binutils-gdb/gdb/arc-linux-tdep.c
Simon Marchi 187b041e25 gdb: move displaced stepping logic to gdbarch, allow starting concurrent displaced steps
Today, GDB only allows a single displaced stepping operation to happen
per inferior at a time.  There is a single displaced stepping buffer per
inferior, whose address is fixed (obtained with
gdbarch_displaced_step_location), managed by infrun.c.

In the case of the AMD ROCm target [1] (in the context of which this
work has been done), it is typical to have thousands of threads (or
waves, in SMT terminology) executing the same code, hitting the same
breakpoint (possibly conditional) and needing to to displaced step it at
the same time.  The limitation of only one displaced step executing at a
any given time becomes a real bottleneck.

To fix this bottleneck, we want to make it possible for threads of a
same inferior to execute multiple displaced steps in parallel.  This
patch builds the foundation for that.

In essence, this patch moves the task of preparing a displaced step and
cleaning up after to gdbarch functions.  This allows using different
schemes for allocating and managing displaced stepping buffers for
different platforms.  The gdbarch decides how to assign a buffer to a
thread that needs to execute a displaced step.

On the ROCm target, we are able to allocate one displaced stepping
buffer per thread, so a thread will never have to wait to execute a
displaced step.

On Linux, the entry point of the executable if used as the displaced
stepping buffer, since we assume that this code won't get used after
startup.  From what I saw (I checked with a binary generated against
glibc and musl), on AMD64 we have enough space there to fit two
displaced stepping buffers.  A subsequent patch makes AMD64/Linux use
two buffers.

In addition to having multiple displaced stepping buffers, there is also
the idea of sharing displaced stepping buffers between threads.  Two
threads doing displaced steps for the same PC could use the same buffer
at the same time.  Two threads stepping over the same instruction (same
opcode) at two different PCs may also be able to share a displaced
stepping buffer.  This is an idea for future patches, but the
architecture built by this patch is made to allow this.

Now, the implementation details.  The main part of this patch is moving
the responsibility of preparing and finishing a displaced step to the
gdbarch.  Before this patch, preparing a displaced step is driven by the
displaced_step_prepare_throw function.  It does some calls to the
gdbarch to do some low-level operations, but the high-level logic is
there.  The steps are roughly:

- Ask the gdbarch for the displaced step buffer location
- Save the existing bytes in the displaced step buffer
- Ask the gdbarch to copy the instruction into the displaced step buffer
- Set the pc of the thread to the beginning of the displaced step buffer

Similarly, the "fixup" phase, executed after the instruction was
successfully single-stepped, is driven by the infrun code (function
displaced_step_finish).  The steps are roughly:

- Restore the original bytes in the displaced stepping buffer
- Ask the gdbarch to fixup the instruction result (adjust the target's
  registers or memory to do as if the instruction had been executed in
  its original location)

The displaced_step_inferior_state::step_thread field indicates which
thread (if any) is currently using the displaced stepping buffer, so it
is used by displaced_step_prepare_throw to check if the displaced
stepping buffer is free to use or not.

This patch defers the whole task of preparing and cleaning up after a
displaced step to the gdbarch.  Two new main gdbarch methods are added,
with the following semantics:

  - gdbarch_displaced_step_prepare: Prepare for the given thread to
    execute a displaced step of the instruction located at its current PC.
    Upon return, everything should be ready for GDB to resume the thread
    (with either a single step or continue, as indicated by
    gdbarch_displaced_step_hw_singlestep) to make it displaced step the
    instruction.

  - gdbarch_displaced_step_finish: Called when the thread stopped after
    having started a displaced step.  Verify if the instruction was
    executed, if so apply any fixup required to compensate for the fact
    that the instruction was executed at a different place than its
    original pc.  Release any resources that were allocated for this
    displaced step.  Upon return, everything should be ready for GDB to
    resume the thread in its "normal" code path.

The displaced_step_prepare_throw function now pretty much just offloads
to gdbarch_displaced_step_prepare and the displaced_step_finish function
offloads to gdbarch_displaced_step_finish.

The gdbarch_displaced_step_location method is now unnecessary, so is
removed.  Indeed, the core of GDB doesn't know how many displaced step
buffers there are nor where they are.

To keep the existing behavior for existing architectures, the logic that
was previously implemented in infrun.c for preparing and finishing a
displaced step is moved to displaced-stepping.c, to the
displaced_step_buffer class.  Architectures are modified to implement
the new gdbarch methods using this class.  The behavior is not expected
to change.

The other important change (which arises from the above) is that the
core of GDB no longer prevents concurrent displaced steps.  Before this
patch, start_step_over walks the global step over chain and tries to
initiate a step over (whether it is in-line or displaced).  It follows
these rules:

  - if an in-line step is in progress (in any inferior), don't start any
    other step over
  - if a displaced step is in progress for an inferior, don't start
    another displaced step for that inferior

After starting a displaced step for a given inferior, it won't start
another displaced step for that inferior.

In the new code, start_step_over simply tries to initiate step overs for
all the threads in the list.  But because threads may be added back to
the global list as it iterates the global list, trying to initiate step
overs, start_step_over now starts by stealing the global queue into a
local queue and iterates on the local queue.  In the typical case, each
thread will either:

  - have initiated a displaced step and be resumed
  - have been added back by the global step over queue by
    displaced_step_prepare_throw, because the gdbarch will have returned
    that there aren't enough resources (i.e. buffers) to initiate a
    displaced step for that thread

Lastly, if start_step_over initiates an in-line step, it stops
iterating, and moves back whatever remaining threads it had in its local
step over queue to the global step over queue.

Two other gdbarch methods are added, to handle some slightly annoying
corner cases.  They feel awkwardly specific to these cases, but I don't
see any way around them:

  - gdbarch_displaced_step_copy_insn_closure_by_addr: in
    arm_pc_is_thumb, arm-tdep.c wants to get the closure for a given
    buffer address.

  - gdbarch_displaced_step_restore_all_in_ptid: when a process forks
    (at least on Linux), the address space is copied.  If some displaced
    step buffers were in use at the time of the fork, we need to restore
    the original bytes in the child's address space.

These two adjustments are also made in infrun.c:

  - prepare_for_detach: there may be multiple threads doing displaced
    steps when we detach, so wait until all of them are done

  - handle_inferior_event: when we handle a fork event for a given
    thread, it's possible that other threads are doing a displaced step at
    the same time.  Make sure to restore the displaced step buffer
    contents in the child for them.

[1] https://github.com/ROCm-Developer-Tools/ROCgdb

gdb/ChangeLog:

	* displaced-stepping.h (struct
	displaced_step_copy_insn_closure): Adjust comments.
	(struct displaced_step_inferior_state) <step_thread,
	step_gdbarch, step_closure, step_original, step_copy,
	step_saved_copy>: Remove fields.
	(struct displaced_step_thread_state): New.
	(struct displaced_step_buffer): New.
	* displaced-stepping.c (displaced_step_buffer::prepare): New.
	(write_memory_ptid): Move from infrun.c.
	(displaced_step_instruction_executed_successfully): New,
	factored out of displaced_step_finish.
	(displaced_step_buffer::finish): New.
	(displaced_step_buffer::copy_insn_closure_by_addr): New.
	(displaced_step_buffer::restore_in_ptid): New.
	* gdbarch.sh (displaced_step_location): Remove.
	(displaced_step_prepare, displaced_step_finish,
	displaced_step_copy_insn_closure_by_addr,
	displaced_step_restore_all_in_ptid): New.
	* gdbarch.c: Re-generate.
	* gdbarch.h: Re-generate.
	* gdbthread.h (class thread_info) <displaced_step_state>: New
	field.
	(thread_step_over_chain_remove): New declaration.
	(thread_step_over_chain_next): New declaration.
	(thread_step_over_chain_length): New declaration.
	* thread.c (thread_step_over_chain_remove): Make non-static.
	(thread_step_over_chain_next): New.
	(global_thread_step_over_chain_next): Use
	thread_step_over_chain_next.
	(thread_step_over_chain_length): New.
	(global_thread_step_over_chain_enqueue): Add debug print.
	(global_thread_step_over_chain_remove): Add debug print.
	* infrun.h (get_displaced_step_copy_insn_closure_by_addr):
	Remove.
	* infrun.c (get_displaced_stepping_state): New.
	(displaced_step_in_progress_any_inferior): Remove.
	(displaced_step_in_progress_thread): Adjust.
	(displaced_step_in_progress): Adjust.
	(displaced_step_in_progress_any_thread): New.
	(get_displaced_step_copy_insn_closure_by_addr): Remove.
	(gdbarch_supports_displaced_stepping): Use
	gdbarch_displaced_step_prepare_p.
	(displaced_step_reset): Change parameter from inferior to
	thread.
	(displaced_step_prepare_throw): Implement using
	gdbarch_displaced_step_prepare.
	(write_memory_ptid): Move to displaced-step.c.
	(displaced_step_restore): Remove.
	(displaced_step_finish): Implement using
	gdbarch_displaced_step_finish.
	(start_step_over): Allow starting more than one displaced step.
	(prepare_for_detach): Handle possibly multiple threads doing
	displaced steps.
	(handle_inferior_event): Handle possibility that fork event
	happens while another thread displaced steps.
	* linux-tdep.h (linux_displaced_step_prepare): New.
	(linux_displaced_step_finish): New.
	(linux_displaced_step_copy_insn_closure_by_addr): New.
	(linux_displaced_step_restore_all_in_ptid): New.
	(linux_init_abi): Add supports_displaced_step parameter.
	* linux-tdep.c (struct linux_info) <disp_step_buf>: New field.
	(linux_displaced_step_prepare): New.
	(linux_displaced_step_finish): New.
	(linux_displaced_step_copy_insn_closure_by_addr): New.
	(linux_displaced_step_restore_all_in_ptid): New.
	(linux_init_abi): Add supports_displaced_step parameter,
	register displaced step methods if true.
	(_initialize_linux_tdep): Register inferior_execd observer.
	* amd64-linux-tdep.c (amd64_linux_init_abi_common): Add
	supports_displaced_step parameter, adjust call to
	linux_init_abi.  Remove call to
	set_gdbarch_displaced_step_location.
	(amd64_linux_init_abi): Adjust call to
	amd64_linux_init_abi_common.
	(amd64_x32_linux_init_abi): Likewise.
	* aarch64-linux-tdep.c (aarch64_linux_init_abi): Adjust call to
	linux_init_abi.  Remove call to
	set_gdbarch_displaced_step_location.
	* arm-linux-tdep.c (arm_linux_init_abi): Likewise.
	* i386-linux-tdep.c (i386_linux_init_abi): Likewise.
	* alpha-linux-tdep.c (alpha_linux_init_abi): Adjust call to
	linux_init_abi.
	* arc-linux-tdep.c (arc_linux_init_osabi): Likewise.
	* bfin-linux-tdep.c (bfin_linux_init_abi): Likewise.
	* cris-linux-tdep.c (cris_linux_init_abi): Likewise.
	* csky-linux-tdep.c (csky_linux_init_abi): Likewise.
	* frv-linux-tdep.c (frv_linux_init_abi): Likewise.
	* hppa-linux-tdep.c (hppa_linux_init_abi): Likewise.
	* ia64-linux-tdep.c (ia64_linux_init_abi): Likewise.
	* m32r-linux-tdep.c (m32r_linux_init_abi): Likewise.
	* m68k-linux-tdep.c (m68k_linux_init_abi): Likewise.
	* microblaze-linux-tdep.c (microblaze_linux_init_abi): Likewise.
	* mips-linux-tdep.c (mips_linux_init_abi): Likewise.
	* mn10300-linux-tdep.c (am33_linux_init_osabi): Likewise.
	* nios2-linux-tdep.c (nios2_linux_init_abi): Likewise.
	* or1k-linux-tdep.c (or1k_linux_init_abi): Likewise.
	* riscv-linux-tdep.c (riscv_linux_init_abi): Likewise.
	* s390-linux-tdep.c (s390_linux_init_abi_any): Likewise.
	* sh-linux-tdep.c (sh_linux_init_abi): Likewise.
	* sparc-linux-tdep.c (sparc32_linux_init_abi): Likewise.
	* sparc64-linux-tdep.c (sparc64_linux_init_abi): Likewise.
	* tic6x-linux-tdep.c (tic6x_uclinux_init_abi): Likewise.
	* tilegx-linux-tdep.c (tilegx_linux_init_abi): Likewise.
	* xtensa-linux-tdep.c (xtensa_linux_init_abi): Likewise.
	* ppc-linux-tdep.c (ppc_linux_init_abi): Adjust call to
	linux_init_abi.  Remove call to
	set_gdbarch_displaced_step_location.
	* arm-tdep.c (arm_pc_is_thumb): Call
	gdbarch_displaced_step_copy_insn_closure_by_addr instead of
	get_displaced_step_copy_insn_closure_by_addr.
	* rs6000-aix-tdep.c (rs6000_aix_init_osabi): Adjust calls to
	clear gdbarch methods.
	* rs6000-tdep.c (struct ppc_inferior_data): New structure.
	(get_ppc_per_inferior): New function.
	(ppc_displaced_step_prepare): New function.
	(ppc_displaced_step_finish): New function.
	(ppc_displaced_step_restore_all_in_ptid): New function.
	(rs6000_gdbarch_init): Register new gdbarch methods.
	* s390-tdep.c (s390_gdbarch_init): Don't call
	set_gdbarch_displaced_step_location, set new gdbarch methods.

gdb/testsuite/ChangeLog:

	* gdb.arch/amd64-disp-step-avx.exp: Adjust pattern.
	* gdb.threads/forking-threads-plus-breakpoint.exp: Likewise.
	* gdb.threads/non-stop-fair-events.exp: Likewise.

Change-Id: I387cd235a442d0620ec43608fd3dc0097fcbf8c8
2020-12-04 16:43:55 -05:00

475 lines
15 KiB
C

/* Target dependent code for GNU/Linux ARC.
Copyright 2020 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* GDB header files. */
#include "defs.h"
#include "linux-tdep.h"
#include "objfiles.h"
#include "opcode/arc.h"
#include "osabi.h"
#include "solib-svr4.h"
/* ARC header files. */
#include "opcodes/arc-dis.h"
#include "arc-linux-tdep.h"
#include "arc-tdep.h"
#include "arch/arc.h"
#define REGOFF(offset) (offset * ARC_REGISTER_SIZE)
/* arc_linux_core_reg_offsets[i] is the offset in the .reg section of GDB
regnum i. Array index is an internal GDB register number, as defined in
arc-tdep.h:arc_regnum.
From include/uapi/asm/ptrace.h in the ARC Linux sources. */
/* The layout of this struct is tightly bound to "arc_regnum" enum
in arc-tdep.h. Any change of order in there, must be reflected
here as well. */
static const int arc_linux_core_reg_offsets[] = {
/* R0 - R12. */
REGOFF (22), REGOFF (21), REGOFF (20), REGOFF (19),
REGOFF (18), REGOFF (17), REGOFF (16), REGOFF (15),
REGOFF (14), REGOFF (13), REGOFF (12), REGOFF (11),
REGOFF (10),
/* R13 - R25. */
REGOFF (37), REGOFF (36), REGOFF (35), REGOFF (34),
REGOFF (33), REGOFF (32), REGOFF (31), REGOFF (30),
REGOFF (29), REGOFF (28), REGOFF (27), REGOFF (26),
REGOFF (25),
REGOFF (9), /* R26 (GP) */
REGOFF (8), /* FP */
REGOFF (23), /* SP */
ARC_OFFSET_NO_REGISTER, /* ILINK */
ARC_OFFSET_NO_REGISTER, /* R30 */
REGOFF (7), /* BLINK */
/* R32 - R59. */
ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
ARC_OFFSET_NO_REGISTER,
REGOFF (4), /* LP_COUNT */
ARC_OFFSET_NO_REGISTER, /* RESERVED */
ARC_OFFSET_NO_REGISTER, /* LIMM */
ARC_OFFSET_NO_REGISTER, /* PCL */
REGOFF (39), /* PC */
REGOFF (5), /* STATUS32 */
REGOFF (2), /* LP_START */
REGOFF (3), /* LP_END */
REGOFF (1), /* BTA */
REGOFF (6) /* ERET */
};
/* Implement the "cannot_fetch_register" gdbarch method. */
static int
arc_linux_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
{
/* Assume that register is readable if it is unknown. */
switch (regnum)
{
case ARC_ILINK_REGNUM:
case ARC_RESERVED_REGNUM:
case ARC_LIMM_REGNUM:
return true;
case ARC_R30_REGNUM:
case ARC_R58_REGNUM:
case ARC_R59_REGNUM:
return !arc_mach_is_arcv2 (gdbarch);
}
return (regnum > ARC_BLINK_REGNUM) && (regnum < ARC_LP_COUNT_REGNUM);
}
/* Implement the "cannot_store_register" gdbarch method. */
static int
arc_linux_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
/* Assume that register is writable if it is unknown. */
switch (regnum)
{
case ARC_ILINK_REGNUM:
case ARC_RESERVED_REGNUM:
case ARC_LIMM_REGNUM:
case ARC_PCL_REGNUM:
return true;
case ARC_R30_REGNUM:
case ARC_R58_REGNUM:
case ARC_R59_REGNUM:
return !arc_mach_is_arcv2 (gdbarch);
}
return (regnum > ARC_BLINK_REGNUM) && (regnum < ARC_LP_COUNT_REGNUM);
}
/* For ARC Linux, breakpoints use the 16-bit TRAP_S 1 instruction, which
is 0x3e78 (little endian) or 0x783e (big endian). */
static const gdb_byte arc_linux_trap_s_be[] = { 0x78, 0x3e };
static const gdb_byte arc_linux_trap_s_le[] = { 0x3e, 0x78 };
static const int trap_size = 2; /* Number of bytes to insert "trap". */
/* Implement the "breakpoint_kind_from_pc" gdbarch method. */
static int
arc_linux_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
return trap_size;
}
/* Implement the "sw_breakpoint_from_kind" gdbarch method. */
static const gdb_byte *
arc_linux_sw_breakpoint_from_kind (struct gdbarch *gdbarch,
int kind, int *size)
{
gdb_assert (kind == trap_size);
*size = kind;
return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
? arc_linux_trap_s_be
: arc_linux_trap_s_le);
}
/* Implement the "software_single_step" gdbarch method. */
static std::vector<CORE_ADDR>
arc_linux_software_single_step (struct regcache *regcache)
{
struct gdbarch *gdbarch = regcache->arch ();
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
struct disassemble_info di = arc_disassemble_info (gdbarch);
/* Read current instruction. */
struct arc_instruction curr_insn;
arc_insn_decode (regcache_read_pc (regcache), &di, arc_delayed_print_insn,
&curr_insn);
CORE_ADDR next_pc = arc_insn_get_linear_next_pc (curr_insn);
std::vector<CORE_ADDR> next_pcs;
/* For instructions with delay slots, the fall thru is not the
instruction immediately after the current instruction, but the one
after that. */
if (curr_insn.has_delay_slot)
{
struct arc_instruction next_insn;
arc_insn_decode (next_pc, &di, arc_delayed_print_insn, &next_insn);
next_pcs.push_back (arc_insn_get_linear_next_pc (next_insn));
}
else
next_pcs.push_back (next_pc);
ULONGEST status32;
regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
&status32);
if (curr_insn.is_control_flow)
{
CORE_ADDR branch_pc = arc_insn_get_branch_target (curr_insn);
if (branch_pc != next_pc)
next_pcs.push_back (branch_pc);
}
/* Is current instruction the last in a loop body? */
else if (tdep->has_hw_loops)
{
/* If STATUS32.L is 1, then ZD-loops are disabled. */
if ((status32 & ARC_STATUS32_L_MASK) == 0)
{
ULONGEST lp_end, lp_start, lp_count;
regcache_cooked_read_unsigned (regcache, ARC_LP_START_REGNUM,
&lp_start);
regcache_cooked_read_unsigned (regcache, ARC_LP_END_REGNUM, &lp_end);
regcache_cooked_read_unsigned (regcache, ARC_LP_COUNT_REGNUM,
&lp_count);
if (arc_debug)
{
debug_printf ("arc-linux: lp_start = %s, lp_end = %s, "
"lp_count = %s, next_pc = %s\n",
paddress (gdbarch, lp_start),
paddress (gdbarch, lp_end),
pulongest (lp_count),
paddress (gdbarch, next_pc));
}
if (next_pc == lp_end && lp_count > 1)
{
/* The instruction is in effect a jump back to the start of
the loop. */
next_pcs.push_back (lp_start);
}
}
}
/* Is this a delay slot? Then next PC is in BTA register. */
if ((status32 & ARC_STATUS32_DE_MASK) != 0)
{
ULONGEST bta;
regcache_cooked_read_unsigned (regcache, ARC_BTA_REGNUM, &bta);
next_pcs.push_back (bta);
}
return next_pcs;
}
/* Implement the "skip_solib_resolver" gdbarch method.
See glibc_skip_solib_resolver for details. */
static CORE_ADDR
arc_linux_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
{
/* For uClibc 0.9.26+.
An unresolved PLT entry points to "__dl_linux_resolve", which calls
"_dl_linux_resolver" to do the resolving and then eventually jumps to
the function.
So we look for the symbol `_dl_linux_resolver', and if we are there,
gdb sets a breakpoint at the return address, and continues. */
struct bound_minimal_symbol resolver
= lookup_minimal_symbol ("_dl_linux_resolver", NULL, NULL);
if (arc_debug)
{
if (resolver.minsym != nullptr)
{
CORE_ADDR res_addr = BMSYMBOL_VALUE_ADDRESS (resolver);
debug_printf ("arc-linux: skip_solib_resolver (): "
"pc = %s, resolver at %s\n",
print_core_address (gdbarch, pc),
print_core_address (gdbarch, res_addr));
}
else
{
debug_printf ("arc-linux: skip_solib_resolver (): "
"pc = %s, no resolver found\n",
print_core_address (gdbarch, pc));
}
}
if (resolver.minsym != nullptr && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
{
/* Find the return address. */
return frame_unwind_caller_pc (get_current_frame ());
}
else
{
/* No breakpoint required. */
return 0;
}
}
void
arc_linux_supply_gregset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t size)
{
gdb_static_assert (ARC_LAST_REGNUM
< ARRAY_SIZE (arc_linux_core_reg_offsets));
const bfd_byte *buf = (const bfd_byte *) gregs;
for (int reg = 0; reg <= ARC_LAST_REGNUM; reg++)
if (arc_linux_core_reg_offsets[reg] != ARC_OFFSET_NO_REGISTER)
regcache->raw_supply (reg, buf + arc_linux_core_reg_offsets[reg]);
}
void
arc_linux_supply_v2_regset (const struct regset *regset,
struct regcache *regcache, int regnum,
const void *v2_regs, size_t size)
{
const bfd_byte *buf = (const bfd_byte *) v2_regs;
/* user_regs_arcv2 is defined in linux arch/arc/include/uapi/asm/ptrace.h. */
regcache->raw_supply (ARC_R30_REGNUM, buf);
regcache->raw_supply (ARC_R58_REGNUM, buf + REGOFF (1));
regcache->raw_supply (ARC_R59_REGNUM, buf + REGOFF (2));
}
/* Populate BUF with register REGNUM from the REGCACHE. */
static void
collect_register (const struct regcache *regcache, struct gdbarch *gdbarch,
int regnum, gdb_byte *buf)
{
int offset;
/* Skip non-existing registers. */
if (arc_linux_core_reg_offsets[regnum] == ARC_OFFSET_NO_REGISTER)
return;
/* The address where the execution has stopped is in pseudo-register
STOP_PC. However, when kernel code is returning from the exception,
it uses the value from ERET register. Since, TRAP_S (the breakpoint
instruction) commits, the ERET points to the next instruction. In
other words: ERET != STOP_PC. To jump back from the kernel code to
the correct address, ERET must be overwritten by GDB's STOP_PC. Else,
the program will continue at the address after the current instruction.
*/
if (regnum == gdbarch_pc_regnum (gdbarch))
offset = arc_linux_core_reg_offsets[ARC_ERET_REGNUM];
else
offset = arc_linux_core_reg_offsets[regnum];
regcache->raw_collect (regnum, buf + offset);
}
void
arc_linux_collect_gregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t size)
{
gdb_static_assert (ARC_LAST_REGNUM
< ARRAY_SIZE (arc_linux_core_reg_offsets));
gdb_byte *buf = (gdb_byte *) gregs;
struct gdbarch *gdbarch = regcache->arch ();
/* regnum == -1 means writing all the registers. */
if (regnum == -1)
for (int reg = 0; reg <= ARC_LAST_REGNUM; reg++)
collect_register (regcache, gdbarch, reg, buf);
else if (regnum <= ARC_LAST_REGNUM)
collect_register (regcache, gdbarch, regnum, buf);
else
gdb_assert_not_reached ("Invalid regnum in arc_linux_collect_gregset.");
}
void
arc_linux_collect_v2_regset (const struct regset *regset,
const struct regcache *regcache, int regnum,
void *v2_regs, size_t size)
{
bfd_byte *buf = (bfd_byte *) v2_regs;
regcache->raw_collect (ARC_R30_REGNUM, buf);
regcache->raw_collect (ARC_R58_REGNUM, buf + REGOFF (1));
regcache->raw_collect (ARC_R59_REGNUM, buf + REGOFF (2));
}
/* Linux regset definitions. */
static const struct regset arc_linux_gregset = {
arc_linux_core_reg_offsets,
arc_linux_supply_gregset,
arc_linux_collect_gregset,
};
static const struct regset arc_linux_v2_regset = {
NULL,
arc_linux_supply_v2_regset,
arc_linux_collect_v2_regset,
};
/* Implement the `iterate_over_regset_sections` gdbarch method. */
static void
arc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
iterate_over_regset_sections_cb *cb,
void *cb_data,
const struct regcache *regcache)
{
/* There are 40 registers in Linux user_regs_struct, although some of
them are now just a mere paddings, kept to maintain binary
compatibility with older tools. */
const int sizeof_gregset = 40 * ARC_REGISTER_SIZE;
cb (".reg", sizeof_gregset, sizeof_gregset, &arc_linux_gregset, NULL,
cb_data);
cb (".reg-arc-v2", ARC_LINUX_SIZEOF_V2_REGSET, ARC_LINUX_SIZEOF_V2_REGSET,
&arc_linux_v2_regset, NULL, cb_data);
}
/* Implement the `core_read_description` gdbarch method. */
static const struct target_desc *
arc_linux_core_read_description (struct gdbarch *gdbarch,
struct target_ops *target,
bfd *abfd)
{
arc_arch_features features
= arc_arch_features_create (abfd,
gdbarch_bfd_arch_info (gdbarch)->mach);
return arc_lookup_target_description (features);
}
/* Initialization specific to Linux environment. */
static void
arc_linux_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (arc_debug)
debug_printf ("arc-linux: GNU/Linux OS/ABI initialization.\n");
/* If we are using Linux, we have in uClibc
(libc/sysdeps/linux/arc/bits/setjmp.h):
typedef int __jmp_buf[13+1+1+1]; //r13-r25, fp, sp, blink
Where "blink" is a stored PC of a caller function.
*/
tdep->jb_pc = 15;
linux_init_abi (info, gdbarch, false);
/* Set up target dependent GDB architecture entries. */
set_gdbarch_cannot_fetch_register (gdbarch, arc_linux_cannot_fetch_register);
set_gdbarch_cannot_store_register (gdbarch, arc_linux_cannot_store_register);
set_gdbarch_breakpoint_kind_from_pc (gdbarch,
arc_linux_breakpoint_kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch,
arc_linux_sw_breakpoint_from_kind);
set_gdbarch_fetch_tls_load_module_address (gdbarch,
svr4_fetch_objfile_link_map);
set_gdbarch_software_single_step (gdbarch, arc_linux_software_single_step);
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
set_gdbarch_skip_solib_resolver (gdbarch, arc_linux_skip_solib_resolver);
set_gdbarch_iterate_over_regset_sections
(gdbarch, arc_linux_iterate_over_regset_sections);
set_gdbarch_core_read_description (gdbarch, arc_linux_core_read_description);
/* GNU/Linux uses SVR4-style shared libraries, with 32-bit ints, longs
and pointers (ILP32). */
set_solib_svr4_fetch_link_map_offsets (gdbarch,
svr4_ilp32_fetch_link_map_offsets);
}
/* Suppress warning from -Wmissing-prototypes. */
extern initialize_file_ftype _initialize_arc_linux_tdep;
void
_initialize_arc_linux_tdep ()
{
gdbarch_register_osabi (bfd_arch_arc, 0, GDB_OSABI_LINUX,
arc_linux_init_osabi);
}