_iterate_over_regset_sections): Likewise.
	* score-tdep.c (score7_linux_iterate_over_regset_sections): Likewise.
	* sh-tdep.c (sh_iterate_over_regset_sections): Likewise.
	* sparc-tdep.c (sparc_iterate_over_regset_sections): Likewise.
	* tilegx-linux-tdep.c (tilegx_iterate_over_regset_sections): Likewise.
	* vax-tdep.c (vax_iterate_over_regset_sections): Likewise.
	* xtensa-tdep.c (xtensa_iterate_over_regset_sections): Likewise.
2018-08-13 10:16:41 +01:00

290 lines
8.1 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Target-dependent code for NetBSD/alpha.
Copyright (C) 2002-2018 Free Software Foundation, Inc.
Contributed by Wasabi Systems, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "gdbcore.h"
#include "osabi.h"
#include "regcache.h"
#include "regset.h"
#include "value.h"
#include "alpha-tdep.h"
#include "alpha-bsd-tdep.h"
#include "nbsd-tdep.h"
#include "solib-svr4.h"
#include "target.h"
/* Core file support. */
/* Sizeof `struct reg' in <machine/reg.h>. */
#define ALPHANBSD_SIZEOF_GREGS (32 * 8)
/* Sizeof `struct fpreg' in <machine/reg.h. */
#define ALPHANBSD_SIZEOF_FPREGS ((32 * 8) + 8)
/* Supply register REGNUM from the buffer specified by FPREGS and LEN
in the floating-point register set REGSET to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
static void
alphanbsd_supply_fpregset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *fpregs, size_t len)
{
const gdb_byte *regs = (const gdb_byte *) fpregs;
int i;
gdb_assert (len >= ALPHANBSD_SIZEOF_FPREGS);
for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; i++)
{
if (regnum == i || regnum == -1)
regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
}
if (regnum == ALPHA_FPCR_REGNUM || regnum == -1)
regcache->raw_supply (ALPHA_FPCR_REGNUM, regs + 32 * 8);
}
/* Supply register REGNUM from the buffer specified by GREGS and LEN
in the general-purpose register set REGSET to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
static void
alphanbsd_aout_supply_gregset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
const gdb_byte *regs = (const gdb_byte *) gregs;
int i;
/* Table to map a GDB register number to a trapframe register index. */
static const int regmap[] =
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
30, 31, 32, 16,
17, 18, 19, 20,
21, 22, 23, 24,
25, 29, 26
};
gdb_assert (len >= ALPHANBSD_SIZEOF_GREGS);
for (i = 0; i < ARRAY_SIZE(regmap); i++)
{
if (regnum == i || regnum == -1)
regcache->raw_supply (i, regs + regmap[i] * 8);
}
if (regnum == ALPHA_PC_REGNUM || regnum == -1)
regcache->raw_supply (ALPHA_PC_REGNUM, regs + 31 * 8);
if (len >= ALPHANBSD_SIZEOF_GREGS + ALPHANBSD_SIZEOF_FPREGS)
{
regs += ALPHANBSD_SIZEOF_GREGS;
len -= ALPHANBSD_SIZEOF_GREGS;
alphanbsd_supply_fpregset (regset, regcache, regnum, regs, len);
}
}
/* Supply register REGNUM from the buffer specified by GREGS and LEN
in the general-purpose register set REGSET to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
static void
alphanbsd_supply_gregset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
const gdb_byte *regs = (const gdb_byte *) gregs;
int i;
if (len >= ALPHANBSD_SIZEOF_GREGS + ALPHANBSD_SIZEOF_FPREGS)
{
alphanbsd_aout_supply_gregset (regset, regcache, regnum, gregs, len);
return;
}
for (i = 0; i < ALPHA_ZERO_REGNUM; i++)
{
if (regnum == i || regnum == -1)
regcache->raw_supply (i, regs + i * 8);
}
if (regnum == ALPHA_PC_REGNUM || regnum == -1)
regcache->raw_supply (ALPHA_PC_REGNUM, regs + 31 * 8);
}
/* NetBSD/alpha register sets. */
static const struct regset alphanbsd_gregset =
{
NULL,
alphanbsd_supply_gregset,
NULL,
REGSET_VARIABLE_SIZE
};
static const struct regset alphanbsd_fpregset =
{
NULL,
alphanbsd_supply_fpregset
};
/* Iterate over supported core file register note sections. */
void
alphanbsd_iterate_over_regset_sections (struct gdbarch *gdbarch,
iterate_over_regset_sections_cb *cb,
void *cb_data,
const struct regcache *regcache)
{
cb (".reg", ALPHANBSD_SIZEOF_GREGS, ALPHANBSD_SIZEOF_GREGS,
&alphanbsd_gregset, NULL, cb_data);
cb (".reg2", ALPHANBSD_SIZEOF_FPREGS, ALPHANBSD_SIZEOF_FPREGS,
&alphanbsd_fpregset, NULL, cb_data);
}
/* Signal trampolines. */
/* Under NetBSD/alpha, signal handler invocations can be identified by the
designated code sequence that is used to return from a signal handler.
In particular, the return address of a signal handler points to the
following code sequence:
ldq a0, 0(sp)
lda sp, 16(sp)
lda v0, 295(zero) # __sigreturn14
call_pal callsys
Each instruction has a unique encoding, so we simply attempt to match
the instruction the PC is pointing to with any of the above instructions.
If there is a hit, we know the offset to the start of the designated
sequence and can then check whether we really are executing in the
signal trampoline. If not, -1 is returned, otherwise the offset from the
start of the return sequence is returned. */
static const gdb_byte sigtramp_retcode[] =
{
0x00, 0x00, 0x1e, 0xa6, /* ldq a0, 0(sp) */
0x10, 0x00, 0xde, 0x23, /* lda sp, 16(sp) */
0x27, 0x01, 0x1f, 0x20, /* lda v0, 295(zero) */
0x83, 0x00, 0x00, 0x00, /* call_pal callsys */
};
#define RETCODE_NWORDS 4
#define RETCODE_SIZE (RETCODE_NWORDS * 4)
static LONGEST
alphanbsd_sigtramp_offset (struct gdbarch *gdbarch, CORE_ADDR pc)
{
gdb_byte ret[RETCODE_SIZE], w[4];
LONGEST off;
int i;
if (target_read_memory (pc, w, 4) != 0)
return -1;
for (i = 0; i < RETCODE_NWORDS; i++)
{
if (memcmp (w, sigtramp_retcode + (i * 4), 4) == 0)
break;
}
if (i == RETCODE_NWORDS)
return (-1);
off = i * 4;
pc -= off;
if (target_read_memory (pc, ret, sizeof (ret)) != 0)
return -1;
if (memcmp (ret, sigtramp_retcode, RETCODE_SIZE) == 0)
return off;
return -1;
}
static int
alphanbsd_pc_in_sigtramp (struct gdbarch *gdbarch,
CORE_ADDR pc, const char *func_name)
{
return (nbsd_pc_in_sigtramp (pc, func_name)
|| alphanbsd_sigtramp_offset (gdbarch, pc) >= 0);
}
static CORE_ADDR
alphanbsd_sigcontext_addr (struct frame_info *frame)
{
/* FIXME: This is not correct for all versions of NetBSD/alpha.
We will probably need to disassemble the trampoline to figure
out which trampoline frame type we have. */
if (!get_next_frame (frame))
return 0;
return get_frame_base (get_next_frame (frame));
}
static void
alphanbsd_init_abi (struct gdbarch_info info,
struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* Hook into the DWARF CFI frame unwinder. */
alpha_dwarf2_init_abi (info, gdbarch);
/* Hook into the MDEBUG frame unwinder. */
alpha_mdebug_init_abi (info, gdbarch);
/* NetBSD/alpha does not provide single step support via ptrace(2); we
must use software single-stepping. */
set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
/* NetBSD/alpha has SVR4-style shared libraries. */
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_lp64_fetch_link_map_offsets);
tdep->dynamic_sigtramp_offset = alphanbsd_sigtramp_offset;
tdep->pc_in_sigtramp = alphanbsd_pc_in_sigtramp;
tdep->sigcontext_addr = alphanbsd_sigcontext_addr;
tdep->jb_pc = 2;
tdep->jb_elt_size = 8;
set_gdbarch_iterate_over_regset_sections
(gdbarch, alphanbsd_iterate_over_regset_sections);
}
void
_initialize_alphanbsd_tdep (void)
{
/* Even though NetBSD/alpha used ELF since day one, it used the
traditional a.out-style core dump format before NetBSD 1.6, but
we don't support those. */
gdbarch_register_osabi (bfd_arch_alpha, 0, GDB_OSABI_NETBSD,
alphanbsd_init_abi);
}