mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
187b041e25
Today, GDB only allows a single displaced stepping operation to happen per inferior at a time. There is a single displaced stepping buffer per inferior, whose address is fixed (obtained with gdbarch_displaced_step_location), managed by infrun.c. In the case of the AMD ROCm target [1] (in the context of which this work has been done), it is typical to have thousands of threads (or waves, in SMT terminology) executing the same code, hitting the same breakpoint (possibly conditional) and needing to to displaced step it at the same time. The limitation of only one displaced step executing at a any given time becomes a real bottleneck. To fix this bottleneck, we want to make it possible for threads of a same inferior to execute multiple displaced steps in parallel. This patch builds the foundation for that. In essence, this patch moves the task of preparing a displaced step and cleaning up after to gdbarch functions. This allows using different schemes for allocating and managing displaced stepping buffers for different platforms. The gdbarch decides how to assign a buffer to a thread that needs to execute a displaced step. On the ROCm target, we are able to allocate one displaced stepping buffer per thread, so a thread will never have to wait to execute a displaced step. On Linux, the entry point of the executable if used as the displaced stepping buffer, since we assume that this code won't get used after startup. From what I saw (I checked with a binary generated against glibc and musl), on AMD64 we have enough space there to fit two displaced stepping buffers. A subsequent patch makes AMD64/Linux use two buffers. In addition to having multiple displaced stepping buffers, there is also the idea of sharing displaced stepping buffers between threads. Two threads doing displaced steps for the same PC could use the same buffer at the same time. Two threads stepping over the same instruction (same opcode) at two different PCs may also be able to share a displaced stepping buffer. This is an idea for future patches, but the architecture built by this patch is made to allow this. Now, the implementation details. The main part of this patch is moving the responsibility of preparing and finishing a displaced step to the gdbarch. Before this patch, preparing a displaced step is driven by the displaced_step_prepare_throw function. It does some calls to the gdbarch to do some low-level operations, but the high-level logic is there. The steps are roughly: - Ask the gdbarch for the displaced step buffer location - Save the existing bytes in the displaced step buffer - Ask the gdbarch to copy the instruction into the displaced step buffer - Set the pc of the thread to the beginning of the displaced step buffer Similarly, the "fixup" phase, executed after the instruction was successfully single-stepped, is driven by the infrun code (function displaced_step_finish). The steps are roughly: - Restore the original bytes in the displaced stepping buffer - Ask the gdbarch to fixup the instruction result (adjust the target's registers or memory to do as if the instruction had been executed in its original location) The displaced_step_inferior_state::step_thread field indicates which thread (if any) is currently using the displaced stepping buffer, so it is used by displaced_step_prepare_throw to check if the displaced stepping buffer is free to use or not. This patch defers the whole task of preparing and cleaning up after a displaced step to the gdbarch. Two new main gdbarch methods are added, with the following semantics: - gdbarch_displaced_step_prepare: Prepare for the given thread to execute a displaced step of the instruction located at its current PC. Upon return, everything should be ready for GDB to resume the thread (with either a single step or continue, as indicated by gdbarch_displaced_step_hw_singlestep) to make it displaced step the instruction. - gdbarch_displaced_step_finish: Called when the thread stopped after having started a displaced step. Verify if the instruction was executed, if so apply any fixup required to compensate for the fact that the instruction was executed at a different place than its original pc. Release any resources that were allocated for this displaced step. Upon return, everything should be ready for GDB to resume the thread in its "normal" code path. The displaced_step_prepare_throw function now pretty much just offloads to gdbarch_displaced_step_prepare and the displaced_step_finish function offloads to gdbarch_displaced_step_finish. The gdbarch_displaced_step_location method is now unnecessary, so is removed. Indeed, the core of GDB doesn't know how many displaced step buffers there are nor where they are. To keep the existing behavior for existing architectures, the logic that was previously implemented in infrun.c for preparing and finishing a displaced step is moved to displaced-stepping.c, to the displaced_step_buffer class. Architectures are modified to implement the new gdbarch methods using this class. The behavior is not expected to change. The other important change (which arises from the above) is that the core of GDB no longer prevents concurrent displaced steps. Before this patch, start_step_over walks the global step over chain and tries to initiate a step over (whether it is in-line or displaced). It follows these rules: - if an in-line step is in progress (in any inferior), don't start any other step over - if a displaced step is in progress for an inferior, don't start another displaced step for that inferior After starting a displaced step for a given inferior, it won't start another displaced step for that inferior. In the new code, start_step_over simply tries to initiate step overs for all the threads in the list. But because threads may be added back to the global list as it iterates the global list, trying to initiate step overs, start_step_over now starts by stealing the global queue into a local queue and iterates on the local queue. In the typical case, each thread will either: - have initiated a displaced step and be resumed - have been added back by the global step over queue by displaced_step_prepare_throw, because the gdbarch will have returned that there aren't enough resources (i.e. buffers) to initiate a displaced step for that thread Lastly, if start_step_over initiates an in-line step, it stops iterating, and moves back whatever remaining threads it had in its local step over queue to the global step over queue. Two other gdbarch methods are added, to handle some slightly annoying corner cases. They feel awkwardly specific to these cases, but I don't see any way around them: - gdbarch_displaced_step_copy_insn_closure_by_addr: in arm_pc_is_thumb, arm-tdep.c wants to get the closure for a given buffer address. - gdbarch_displaced_step_restore_all_in_ptid: when a process forks (at least on Linux), the address space is copied. If some displaced step buffers were in use at the time of the fork, we need to restore the original bytes in the child's address space. These two adjustments are also made in infrun.c: - prepare_for_detach: there may be multiple threads doing displaced steps when we detach, so wait until all of them are done - handle_inferior_event: when we handle a fork event for a given thread, it's possible that other threads are doing a displaced step at the same time. Make sure to restore the displaced step buffer contents in the child for them. [1] https://github.com/ROCm-Developer-Tools/ROCgdb gdb/ChangeLog: * displaced-stepping.h (struct displaced_step_copy_insn_closure): Adjust comments. (struct displaced_step_inferior_state) <step_thread, step_gdbarch, step_closure, step_original, step_copy, step_saved_copy>: Remove fields. (struct displaced_step_thread_state): New. (struct displaced_step_buffer): New. * displaced-stepping.c (displaced_step_buffer::prepare): New. (write_memory_ptid): Move from infrun.c. (displaced_step_instruction_executed_successfully): New, factored out of displaced_step_finish. (displaced_step_buffer::finish): New. (displaced_step_buffer::copy_insn_closure_by_addr): New. (displaced_step_buffer::restore_in_ptid): New. * gdbarch.sh (displaced_step_location): Remove. (displaced_step_prepare, displaced_step_finish, displaced_step_copy_insn_closure_by_addr, displaced_step_restore_all_in_ptid): New. * gdbarch.c: Re-generate. * gdbarch.h: Re-generate. * gdbthread.h (class thread_info) <displaced_step_state>: New field. (thread_step_over_chain_remove): New declaration. (thread_step_over_chain_next): New declaration. (thread_step_over_chain_length): New declaration. * thread.c (thread_step_over_chain_remove): Make non-static. (thread_step_over_chain_next): New. (global_thread_step_over_chain_next): Use thread_step_over_chain_next. (thread_step_over_chain_length): New. (global_thread_step_over_chain_enqueue): Add debug print. (global_thread_step_over_chain_remove): Add debug print. * infrun.h (get_displaced_step_copy_insn_closure_by_addr): Remove. * infrun.c (get_displaced_stepping_state): New. (displaced_step_in_progress_any_inferior): Remove. (displaced_step_in_progress_thread): Adjust. (displaced_step_in_progress): Adjust. (displaced_step_in_progress_any_thread): New. (get_displaced_step_copy_insn_closure_by_addr): Remove. (gdbarch_supports_displaced_stepping): Use gdbarch_displaced_step_prepare_p. (displaced_step_reset): Change parameter from inferior to thread. (displaced_step_prepare_throw): Implement using gdbarch_displaced_step_prepare. (write_memory_ptid): Move to displaced-step.c. (displaced_step_restore): Remove. (displaced_step_finish): Implement using gdbarch_displaced_step_finish. (start_step_over): Allow starting more than one displaced step. (prepare_for_detach): Handle possibly multiple threads doing displaced steps. (handle_inferior_event): Handle possibility that fork event happens while another thread displaced steps. * linux-tdep.h (linux_displaced_step_prepare): New. (linux_displaced_step_finish): New. (linux_displaced_step_copy_insn_closure_by_addr): New. (linux_displaced_step_restore_all_in_ptid): New. (linux_init_abi): Add supports_displaced_step parameter. * linux-tdep.c (struct linux_info) <disp_step_buf>: New field. (linux_displaced_step_prepare): New. (linux_displaced_step_finish): New. (linux_displaced_step_copy_insn_closure_by_addr): New. (linux_displaced_step_restore_all_in_ptid): New. (linux_init_abi): Add supports_displaced_step parameter, register displaced step methods if true. (_initialize_linux_tdep): Register inferior_execd observer. * amd64-linux-tdep.c (amd64_linux_init_abi_common): Add supports_displaced_step parameter, adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. (amd64_linux_init_abi): Adjust call to amd64_linux_init_abi_common. (amd64_x32_linux_init_abi): Likewise. * aarch64-linux-tdep.c (aarch64_linux_init_abi): Adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. * arm-linux-tdep.c (arm_linux_init_abi): Likewise. * i386-linux-tdep.c (i386_linux_init_abi): Likewise. * alpha-linux-tdep.c (alpha_linux_init_abi): Adjust call to linux_init_abi. * arc-linux-tdep.c (arc_linux_init_osabi): Likewise. * bfin-linux-tdep.c (bfin_linux_init_abi): Likewise. * cris-linux-tdep.c (cris_linux_init_abi): Likewise. * csky-linux-tdep.c (csky_linux_init_abi): Likewise. * frv-linux-tdep.c (frv_linux_init_abi): Likewise. * hppa-linux-tdep.c (hppa_linux_init_abi): Likewise. * ia64-linux-tdep.c (ia64_linux_init_abi): Likewise. * m32r-linux-tdep.c (m32r_linux_init_abi): Likewise. * m68k-linux-tdep.c (m68k_linux_init_abi): Likewise. * microblaze-linux-tdep.c (microblaze_linux_init_abi): Likewise. * mips-linux-tdep.c (mips_linux_init_abi): Likewise. * mn10300-linux-tdep.c (am33_linux_init_osabi): Likewise. * nios2-linux-tdep.c (nios2_linux_init_abi): Likewise. * or1k-linux-tdep.c (or1k_linux_init_abi): Likewise. * riscv-linux-tdep.c (riscv_linux_init_abi): Likewise. * s390-linux-tdep.c (s390_linux_init_abi_any): Likewise. * sh-linux-tdep.c (sh_linux_init_abi): Likewise. * sparc-linux-tdep.c (sparc32_linux_init_abi): Likewise. * sparc64-linux-tdep.c (sparc64_linux_init_abi): Likewise. * tic6x-linux-tdep.c (tic6x_uclinux_init_abi): Likewise. * tilegx-linux-tdep.c (tilegx_linux_init_abi): Likewise. * xtensa-linux-tdep.c (xtensa_linux_init_abi): Likewise. * ppc-linux-tdep.c (ppc_linux_init_abi): Adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. * arm-tdep.c (arm_pc_is_thumb): Call gdbarch_displaced_step_copy_insn_closure_by_addr instead of get_displaced_step_copy_insn_closure_by_addr. * rs6000-aix-tdep.c (rs6000_aix_init_osabi): Adjust calls to clear gdbarch methods. * rs6000-tdep.c (struct ppc_inferior_data): New structure. (get_ppc_per_inferior): New function. (ppc_displaced_step_prepare): New function. (ppc_displaced_step_finish): New function. (ppc_displaced_step_restore_all_in_ptid): New function. (rs6000_gdbarch_init): Register new gdbarch methods. * s390-tdep.c (s390_gdbarch_init): Don't call set_gdbarch_displaced_step_location, set new gdbarch methods. gdb/testsuite/ChangeLog: * gdb.arch/amd64-disp-step-avx.exp: Adjust pattern. * gdb.threads/forking-threads-plus-breakpoint.exp: Likewise. * gdb.threads/non-stop-fair-events.exp: Likewise. Change-Id: I387cd235a442d0620ec43608fd3dc0097fcbf8c8
418 lines
12 KiB
C
418 lines
12 KiB
C
/* Target-dependent code for GNU/Linux UltraSPARC.
|
||
|
||
Copyright (C) 2003-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "frame-unwind.h"
|
||
#include "dwarf2/frame.h"
|
||
#include "regset.h"
|
||
#include "regcache.h"
|
||
#include "gdbarch.h"
|
||
#include "gdbcore.h"
|
||
#include "osabi.h"
|
||
#include "solib-svr4.h"
|
||
#include "symtab.h"
|
||
#include "trad-frame.h"
|
||
#include "tramp-frame.h"
|
||
#include "xml-syscall.h"
|
||
#include "linux-tdep.h"
|
||
|
||
/* ADI specific si_code */
|
||
#ifndef SEGV_ACCADI
|
||
#define SEGV_ACCADI 3
|
||
#endif
|
||
#ifndef SEGV_ADIDERR
|
||
#define SEGV_ADIDERR 4
|
||
#endif
|
||
#ifndef SEGV_ADIPERR
|
||
#define SEGV_ADIPERR 5
|
||
#endif
|
||
|
||
/* The syscall's XML filename for sparc 64-bit. */
|
||
#define XML_SYSCALL_FILENAME_SPARC64 "syscalls/sparc64-linux.xml"
|
||
|
||
#include "sparc64-tdep.h"
|
||
|
||
/* Signal trampoline support. */
|
||
|
||
static void sparc64_linux_sigframe_init (const struct tramp_frame *self,
|
||
struct frame_info *this_frame,
|
||
struct trad_frame_cache *this_cache,
|
||
CORE_ADDR func);
|
||
|
||
/* See sparc-linux-tdep.c for details. Note that 64-bit binaries only
|
||
use RT signals. */
|
||
|
||
static const struct tramp_frame sparc64_linux_rt_sigframe =
|
||
{
|
||
SIGTRAMP_FRAME,
|
||
4,
|
||
{
|
||
{ 0x82102065, ULONGEST_MAX }, /* mov __NR_rt_sigreturn, %g1 */
|
||
{ 0x91d0206d, ULONGEST_MAX }, /* ta 0x6d */
|
||
{ TRAMP_SENTINEL_INSN, ULONGEST_MAX }
|
||
},
|
||
sparc64_linux_sigframe_init
|
||
};
|
||
|
||
static void
|
||
sparc64_linux_sigframe_init (const struct tramp_frame *self,
|
||
struct frame_info *this_frame,
|
||
struct trad_frame_cache *this_cache,
|
||
CORE_ADDR func)
|
||
{
|
||
CORE_ADDR base, addr, sp_addr;
|
||
int regnum;
|
||
|
||
base = get_frame_register_unsigned (this_frame, SPARC_O1_REGNUM);
|
||
base += 128;
|
||
|
||
/* Offsets from <bits/sigcontext.h>. */
|
||
|
||
/* Since %g0 is always zero, keep the identity encoding. */
|
||
addr = base + 8;
|
||
sp_addr = base + ((SPARC_SP_REGNUM - SPARC_G0_REGNUM) * 8);
|
||
for (regnum = SPARC_G1_REGNUM; regnum <= SPARC_O7_REGNUM; regnum++)
|
||
{
|
||
trad_frame_set_reg_addr (this_cache, regnum, addr);
|
||
addr += 8;
|
||
}
|
||
|
||
trad_frame_set_reg_addr (this_cache, SPARC64_STATE_REGNUM, addr + 0);
|
||
trad_frame_set_reg_addr (this_cache, SPARC64_PC_REGNUM, addr + 8);
|
||
trad_frame_set_reg_addr (this_cache, SPARC64_NPC_REGNUM, addr + 16);
|
||
trad_frame_set_reg_addr (this_cache, SPARC64_Y_REGNUM, addr + 24);
|
||
trad_frame_set_reg_addr (this_cache, SPARC64_FPRS_REGNUM, addr + 28);
|
||
|
||
base = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
|
||
if (base & 1)
|
||
base += BIAS;
|
||
|
||
addr = get_frame_memory_unsigned (this_frame, sp_addr, 8);
|
||
if (addr & 1)
|
||
addr += BIAS;
|
||
|
||
for (regnum = SPARC_L0_REGNUM; regnum <= SPARC_I7_REGNUM; regnum++)
|
||
{
|
||
trad_frame_set_reg_addr (this_cache, regnum, addr);
|
||
addr += 8;
|
||
}
|
||
trad_frame_set_id (this_cache, frame_id_build (base, func));
|
||
}
|
||
|
||
/* sparc64 GNU/Linux implementation of the report_signal_info
|
||
gdbarch hook.
|
||
Displays information related to ADI memory corruptions. */
|
||
|
||
static void
|
||
sparc64_linux_report_signal_info (struct gdbarch *gdbarch, struct ui_out *uiout,
|
||
enum gdb_signal siggnal)
|
||
{
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word != 64
|
||
|| siggnal != GDB_SIGNAL_SEGV)
|
||
return;
|
||
|
||
CORE_ADDR addr = 0;
|
||
long si_code = 0;
|
||
|
||
try
|
||
{
|
||
/* Evaluate si_code to see if the segfault is ADI related. */
|
||
si_code = parse_and_eval_long ("$_siginfo.si_code\n");
|
||
|
||
if (si_code >= SEGV_ACCADI && si_code <= SEGV_ADIPERR)
|
||
addr = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
|
||
}
|
||
catch (const gdb_exception &exception)
|
||
{
|
||
return;
|
||
}
|
||
|
||
/* Print out ADI event based on sig_code value */
|
||
switch (si_code)
|
||
{
|
||
case SEGV_ACCADI: /* adi not enabled */
|
||
uiout->text ("\n");
|
||
uiout->field_string ("sigcode-meaning", _("ADI disabled"));
|
||
uiout->text (_(" while accessing address "));
|
||
uiout->field_core_addr ("bound-access", gdbarch, addr);
|
||
break;
|
||
case SEGV_ADIDERR: /* disrupting mismatch */
|
||
uiout->text ("\n");
|
||
uiout->field_string ("sigcode-meaning", _("ADI deferred mismatch"));
|
||
uiout->text (_(" while accessing address "));
|
||
uiout->field_core_addr ("bound-access", gdbarch, addr);
|
||
break;
|
||
case SEGV_ADIPERR: /* precise mismatch */
|
||
uiout->text ("\n");
|
||
uiout->field_string ("sigcode-meaning", _("ADI precise mismatch"));
|
||
uiout->text (_(" while accessing address "));
|
||
uiout->field_core_addr ("bound-access", gdbarch, addr);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
}
|
||
|
||
|
||
/* Return the address of a system call's alternative return
|
||
address. */
|
||
|
||
static CORE_ADDR
|
||
sparc64_linux_step_trap (struct frame_info *frame, unsigned long insn)
|
||
{
|
||
/* __NR_rt_sigreturn is 101 */
|
||
if ((insn == 0x91d0206d)
|
||
&& (get_frame_register_unsigned (frame, SPARC_G1_REGNUM) == 101))
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
ULONGEST sp = get_frame_register_unsigned (frame, SPARC_SP_REGNUM);
|
||
if (sp & 1)
|
||
sp += BIAS;
|
||
|
||
/* The kernel puts the sigreturn registers on the stack,
|
||
and this is where the signal unwinding state is take from
|
||
when returning from a signal.
|
||
|
||
A siginfo_t sits 192 bytes from the base of the stack. This
|
||
siginfo_t is 128 bytes, and is followed by the sigreturn
|
||
register save area. The saved PC sits at a 136 byte offset
|
||
into there. */
|
||
|
||
return read_memory_unsigned_integer (sp + 192 + 128 + 136,
|
||
8, byte_order);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
const struct sparc_gregmap sparc64_linux_core_gregmap =
|
||
{
|
||
32 * 8, /* %tstate */
|
||
33 * 8, /* %tpc */
|
||
34 * 8, /* %tnpc */
|
||
35 * 8, /* %y */
|
||
-1, /* %wim */
|
||
-1, /* %tbr */
|
||
1 * 8, /* %g1 */
|
||
16 * 8, /* %l0 */
|
||
8, /* y size */
|
||
};
|
||
|
||
|
||
static void
|
||
sparc64_linux_supply_core_gregset (const struct regset *regset,
|
||
struct regcache *regcache,
|
||
int regnum, const void *gregs, size_t len)
|
||
{
|
||
sparc64_supply_gregset (&sparc64_linux_core_gregmap,
|
||
regcache, regnum, gregs);
|
||
}
|
||
|
||
static void
|
||
sparc64_linux_collect_core_gregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *gregs, size_t len)
|
||
{
|
||
sparc64_collect_gregset (&sparc64_linux_core_gregmap,
|
||
regcache, regnum, gregs);
|
||
}
|
||
|
||
static void
|
||
sparc64_linux_supply_core_fpregset (const struct regset *regset,
|
||
struct regcache *regcache,
|
||
int regnum, const void *fpregs, size_t len)
|
||
{
|
||
sparc64_supply_fpregset (&sparc64_bsd_fpregmap, regcache, regnum, fpregs);
|
||
}
|
||
|
||
static void
|
||
sparc64_linux_collect_core_fpregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *fpregs, size_t len)
|
||
{
|
||
sparc64_collect_fpregset (&sparc64_bsd_fpregmap, regcache, regnum, fpregs);
|
||
}
|
||
|
||
/* Set the program counter for process PTID to PC. */
|
||
|
||
#define TSTATE_SYSCALL 0x0000000000000020ULL
|
||
|
||
static void
|
||
sparc64_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
|
||
ULONGEST state;
|
||
|
||
regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
|
||
regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
|
||
|
||
/* Clear the "in syscall" bit to prevent the kernel from
|
||
messing with the PCs we just installed, if we happen to be
|
||
within an interrupted system call that the kernel wants to
|
||
restart.
|
||
|
||
Note that after we return from the dummy call, the TSTATE et al.
|
||
registers will be automatically restored, and the kernel
|
||
continues to restart the system call at this point. */
|
||
regcache_cooked_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
|
||
state &= ~TSTATE_SYSCALL;
|
||
regcache_cooked_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
|
||
}
|
||
|
||
static LONGEST
|
||
sparc64_linux_get_syscall_number (struct gdbarch *gdbarch,
|
||
thread_info *thread)
|
||
{
|
||
struct regcache *regcache = get_thread_regcache (thread);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
/* The content of a register. */
|
||
gdb_byte buf[8];
|
||
/* The result. */
|
||
LONGEST ret;
|
||
|
||
/* Getting the system call number from the register.
|
||
When dealing with the sparc architecture, this information
|
||
is stored at the %g1 register. */
|
||
regcache->cooked_read (SPARC_G1_REGNUM, buf);
|
||
|
||
ret = extract_signed_integer (buf, 8, byte_order);
|
||
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* Implement the "get_longjmp_target" gdbarch method. */
|
||
|
||
static int
|
||
sparc64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
CORE_ADDR jb_addr;
|
||
gdb_byte buf[8];
|
||
|
||
jb_addr = get_frame_register_unsigned (frame, SPARC_O0_REGNUM);
|
||
|
||
/* setjmp and longjmp in SPARC64 are implemented in glibc using the
|
||
setcontext and getcontext system calls respectively. These
|
||
system calls operate on ucontext_t structures, which happen to
|
||
partially have the same structure than jmp_buf. However the
|
||
ucontext returned by getcontext, and thus the jmp_buf structure
|
||
returned by setjmp, contains the context of the trap instruction
|
||
in the glibc __[sig]setjmp wrapper, not the context of the user
|
||
code calling setjmp.
|
||
|
||
%o7 in the jmp_buf structure is stored at offset 18*8 in the
|
||
mc_gregs array, which is itself located at offset 32 into
|
||
jmp_buf. See bits/setjmp.h. This register contains the address
|
||
of the 'call setjmp' instruction in user code.
|
||
|
||
In order to determine the longjmp target address in the
|
||
initiating frame we need to examine the call instruction itself,
|
||
in particular whether the annul bit is set. If it is not set
|
||
then we need to jump over the instruction at the delay slot. */
|
||
|
||
if (target_read_memory (jb_addr + 32 + (18 * 8), buf, 8))
|
||
return 0;
|
||
|
||
*pc = extract_unsigned_integer (buf, 8, gdbarch_byte_order (gdbarch));
|
||
|
||
if (!sparc_is_annulled_branch_insn (*pc))
|
||
*pc += 4; /* delay slot insn */
|
||
*pc += 4; /* call insn */
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
|
||
static const struct regset sparc64_linux_gregset =
|
||
{
|
||
NULL,
|
||
sparc64_linux_supply_core_gregset,
|
||
sparc64_linux_collect_core_gregset
|
||
};
|
||
|
||
static const struct regset sparc64_linux_fpregset =
|
||
{
|
||
NULL,
|
||
sparc64_linux_supply_core_fpregset,
|
||
sparc64_linux_collect_core_fpregset
|
||
};
|
||
|
||
static void
|
||
sparc64_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
linux_init_abi (info, gdbarch, false);
|
||
|
||
tdep->gregset = &sparc64_linux_gregset;
|
||
tdep->sizeof_gregset = 288;
|
||
|
||
tdep->fpregset = &sparc64_linux_fpregset;
|
||
tdep->sizeof_fpregset = 280;
|
||
|
||
tramp_frame_prepend_unwinder (gdbarch, &sparc64_linux_rt_sigframe);
|
||
|
||
/* Hook in the DWARF CFI frame unwinder. */
|
||
dwarf2_append_unwinders (gdbarch);
|
||
|
||
sparc64_init_abi (info, gdbarch);
|
||
|
||
/* GNU/Linux has SVR4-style shared libraries... */
|
||
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
||
set_solib_svr4_fetch_link_map_offsets
|
||
(gdbarch, svr4_lp64_fetch_link_map_offsets);
|
||
|
||
/* ...which means that we need some special handling when doing
|
||
prologue analysis. */
|
||
tdep->plt_entry_size = 16;
|
||
|
||
/* Enable TLS support. */
|
||
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
||
svr4_fetch_objfile_link_map);
|
||
|
||
/* Make sure we can single-step over signal return system calls. */
|
||
tdep->step_trap = sparc64_linux_step_trap;
|
||
|
||
/* Make sure we can single-step over longjmp calls. */
|
||
set_gdbarch_get_longjmp_target (gdbarch, sparc64_linux_get_longjmp_target);
|
||
|
||
set_gdbarch_write_pc (gdbarch, sparc64_linux_write_pc);
|
||
|
||
/* Functions for 'catch syscall'. */
|
||
set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_SPARC64);
|
||
set_gdbarch_get_syscall_number (gdbarch,
|
||
sparc64_linux_get_syscall_number);
|
||
set_gdbarch_report_signal_info (gdbarch, sparc64_linux_report_signal_info);
|
||
}
|
||
|
||
void _initialize_sparc64_linux_tdep ();
|
||
void
|
||
_initialize_sparc64_linux_tdep ()
|
||
{
|
||
gdbarch_register_osabi (bfd_arch_sparc, bfd_mach_sparc_v9,
|
||
GDB_OSABI_LINUX, sparc64_linux_init_abi);
|
||
}
|