binutils-gdb/gold/tilegx.cc
Alan Modra d8e9025191 [GOLD] -Wimplicit-fallthrough warning fixes
* aarch64.cc: Spell fall through comments as "// Fall through.".
	* arm.cc: Likewise.
	* mips.cc: Likewise.
	* powerpc.cc: Likewise.
	* s390.cc: Likewise.
	* sparc.cc: Likewise.
	* x86_64.cc: Likewise.
	* powerpc.cc (Target_powerpc::Relocate::relocate): Add missing
	fall through comments.
	* sparc.cc: (Target_sparc::Scan::global): Likewise.
	(Target_sparc::Relocate::relocate): Likewise.
	* tilegx.cc (Target_tilegx::Relocate::relocate): Likewise.
	* resolve.cc (symbol_to_bits): Add missing break.
2016-10-06 09:36:33 +10:30

4973 lines
189 KiB
C++

// tilegx.cc -- tilegx target support for gold.
// Copyright (C) 2012-2016 Free Software Foundation, Inc.
// Written by Jiong Wang (jiwang@tilera.com)
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <cstring>
#include "elfcpp.h"
#include "dwarf.h"
#include "parameters.h"
#include "reloc.h"
#include "tilegx.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "gc.h"
#include "icf.h"
// the first got entry reserved
const int32_t TILEGX_GOT_RESERVE_COUNT = 1;
// the first two .got.plt entry reserved
const int32_t TILEGX_GOTPLT_RESERVE_COUNT = 2;
// 1. for both 64/32 bit mode, the instruction bundle is always 64bit.
// 2. thus .plt section should always be aligned to 64 bit.
const int32_t TILEGX_INST_BUNDLE_SIZE = 64;
namespace
{
using namespace gold;
// A class to handle the PLT data.
// This is an abstract base class that handles most of the linker details
// but does not know the actual contents of PLT entries. The derived
// classes below fill in those details.
template<int size, bool big_endian>
class Output_data_plt_tilegx : public Output_section_data
{
public:
typedef Output_data_reloc<elfcpp::SHT_RELA, true,size, big_endian>
Reloc_section;
Output_data_plt_tilegx(Layout* layout, uint64_t addralign,
Output_data_got<size, big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_section_data(addralign), layout_(layout),
irelative_rel_(NULL), got_(got), got_plt_(got_plt),
got_irelative_(got_irelative), count_(0),
irelative_count_(0), free_list_()
{ this->init(layout); }
Output_data_plt_tilegx(Layout* layout, uint64_t plt_entry_size,
Output_data_got<size, big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative,
unsigned int plt_count)
: Output_section_data((plt_count + 1) * plt_entry_size,
TILEGX_INST_BUNDLE_SIZE, false),
layout_(layout), irelative_rel_(NULL), got_(got),
got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
irelative_count_(0), free_list_()
{
this->init(layout);
// Initialize the free list and reserve the first entry.
this->free_list_.init((plt_count + 1) * plt_entry_size, false);
this->free_list_.remove(0, plt_entry_size);
}
// Initialize the PLT section.
void
init(Layout* layout);
// Add an entry to the PLT.
void
add_entry(Symbol_table*, Layout*, Symbol* gsym);
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
unsigned int
add_local_ifunc_entry(Symbol_table*, Layout*,
Sized_relobj_file<size, big_endian>*, unsigned int);
// Add the relocation for a PLT entry.
void
add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
// Return the .rela.plt section data.
Reloc_section*
rela_plt()
{ return this->rel_; }
// Return where the IRELATIVE relocations should go in the PLT
// relocations.
Reloc_section*
rela_irelative(Symbol_table*, Layout*);
// Return whether we created a section for IRELATIVE relocations.
bool
has_irelative_section() const
{ return this->irelative_rel_ != NULL; }
// Return the number of PLT entries.
unsigned int
entry_count() const
{ return this->count_ + this->irelative_count_; }
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset()
{ return this->get_plt_entry_size(); }
// Return the size of a PLT entry.
unsigned int
get_plt_entry_size() const
{ return plt_entry_size; }
// Reserve a slot in the PLT for an existing symbol in an incremental update.
void
reserve_slot(unsigned int plt_index)
{
this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
(plt_index + 2) * this->get_plt_entry_size());
}
// Return the PLT address to use for a global symbol.
uint64_t
address_for_global(const Symbol*);
// Return the PLT address to use for a local symbol.
uint64_t
address_for_local(const Relobj*, unsigned int symndx);
protected:
// Fill in the first PLT entry.
void
fill_first_plt_entry(unsigned char*);
// Fill in a normal PLT entry. Returns the offset into the entry that
// should be the initial GOT slot value.
void
fill_plt_entry(unsigned char*,
typename elfcpp::Elf_types<size>::Elf_Addr,
unsigned int,
typename elfcpp::Elf_types<size>::Elf_Addr,
unsigned int, unsigned int);
void
do_adjust_output_section(Output_section* os);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** PLT")); }
private:
// Set the final size.
void
set_final_data_size();
// Write out the PLT data.
void
do_write(Output_file*);
// A pointer to the Layout class, so that we can find the .dynamic
// section when we write out the GOT PLT section.
Layout* layout_;
// The reloc section.
Reloc_section* rel_;
// The IRELATIVE relocs, if necessary. These must follow the
// regular PLT relocations.
Reloc_section* irelative_rel_;
// The .got section.
Output_data_got<size, big_endian>* got_;
// The .got.plt section.
Output_data_space* got_plt_;
// The part of the .got.plt section used for IRELATIVE relocs.
Output_data_space* got_irelative_;
// The number of PLT entries.
unsigned int count_;
// Number of PLT entries with R_TILEGX_IRELATIVE relocs. These
// follow the regular PLT entries.
unsigned int irelative_count_;
// List of available regions within the section, for incremental
// update links.
Free_list free_list_;
// The size of an entry in the PLT.
static const int plt_entry_size = 40;
// The first entry in the PLT.
static const unsigned char first_plt_entry[plt_entry_size];
// Other entries in the PLT for an executable.
static const unsigned char plt_entry[plt_entry_size];
};
// The tilegx target class.
// See the ABI at
// http://www.tilera.com/scm
// TLS info comes from
// http://people.redhat.com/drepper/tls.pdf
template<int size, bool big_endian>
class Target_tilegx : public Sized_target<size, big_endian>
{
public:
// TileGX use RELA
typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
Reloc_section;
Target_tilegx(const Target::Target_info* info = &tilegx_info)
: Sized_target<size, big_endian>(info),
got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
global_offset_table_(NULL), tilegx_dynamic_(NULL), rela_dyn_(NULL),
rela_irelative_(NULL), copy_relocs_(elfcpp::R_TILEGX_COPY),
got_mod_index_offset_(-1U),
tls_get_addr_sym_defined_(false)
{ }
// Scan the relocations to look for symbol adjustments.
void
gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Scan the relocations to look for symbol adjustments.
void
scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Finalize the sections.
void
do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
// Return the value to use for a dynamic which requires special
// treatment.
uint64_t
do_dynsym_value(const Symbol*) const;
// Relocate a section.
void
relocate_section(const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
section_size_type view_size,
const Reloc_symbol_changes*);
// Scan the relocs during a relocatable link.
void
scan_relocatable_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs*);
// Scan the relocs for --emit-relocs.
void
emit_relocs_scan(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_syms,
Relocatable_relocs* rr);
// Relocate a section during a relocatable link.
void
relocate_relocs(
const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size);
// Return whether SYM is defined by the ABI.
bool
do_is_defined_by_abi(const Symbol* sym) const
{ return strcmp(sym->name(), "__tls_get_addr") == 0; }
// define tilegx specific symbols
virtual void
do_define_standard_symbols(Symbol_table*, Layout*);
// Return the PLT section.
uint64_t
do_plt_address_for_global(const Symbol* gsym) const
{ return this->plt_section()->address_for_global(gsym); }
uint64_t
do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
{ return this->plt_section()->address_for_local(relobj, symndx); }
// This function should be defined in targets that can use relocation
// types to determine (implemented in local_reloc_may_be_function_pointer
// and global_reloc_may_be_function_pointer)
// if a function's pointer is taken. ICF uses this in safe mode to only
// fold those functions whose pointer is defintely not taken. For tilegx
// pie binaries, safe ICF cannot be done by looking at relocation types.
bool
do_can_check_for_function_pointers() const
{ return true; }
// Return the base for a DW_EH_PE_datarel encoding.
uint64_t
do_ehframe_datarel_base() const;
// Return whether there is a GOT section.
bool
has_got_section() const
{ return this->got_ != NULL; }
// Return the size of the GOT section.
section_size_type
got_size() const
{
gold_assert(this->got_ != NULL);
return this->got_->data_size();
}
// Return the number of entries in the GOT.
unsigned int
got_entry_count() const
{
if (this->got_ == NULL)
return 0;
return this->got_size() / (size / 8);
}
// Return the number of entries in the PLT.
unsigned int
plt_entry_count() const;
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset() const;
// Return the size of each PLT entry.
unsigned int
plt_entry_size() const;
// Create the GOT section for an incremental update.
Output_data_got_base*
init_got_plt_for_update(Symbol_table* symtab,
Layout* layout,
unsigned int got_count,
unsigned int plt_count);
// Reserve a GOT entry for a local symbol, and regenerate any
// necessary dynamic relocations.
void
reserve_local_got_entry(unsigned int got_index,
Sized_relobj<size, big_endian>* obj,
unsigned int r_sym,
unsigned int got_type);
// Reserve a GOT entry for a global symbol, and regenerate any
// necessary dynamic relocations.
void
reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
unsigned int got_type);
// Register an existing PLT entry for a global symbol.
void
register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
Symbol* gsym);
// Force a COPY relocation for a given symbol.
void
emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
// Apply an incremental relocation.
void
apply_relocation(const Relocate_info<size, big_endian>* relinfo,
typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
unsigned int r_type,
typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
const Symbol* gsym,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type view_size);
private:
// The class which scans relocations.
class Scan
{
public:
Scan()
: issued_non_pic_error_(false)
{ }
static inline int
get_reference_flags(unsigned int r_type);
inline void
local(Symbol_table* symtab, Layout* layout, Target_tilegx* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded);
inline void
global(Symbol_table* symtab, Layout* layout, Target_tilegx* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
Symbol* gsym);
inline bool
local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
Target_tilegx* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym);
inline bool
global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
Target_tilegx* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
Symbol* gsym);
private:
static void
unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
unsigned int r_type);
static void
unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
unsigned int r_type, Symbol*);
void
check_non_pic(Relobj*, unsigned int r_type);
inline bool
possible_function_pointer_reloc(unsigned int r_type);
bool
reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
unsigned int r_type);
// Whether we have issued an error about a non-PIC compilation.
bool issued_non_pic_error_;
};
// The class which implements relocation.
class Relocate
{
public:
Relocate()
{ }
~Relocate()
{
}
// Do a relocation. Return false if the caller should not issue
// any warnings about this relocation.
inline bool
relocate(const Relocate_info<size, big_endian>*, unsigned int,
Target_tilegx*, Output_section*, size_t, const unsigned char*,
const Sized_symbol<size>*, const Symbol_value<size>*,
unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
section_size_type);
};
// Adjust TLS relocation type based on the options and whether this
// is a local symbol.
static tls::Tls_optimization
optimize_tls_reloc(bool is_final, int r_type);
// Get the GOT section, creating it if necessary.
Output_data_got<size, big_endian>*
got_section(Symbol_table*, Layout*);
// Get the GOT PLT section.
Output_data_space*
got_plt_section() const
{
gold_assert(this->got_plt_ != NULL);
return this->got_plt_;
}
// Create the PLT section.
void
make_plt_section(Symbol_table* symtab, Layout* layout);
// Create a PLT entry for a global symbol.
void
make_plt_entry(Symbol_table*, Layout*, Symbol*);
// Create a PLT entry for a local STT_GNU_IFUNC symbol.
void
make_local_ifunc_plt_entry(Symbol_table*, Layout*,
Sized_relobj_file<size, big_endian>* relobj,
unsigned int local_sym_index);
// Create a GOT entry for the TLS module index.
unsigned int
got_mod_index_entry(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<size, big_endian>* object);
// Get the PLT section.
Output_data_plt_tilegx<size, big_endian>*
plt_section() const
{
gold_assert(this->plt_ != NULL);
return this->plt_;
}
// Get the dynamic reloc section, creating it if necessary.
Reloc_section*
rela_dyn_section(Layout*);
// Get the section to use for IRELATIVE relocations.
Reloc_section*
rela_irelative_section(Layout*);
// Add a potential copy relocation.
void
copy_reloc(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int shndx, Output_section* output_section,
Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
{
unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
this->copy_relocs_.copy_reloc(symtab, layout,
symtab->get_sized_symbol<size>(sym),
object, shndx, output_section,
r_type, reloc.get_r_offset(),
reloc.get_r_addend(),
this->rela_dyn_section(layout));
}
// Information about this specific target which we pass to the
// general Target structure.
static const Target::Target_info tilegx_info;
// The types of GOT entries needed for this platform.
// These values are exposed to the ABI in an incremental link.
// Do not renumber existing values without changing the version
// number of the .gnu_incremental_inputs section.
enum Got_type
{
GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
};
// This type is used as the argument to the target specific
// relocation routines. The only target specific reloc is
// R_X86_64_TLSDESC against a local symbol.
struct Tlsdesc_info
{
Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
unsigned int a_r_sym)
: object(a_object), r_sym(a_r_sym)
{ }
// The object in which the local symbol is defined.
Sized_relobj_file<size, big_endian>* object;
// The local symbol index in the object.
unsigned int r_sym;
};
// The GOT section.
Output_data_got<size, big_endian>* got_;
// The PLT section.
Output_data_plt_tilegx<size, big_endian>* plt_;
// The GOT PLT section.
Output_data_space* got_plt_;
// The GOT section for IRELATIVE relocations.
Output_data_space* got_irelative_;
// The _GLOBAL_OFFSET_TABLE_ symbol.
Symbol* global_offset_table_;
// The _TILEGX_DYNAMIC_ symbol.
Symbol* tilegx_dynamic_;
// The dynamic reloc section.
Reloc_section* rela_dyn_;
// The section to use for IRELATIVE relocs.
Reloc_section* rela_irelative_;
// Relocs saved to avoid a COPY reloc.
Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
// Offset of the GOT entry for the TLS module index.
unsigned int got_mod_index_offset_;
// True if the _tls_get_addr symbol has been defined.
bool tls_get_addr_sym_defined_;
};
template<>
const Target::Target_info Target_tilegx<64, false>::tilegx_info =
{
64, // size
false, // is_big_endian
elfcpp::EM_TILEGX, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/lib/ld.so.1", // program interpreter
0x10000, // default_text_segment_address
0x10000, // abi_pagesize (overridable by -z max-page-size)
0x10000, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start", // entry_symbol_name
32, // hash_entry_size
};
template<>
const Target::Target_info Target_tilegx<32, false>::tilegx_info =
{
32, // size
false, // is_big_endian
elfcpp::EM_TILEGX, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/lib32/ld.so.1", // program interpreter
0x10000, // default_text_segment_address
0x10000, // abi_pagesize (overridable by -z max-page-size)
0x10000, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start", // entry_symbol_name
32, // hash_entry_size
};
template<>
const Target::Target_info Target_tilegx<64, true>::tilegx_info =
{
64, // size
true, // is_big_endian
elfcpp::EM_TILEGX, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/lib/ld.so.1", // program interpreter
0x10000, // default_text_segment_address
0x10000, // abi_pagesize (overridable by -z max-page-size)
0x10000, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start", // entry_symbol_name
32, // hash_entry_size
};
template<>
const Target::Target_info Target_tilegx<32, true>::tilegx_info =
{
32, // size
true, // is_big_endian
elfcpp::EM_TILEGX, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/lib32/ld.so.1", // program interpreter
0x10000, // default_text_segment_address
0x10000, // abi_pagesize (overridable by -z max-page-size)
0x10000, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start", // entry_symbol_name
32, // hash_entry_size
};
// tilegx relocation handlers
template<int size, bool big_endian>
class Tilegx_relocate_functions
{
public:
// overflow check will be supported later
typedef enum
{
STATUS_OKAY, // No error during relocation.
STATUS_OVERFLOW, // Relocation overflow.
STATUS_BAD_RELOC // Relocation cannot be applied.
} Status;
struct Tilegx_howto
{
// right shift operand by this number of bits.
unsigned char srshift;
// the offset to apply relocation.
unsigned char doffset;
// set to 1 for pc-relative relocation.
unsigned char is_pcrel;
// size in bits, or 0 if this table entry should be ignored.
unsigned char bsize;
// whether we need to check overflow.
unsigned char overflow;
};
static const Tilegx_howto howto[elfcpp::R_TILEGX_NUM];
private:
// Do a simple rela relocation
template<int valsize>
static inline void
rela(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
elfcpp::Elf_Xword bitmask)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = 0;
if (size == 32)
reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
else
reloc = psymval->value(object, addend) >> srshift;
elfcpp::Elf_Xword dst_mask = bitmask << doffset;
val &= ~dst_mask;
reloc &= bitmask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset));
}
// Do a simple rela relocation
template<int valsize>
static inline void
rela_ua(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
elfcpp::Elf_Xword bitmask)
{
typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
Valtype;
unsigned char* wv = view;
Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv);
Valtype reloc = 0;
if (size == 32)
reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
else
reloc = psymval->value(object, addend) >> srshift;
elfcpp::Elf_Xword dst_mask = bitmask << doffset;
val &= ~dst_mask;
reloc &= bitmask;
elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv,
val | (reloc<<doffset));
}
template<int valsize>
static inline void
rela(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1,
elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2,
elfcpp::Elf_Xword bitmask2)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = 0;
if (size == 32)
reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
else
reloc = psymval->value(object, addend) >> srshift;
elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1)
| (bitmask2 << doffset2);
val &= ~dst_mask;
reloc = ((reloc & bitmask1) << doffset1)
| ((reloc & bitmask2) << doffset2);
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
}
// Do a simple PC relative relocation with a Symbol_value with the
// addend in the relocation.
template<int valsize>
static inline void
pcrela(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
typename elfcpp::Elf_types<size>::Elf_Addr address,
elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
elfcpp::Elf_Xword bitmask)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = 0;
if (size == 32)
reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
>> srshift;
else
reloc = (psymval->value(object, addend) - address) >> srshift;
elfcpp::Elf_Xword dst_mask = bitmask << doffset;
val &= ~dst_mask;
reloc &= bitmask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset));
}
template<int valsize>
static inline void
pcrela_ua(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
typename elfcpp::Elf_types<size>::Elf_Addr address,
elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
elfcpp::Elf_Xword bitmask)
{
typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
Valtype;
unsigned char* wv = view;
Valtype reloc = 0;
if (size == 32)
reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
>> srshift;
else
reloc = (psymval->value(object, addend) - address) >> srshift;
reloc &= bitmask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, reloc << doffset);
}
template<int valsize>
static inline void
pcrela(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
typename elfcpp::Elf_types<size>::Elf_Addr address,
elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1,
elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2,
elfcpp::Elf_Xword bitmask2)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = 0;
if (size == 32)
reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
>> srshift;
else
reloc = (psymval->value(object, addend) - address) >> srshift;
elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1)
| (bitmask2 << doffset2);
val &= ~dst_mask;
reloc = ((reloc & bitmask1) << doffset1)
| ((reloc & bitmask2) << doffset2);
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
}
typedef Tilegx_relocate_functions<size, big_endian> This;
typedef Relocate_functions<size, big_endian> Base;
public:
static inline void
abs64(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This::template rela_ua<64>(view, object, psymval, addend, 0, 0,
0xffffffffffffffffllu);
}
static inline void
abs32(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This::template rela_ua<32>(view, object, psymval, addend, 0, 0,
0xffffffff);
}
static inline void
abs16(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This::template rela_ua<16>(view, object, psymval, addend, 0, 0,
0xffff);
}
static inline void
pc_abs64(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela_ua<64>(view, object, psymval, addend, address, 0, 0,
0xffffffffffffffffllu);
}
static inline void
pc_abs32(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela_ua<32>(view, object, psymval, addend, address, 0, 0,
0xffffffff);
}
static inline void
pc_abs16(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela_ua<16>(view, object, psymval, addend, address, 0, 0,
0xffff);
}
static inline void
imm_x_general(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
Tilegx_howto &r_howto)
{
This::template rela<64>(view, object, psymval, addend,
(elfcpp::Elf_Xword)(r_howto.srshift),
(elfcpp::Elf_Xword)(r_howto.doffset),
(elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1));
}
static inline void
imm_x_pcrel_general(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address,
Tilegx_howto &r_howto)
{
This::template pcrela<64>(view, object, psymval, addend, address,
(elfcpp::Elf_Xword)(r_howto.srshift),
(elfcpp::Elf_Xword)(r_howto.doffset),
(elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1));
}
static inline void
imm_x_two_part_general(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address,
unsigned int r_type)
{
elfcpp::Elf_Xword doffset1 = 0llu;
elfcpp::Elf_Xword doffset2 = 0llu;
elfcpp::Elf_Xword dmask1 = 0llu;
elfcpp::Elf_Xword dmask2 = 0llu;
elfcpp::Elf_Xword rshift = 0llu;
unsigned int pc_rel = 0;
switch (r_type)
{
case elfcpp::R_TILEGX_BROFF_X1:
doffset1 = 31llu;
doffset2 = 37llu;
dmask1 = 0x3fllu;
dmask2 = 0x1ffc0llu;
rshift = 3llu;
pc_rel = 1;
break;
case elfcpp::R_TILEGX_DEST_IMM8_X1:
doffset1 = 31llu;
doffset2 = 43llu;
dmask1 = 0x3fllu;
dmask2 = 0xc0llu;
rshift = 0llu;
break;
}
if (pc_rel)
This::template pcrela<64>(view, object, psymval, addend, address,
rshift, doffset1, dmask1, doffset2, dmask2);
else
This::template rela<64>(view, object, psymval, addend, rshift,
doffset1, dmask1, doffset2, dmask2);
}
static inline void
tls_relax(unsigned char* view, unsigned int r_type,
tls::Tls_optimization opt_t)
{
const uint64_t TILEGX_X_MOVE_R0_R0 = 0x283bf8005107f000llu;
const uint64_t TILEGX_Y_MOVE_R0_R0 = 0xae05f800540bf000llu;
const uint64_t TILEGX_X_LD = 0x286ae80000000000llu;
const uint64_t TILEGX_X_LD4S = 0x286a980000000000llu;
const uint64_t TILEGX_X1_FULL_MASK = 0x3fffffff80000000llu;
const uint64_t TILEGX_X0_RRR_MASK = 0x000000007ffc0000llu;
const uint64_t TILEGX_X1_RRR_MASK = 0x3ffe000000000000llu;
const uint64_t TILEGX_Y0_RRR_MASK = 0x00000000780c0000llu;
const uint64_t TILEGX_Y1_RRR_MASK = 0x3c06000000000000llu;
const uint64_t TILEGX_X0_RRR_SRCB_MASK = 0x000000007ffff000llu;
const uint64_t TILEGX_X1_RRR_SRCB_MASK = 0x3ffff80000000000llu;
const uint64_t TILEGX_Y0_RRR_SRCB_MASK = 0x00000000780ff000llu;
const uint64_t TILEGX_Y1_RRR_SRCB_MASK = 0x3c07f80000000000llu;
const uint64_t TILEGX_X_ADD_R0_R0_TP = 0x2807a800500f5000llu;
const uint64_t TILEGX_Y_ADD_R0_R0_TP = 0x9a13a8002c275000llu;
const uint64_t TILEGX_X_ADDX_R0_R0_TP = 0x2805a800500b5000llu;
const uint64_t TILEGX_Y_ADDX_R0_R0_TP = 0x9a01a8002c035000llu;
const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_MASK =
(TILEGX_X0_RRR_MASK | (0x3Fllu << 12));
const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_MASK =
(TILEGX_X1_RRR_MASK | (0x3Fllu << 43));
const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_MASK =
(TILEGX_Y0_RRR_MASK | (0x3Fllu << 12));
const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_MASK =
(TILEGX_Y1_RRR_MASK | (0x3Fllu << 43));
const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK =
(TILEGX_X0_RRR_SRCB_MASK | (0x3Fllu << 6));
const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK =
(TILEGX_X1_RRR_SRCB_MASK | (0x3Fllu << 37));
const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK =
(TILEGX_Y0_RRR_SRCB_MASK | (0x3Fllu << 6));
const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK =
(TILEGX_Y1_RRR_SRCB_MASK | (0x3Fllu << 37));
typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<64, big_endian>::readval(wv);
Valtype reloc = 0;
switch (r_type)
{
case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
if (opt_t == tls::TLSOPT_NONE) {
// GD/IE: 1. copy dest operand into the second source operand
// 2. change the opcode to "add"
reloc = (val & 0x3Fllu) << 12; // featch the dest reg
reloc |= ((size == 32
? TILEGX_X_ADDX_R0_R0_TP
: TILEGX_X_ADD_R0_R0_TP)
& TILEGX_X0_RRR_MASK); // change opcode
val &= ~R_TILEGX_IMM8_X0_TLS_ADD_MASK;
} else if (opt_t == tls::TLSOPT_TO_LE) {
// LE: 1. copy dest operand into the first source operand
// 2. change the opcode to "move"
reloc = (val & 0x3Fllu) << 6;
reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK);
val &= ~R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK;
} else
gold_unreachable();
break;
case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
if (opt_t == tls::TLSOPT_NONE) {
reloc = (val & (0x3Fllu << 31)) << 12;
reloc |= ((size == 32
? TILEGX_X_ADDX_R0_R0_TP
: TILEGX_X_ADD_R0_R0_TP)
& TILEGX_X1_RRR_MASK);
val &= ~R_TILEGX_IMM8_X1_TLS_ADD_MASK;
} else if (opt_t == tls::TLSOPT_TO_LE) {
reloc = (val & (0x3Fllu << 31)) << 6;
reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK);
val &= ~R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK;
} else
gold_unreachable();
break;
case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
if (opt_t == tls::TLSOPT_NONE) {
reloc = (val & 0x3Fllu) << 12;
reloc |= ((size == 32
? TILEGX_Y_ADDX_R0_R0_TP
: TILEGX_Y_ADD_R0_R0_TP)
& TILEGX_Y0_RRR_MASK);
val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_MASK;
} else if (opt_t == tls::TLSOPT_TO_LE) {
reloc = (val & 0x3Fllu) << 6;
reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK);
val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK;
} else
gold_unreachable();
break;
case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
if (opt_t == tls::TLSOPT_NONE) {
reloc = (val & (0x3Fllu << 31)) << 12;
reloc |= ((size == 32
? TILEGX_Y_ADDX_R0_R0_TP
: TILEGX_Y_ADD_R0_R0_TP)
& TILEGX_Y1_RRR_MASK);
val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_MASK;
} else if (opt_t == tls::TLSOPT_TO_LE) {
reloc = (val & (0x3Fllu << 31)) << 6;
reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK);
val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK;
} else
gold_unreachable();
break;
case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
if (opt_t == tls::TLSOPT_NONE) {
// GD see comments for optimize_tls_reloc
reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK;
val &= ~TILEGX_X0_RRR_SRCB_MASK;
} else if (opt_t == tls::TLSOPT_TO_IE
|| opt_t == tls::TLSOPT_TO_LE) {
// IE/LE
reloc = (size == 32
? TILEGX_X_ADDX_R0_R0_TP
: TILEGX_X_ADD_R0_R0_TP)
& TILEGX_X0_RRR_SRCB_MASK;
val &= ~TILEGX_X0_RRR_SRCB_MASK;
}
break;
case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
if (opt_t == tls::TLSOPT_NONE) {
reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK;
val &= ~TILEGX_X1_RRR_SRCB_MASK;
} else if (opt_t == tls::TLSOPT_TO_IE
|| opt_t == tls::TLSOPT_TO_LE) {
reloc = (size == 32
? TILEGX_X_ADDX_R0_R0_TP
: TILEGX_X_ADD_R0_R0_TP)
& TILEGX_X1_RRR_SRCB_MASK;
val &= ~TILEGX_X1_RRR_SRCB_MASK;
}
break;
case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
if (opt_t == tls::TLSOPT_NONE) {
reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK;
val &= ~TILEGX_Y0_RRR_SRCB_MASK;
} else if (opt_t == tls::TLSOPT_TO_IE
|| opt_t == tls::TLSOPT_TO_LE) {
reloc = (size == 32
? TILEGX_Y_ADDX_R0_R0_TP
: TILEGX_Y_ADD_R0_R0_TP)
& TILEGX_Y0_RRR_SRCB_MASK;
val &= ~TILEGX_Y0_RRR_SRCB_MASK;
}
break;
case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
if (opt_t == tls::TLSOPT_NONE) {
reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK;
val &= ~TILEGX_Y1_RRR_SRCB_MASK;
} else if (opt_t == tls::TLSOPT_TO_IE
|| opt_t == tls::TLSOPT_TO_LE) {
reloc = (size == 32
? TILEGX_Y_ADDX_R0_R0_TP
: TILEGX_Y_ADD_R0_R0_TP)
& TILEGX_Y1_RRR_SRCB_MASK;
val &= ~TILEGX_Y1_RRR_SRCB_MASK;
}
break;
case elfcpp::R_TILEGX_TLS_IE_LOAD:
if (opt_t == tls::TLSOPT_NONE) {
// IE
reloc = (size == 32
? TILEGX_X_LD4S
: TILEGX_X_LD)
& TILEGX_X1_RRR_SRCB_MASK;
val &= ~TILEGX_X1_RRR_SRCB_MASK;
} else if (opt_t == tls::TLSOPT_TO_LE) {
// LE
reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK;
val &= ~TILEGX_X1_RRR_SRCB_MASK;
} else
gold_unreachable();
break;
case elfcpp::R_TILEGX_TLS_GD_CALL:
if (opt_t == tls::TLSOPT_TO_IE) {
// ld/ld4s r0, r0
reloc = (size == 32
? TILEGX_X_LD4S
: TILEGX_X_LD) & TILEGX_X1_FULL_MASK;
val &= ~TILEGX_X1_FULL_MASK;
} else if (opt_t == tls::TLSOPT_TO_LE) {
// move r0, r0
reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_FULL_MASK;
val &= ~TILEGX_X1_FULL_MASK;
} else
// should be handled in ::relocate
gold_unreachable();
break;
default:
gold_unreachable();
break;
}
elfcpp::Swap<64, big_endian>::writeval(wv, val | reloc);
}
};
template<>
const Tilegx_relocate_functions<64, false>::Tilegx_howto
Tilegx_relocate_functions<64, false>::howto[elfcpp::R_TILEGX_NUM] =
{
{ 0, 0, 0, 0, 0}, // R_TILEGX_NONE
{ 0, 0, 0, 64, 0}, // R_TILEGX_64
{ 0, 0, 0, 32, 0}, // R_TILEGX_32
{ 0, 0, 0, 16, 0}, // R_TILEGX_16
{ 0, 0, 0, 8, 0}, // R_TILEGX_8
{ 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
{ 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
{ 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
{ 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
{ 0, 0, 0, 0, 0}, // R_TILEGX_HW0
{ 16, 0, 0, 0, 0}, // R_TILEGX_HW1
{ 32, 0, 0, 0, 0}, // R_TILEGX_HW2
{ 48, 0, 0, 0, 0}, // R_TILEGX_HW3
{ 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
{ 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
{ 32, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
{ 0, 0, 0, 0, 0}, // R_TILEGX_COPY
{ 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
{ 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
{ 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
{ 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
{ 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
{ 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
{ 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
{ 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
{ 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
{ 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
{ 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
{ 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
{ 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
{ 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
{ 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
{ 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
{ 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
{ 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
{ 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
{ 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
{ 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
{ 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
{ 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
{ 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
{ 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
{ 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
{ 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
{ 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
{ 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
{ 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
{ 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
{ 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
{ 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
{ 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
{ 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
{ 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
{ 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
{ 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
{ 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
{ 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
{ 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
{ 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
{ 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
{ 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
{ 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
};
template<>
const Tilegx_relocate_functions<32, false>::Tilegx_howto
Tilegx_relocate_functions<32, false>::howto[elfcpp::R_TILEGX_NUM] =
{
{ 0, 0, 0, 0, 0}, // R_TILEGX_NONE
{ 0, 0, 0, 64, 0}, // R_TILEGX_64
{ 0, 0, 0, 32, 0}, // R_TILEGX_32
{ 0, 0, 0, 16, 0}, // R_TILEGX_16
{ 0, 0, 0, 8, 0}, // R_TILEGX_8
{ 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
{ 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
{ 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
{ 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
{ 0, 0, 0, 0, 0}, // R_TILEGX_HW0
{ 16, 0, 0, 0, 0}, // R_TILEGX_HW1
{ 31, 0, 0, 0, 0}, // R_TILEGX_HW2
{ 31, 0, 0, 0, 0}, // R_TILEGX_HW3
{ 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
{ 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
{ 31, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
{ 0, 0, 0, 0, 0}, // R_TILEGX_COPY
{ 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
{ 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
{ 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
{ 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
{ 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
{ 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
{ 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
{ 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
{ 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
{ 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
{ 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
{ 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
{ 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
{ 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
{ 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
{ 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
{ 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
{ 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
{ 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
{ 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
{ 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
{ 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
{ 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
{ 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
{ 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
{ 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
{ 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
{ 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
{ 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
{ 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
{ 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
{ 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
{ 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
{ 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
{ 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
{ 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
{ 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
{ 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
{ 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
{ 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
{ 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
{ 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
{ 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
{ 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
{ 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
};
template<>
const Tilegx_relocate_functions<64, true>::Tilegx_howto
Tilegx_relocate_functions<64, true>::howto[elfcpp::R_TILEGX_NUM] =
{
{ 0, 0, 0, 0, 0}, // R_TILEGX_NONE
{ 0, 0, 0, 64, 0}, // R_TILEGX_64
{ 0, 0, 0, 32, 0}, // R_TILEGX_32
{ 0, 0, 0, 16, 0}, // R_TILEGX_16
{ 0, 0, 0, 8, 0}, // R_TILEGX_8
{ 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
{ 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
{ 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
{ 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
{ 0, 0, 0, 0, 0}, // R_TILEGX_HW0
{ 16, 0, 0, 0, 0}, // R_TILEGX_HW1
{ 32, 0, 0, 0, 0}, // R_TILEGX_HW2
{ 48, 0, 0, 0, 0}, // R_TILEGX_HW3
{ 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
{ 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
{ 32, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
{ 0, 0, 0, 0, 0}, // R_TILEGX_COPY
{ 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
{ 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
{ 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
{ 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
{ 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
{ 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
{ 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
{ 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
{ 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
{ 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
{ 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
{ 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
{ 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
{ 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
{ 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
{ 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
{ 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
{ 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
{ 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
{ 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
{ 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
{ 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
{ 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
{ 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
{ 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
{ 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
{ 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
{ 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
{ 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
{ 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
{ 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
{ 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
{ 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
{ 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
{ 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
{ 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
{ 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
{ 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
{ 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
{ 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
{ 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
{ 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
{ 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
{ 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
{ 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
};
template<>
const Tilegx_relocate_functions<32, true>::Tilegx_howto
Tilegx_relocate_functions<32, true>::howto[elfcpp::R_TILEGX_NUM] =
{
{ 0, 0, 0, 0, 0}, // R_TILEGX_NONE
{ 0, 0, 0, 64, 0}, // R_TILEGX_64
{ 0, 0, 0, 32, 0}, // R_TILEGX_32
{ 0, 0, 0, 16, 0}, // R_TILEGX_16
{ 0, 0, 0, 8, 0}, // R_TILEGX_8
{ 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
{ 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
{ 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
{ 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
{ 0, 0, 0, 0, 0}, // R_TILEGX_HW0
{ 16, 0, 0, 0, 0}, // R_TILEGX_HW1
{ 31, 0, 0, 0, 0}, // R_TILEGX_HW2
{ 31, 0, 0, 0, 0}, // R_TILEGX_HW3
{ 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
{ 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
{ 31, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
{ 0, 0, 0, 0, 0}, // R_TILEGX_COPY
{ 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
{ 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
{ 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
{ 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
{ 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
{ 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
{ 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
{ 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
{ 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
{ 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
{ 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
{ 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
{ 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
{ 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
{ 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
{ 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
{ 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
{ 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
{ 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
{ 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
{ 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
{ 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
{ 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
{ 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
{ 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
{ 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
{ 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
{ 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
{ 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
{ 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
{ 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
{ 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
{ 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
{ 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
{ 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
{ 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
{ 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
{ 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
{ 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
{ 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
{ 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
{ 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
{ 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
{ 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
{ 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
{ 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
{ 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
{ 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
{ 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
{ 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
{ 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
{ 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
};
// Get the GOT section, creating it if necessary.
template<int size, bool big_endian>
Output_data_got<size, big_endian>*
Target_tilegx<size, big_endian>::got_section(Symbol_table* symtab,
Layout* layout)
{
if (this->got_ == NULL)
{
gold_assert(symtab != NULL && layout != NULL);
// When using -z now, we can treat .got.plt as a relro section.
// Without -z now, it is modified after program startup by lazy
// PLT relocations.
bool is_got_plt_relro = parameters->options().now();
Output_section_order got_order = (is_got_plt_relro
? ORDER_RELRO
: ORDER_RELRO_LAST);
Output_section_order got_plt_order = (is_got_plt_relro
? ORDER_RELRO
: ORDER_NON_RELRO_FIRST);
this->got_ = new Output_data_got<size, big_endian>();
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE),
this->got_, got_order, true);
// Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
this->global_offset_table_ =
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
Symbol_table::PREDEFINED,
this->got_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
if (parameters->options().shared()) {
// we need to keep the address of .dynamic section in the
// first got entry for .so
this->tilegx_dynamic_ =
symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL,
Symbol_table::PREDEFINED,
layout->dynamic_section(),
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD);
} else
// for executable, just set the first entry to zero.
this->got_->set_current_data_size(size / 8);
this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE),
this->got_plt_, got_plt_order,
is_got_plt_relro);
// The first two entries are reserved.
this->got_plt_->set_current_data_size
(TILEGX_GOTPLT_RESERVE_COUNT * (size / 8));
if (!is_got_plt_relro)
{
// Those bytes can go into the relro segment.
layout->increase_relro(size / 8);
}
// If there are any IRELATIVE relocations, they get GOT entries
// in .got.plt after the jump slot entries.
this->got_irelative_
= new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE),
this->got_irelative_,
got_plt_order, is_got_plt_relro);
}
return this->got_;
}
// Get the dynamic reloc section, creating it if necessary.
template<int size, bool big_endian>
typename Target_tilegx<size, big_endian>::Reloc_section*
Target_tilegx<size, big_endian>::rela_dyn_section(Layout* layout)
{
if (this->rela_dyn_ == NULL)
{
gold_assert(layout != NULL);
this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rela_dyn_,
ORDER_DYNAMIC_RELOCS, false);
}
return this->rela_dyn_;
}
// Get the section to use for IRELATIVE relocs, creating it if
// necessary. These go in .rela.dyn, but only after all other dynamic
// relocations. They need to follow the other dynamic relocations so
// that they can refer to global variables initialized by those
// relocs.
template<int size, bool big_endian>
typename Target_tilegx<size, big_endian>::Reloc_section*
Target_tilegx<size, big_endian>::rela_irelative_section(Layout* layout)
{
if (this->rela_irelative_ == NULL)
{
// Make sure we have already created the dynamic reloc section.
this->rela_dyn_section(layout);
this->rela_irelative_ = new Reloc_section(false);
layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rela_irelative_,
ORDER_DYNAMIC_RELOCS, false);
gold_assert(this->rela_dyn_->output_section()
== this->rela_irelative_->output_section());
}
return this->rela_irelative_;
}
// Initialize the PLT section.
template<int size, bool big_endian>
void
Output_data_plt_tilegx<size, big_endian>::init(Layout* layout)
{
this->rel_ = new Reloc_section(false);
layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rel_,
ORDER_DYNAMIC_PLT_RELOCS, false);
}
template<int size, bool big_endian>
void
Output_data_plt_tilegx<size, big_endian>::do_adjust_output_section(
Output_section* os)
{
os->set_entsize(this->get_plt_entry_size());
}
// Add an entry to the PLT.
template<int size, bool big_endian>
void
Output_data_plt_tilegx<size, big_endian>::add_entry(Symbol_table* symtab,
Layout* layout, Symbol* gsym)
{
gold_assert(!gsym->has_plt_offset());
unsigned int plt_index;
off_t plt_offset;
section_offset_type got_offset;
unsigned int* pcount;
unsigned int reserved;
Output_data_space* got;
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
pcount = &this->irelative_count_;
reserved = 0;
got = this->got_irelative_;
}
else
{
pcount = &this->count_;
reserved = TILEGX_GOTPLT_RESERVE_COUNT;
got = this->got_plt_;
}
if (!this->is_data_size_valid())
{
plt_index = *pcount;
// TILEGX .plt section layout
//
// ----
// plt_header
// ----
// plt stub
// ----
// ...
// ----
//
// TILEGX .got.plt section layout
//
// ----
// reserv1
// ----
// reserv2
// ----
// entries for normal function
// ----
// ...
// ----
// entries for ifunc
// ----
// ...
// ----
if (got == this->got_irelative_)
plt_offset = plt_index * this->get_plt_entry_size();
else
plt_offset = (plt_index + 1) * this->get_plt_entry_size();
++*pcount;
got_offset = (plt_index + reserved) * (size / 8);
gold_assert(got_offset == got->current_data_size());
// Every PLT entry needs a GOT entry which points back to the PLT
// entry (this will be changed by the dynamic linker, normally
// lazily when the function is called).
got->set_current_data_size(got_offset + size / 8);
}
else
{
// FIXME: This is probably not correct for IRELATIVE relocs.
// For incremental updates, find an available slot.
plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
this->get_plt_entry_size(), 0);
if (plt_offset == -1)
gold_fallback(_("out of patch space (PLT);"
" relink with --incremental-full"));
// The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
// can be calculated from the PLT index, adjusting for the three
// reserved entries at the beginning of the GOT.
plt_index = plt_offset / this->get_plt_entry_size() - 1;
got_offset = (plt_index + reserved) * (size / 8);
}
gsym->set_plt_offset(plt_offset);
// Every PLT entry needs a reloc.
this->add_relocation(symtab, layout, gsym, got_offset);
// Note that we don't need to save the symbol. The contents of the
// PLT are independent of which symbols are used. The symbols only
// appear in the relocations.
}
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
// the PLT offset.
template<int size, bool big_endian>
unsigned int
Output_data_plt_tilegx<size, big_endian>::add_local_ifunc_entry(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* relobj,
unsigned int local_sym_index)
{
unsigned int plt_offset =
this->irelative_count_ * this->get_plt_entry_size();
++this->irelative_count_;
section_offset_type got_offset = this->got_irelative_->current_data_size();
// Every PLT entry needs a GOT entry which points back to the PLT
// entry.
this->got_irelative_->set_current_data_size(got_offset + size / 8);
// Every PLT entry needs a reloc.
Reloc_section* rela = this->rela_irelative(symtab, layout);
rela->add_symbolless_local_addend(relobj, local_sym_index,
elfcpp::R_TILEGX_IRELATIVE,
this->got_irelative_, got_offset, 0);
return plt_offset;
}
// Add the relocation for a PLT entry.
template<int size, bool big_endian>
void
Output_data_plt_tilegx<size, big_endian>::add_relocation(Symbol_table* symtab,
Layout* layout,
Symbol* gsym,
unsigned int got_offset)
{
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
Reloc_section* rela = this->rela_irelative(symtab, layout);
rela->add_symbolless_global_addend(gsym, elfcpp::R_TILEGX_IRELATIVE,
this->got_irelative_, got_offset, 0);
}
else
{
gsym->set_needs_dynsym_entry();
this->rel_->add_global(gsym, elfcpp::R_TILEGX_JMP_SLOT, this->got_plt_,
got_offset, 0);
}
}
// Return where the IRELATIVE relocations should go in the PLT. These
// follow the JUMP_SLOT and the TLSDESC relocations.
template<int size, bool big_endian>
typename Output_data_plt_tilegx<size, big_endian>::Reloc_section*
Output_data_plt_tilegx<size, big_endian>::rela_irelative(Symbol_table* symtab,
Layout* layout)
{
if (this->irelative_rel_ == NULL)
{
// case we see any later on.
this->irelative_rel_ = new Reloc_section(false);
layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->irelative_rel_,
ORDER_DYNAMIC_PLT_RELOCS, false);
gold_assert(this->irelative_rel_->output_section()
== this->rel_->output_section());
if (parameters->doing_static_link())
{
// A statically linked executable will only have a .rela.plt
// section to hold R_TILEGX_IRELATIVE relocs for
// STT_GNU_IFUNC symbols. The library will use these
// symbols to locate the IRELATIVE relocs at program startup
// time.
symtab->define_in_output_data("__rela_iplt_start", NULL,
Symbol_table::PREDEFINED,
this->irelative_rel_, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, false, true);
symtab->define_in_output_data("__rela_iplt_end", NULL,
Symbol_table::PREDEFINED,
this->irelative_rel_, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, true, true);
}
}
return this->irelative_rel_;
}
// Return the PLT address to use for a global symbol.
template<int size, bool big_endian>
uint64_t
Output_data_plt_tilegx<size, big_endian>::address_for_global(
const Symbol* gsym)
{
uint64_t offset = 0;
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
offset = (this->count_ + 1) * this->get_plt_entry_size();
return this->address() + offset + gsym->plt_offset();
}
// Return the PLT address to use for a local symbol. These are always
// IRELATIVE relocs.
template<int size, bool big_endian>
uint64_t
Output_data_plt_tilegx<size, big_endian>::address_for_local(
const Relobj* object,
unsigned int r_sym)
{
return (this->address()
+ (this->count_ + 1) * this->get_plt_entry_size()
+ object->local_plt_offset(r_sym));
}
// Set the final size.
template<int size, bool big_endian>
void
Output_data_plt_tilegx<size, big_endian>::set_final_data_size()
{
unsigned int count = this->count_ + this->irelative_count_;
this->set_data_size((count + 1) * this->get_plt_entry_size());
}
// The first entry in the PLT for an executable.
template<>
const unsigned char
Output_data_plt_tilegx<64, false>::first_plt_entry[plt_entry_size] =
{
0x00, 0x30, 0x48, 0x51,
0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 }
0x00, 0x30, 0xbc, 0x35,
0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 }
0xff, 0xaf, 0x30, 0x40,
0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
// padding
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
template<>
const unsigned char
Output_data_plt_tilegx<32, false>::first_plt_entry[plt_entry_size] =
{
0x00, 0x30, 0x48, 0x51,
0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 }
0x00, 0x30, 0xbc, 0x35,
0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 }
0xff, 0xaf, 0x30, 0x40,
0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
// padding
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
template<>
const unsigned char
Output_data_plt_tilegx<64, true>::first_plt_entry[plt_entry_size] =
{
0x00, 0x30, 0x48, 0x51,
0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 }
0x00, 0x30, 0xbc, 0x35,
0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 }
0xff, 0xaf, 0x30, 0x40,
0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
// padding
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
template<>
const unsigned char
Output_data_plt_tilegx<32, true>::first_plt_entry[plt_entry_size] =
{
0x00, 0x30, 0x48, 0x51,
0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 }
0x00, 0x30, 0xbc, 0x35,
0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 }
0xff, 0xaf, 0x30, 0x40,
0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
// padding
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
template<int size, bool big_endian>
void
Output_data_plt_tilegx<size, big_endian>::fill_first_plt_entry(
unsigned char* pov)
{
memcpy(pov, first_plt_entry, plt_entry_size);
}
// Subsequent entries in the PLT for an executable.
template<>
const unsigned char
Output_data_plt_tilegx<64, false>::plt_entry[plt_entry_size] =
{
0xdc, 0x0f, 0x00, 0x10,
0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
0xdb, 0x0f, 0x00, 0x10,
0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
0x9c, 0xc6, 0x0d, 0xd0,
0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
0x9b, 0xb6, 0xc5, 0xad,
0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 }
0xdd, 0x0f, 0x00, 0x70,
0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
};
template<>
const unsigned char
Output_data_plt_tilegx<32, false>::plt_entry[plt_entry_size] =
{
0xdc, 0x0f, 0x00, 0x10,
0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
0xdb, 0x0f, 0x00, 0x10,
0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
0x9c, 0xc6, 0x0d, 0xd0,
0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
0x9b, 0xb6, 0xc5, 0xad,
0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 }
0xdd, 0x0f, 0x00, 0x70,
0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
};
template<>
const unsigned char
Output_data_plt_tilegx<64, true>::plt_entry[plt_entry_size] =
{
0xdc, 0x0f, 0x00, 0x10,
0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
0xdb, 0x0f, 0x00, 0x10,
0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
0x9c, 0xc6, 0x0d, 0xd0,
0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
0x9b, 0xb6, 0xc5, 0xad,
0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 }
0xdd, 0x0f, 0x00, 0x70,
0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
};
template<>
const unsigned char
Output_data_plt_tilegx<32, true>::plt_entry[plt_entry_size] =
{
0xdc, 0x0f, 0x00, 0x10,
0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
0xdb, 0x0f, 0x00, 0x10,
0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
0x9c, 0xc6, 0x0d, 0xd0,
0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
0x9b, 0xb6, 0xc5, 0xad,
0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 }
0xdd, 0x0f, 0x00, 0x70,
0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
};
template<int size, bool big_endian>
void
Output_data_plt_tilegx<size, big_endian>::fill_plt_entry(
unsigned char* pov,
typename elfcpp::Elf_types<size>::Elf_Addr gotplt_base,
unsigned int got_offset,
typename elfcpp::Elf_types<size>::Elf_Addr plt_base,
unsigned int plt_offset, unsigned int plt_index)
{
const uint32_t TILEGX_IMM16_MASK = 0xFFFF;
const uint32_t TILEGX_X0_IMM16_BITOFF = 12;
const uint32_t TILEGX_X1_IMM16_BITOFF = 43;
typedef typename elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::Valtype
Valtype;
memcpy(pov, plt_entry, plt_entry_size);
// first bundle in plt stub - x0
Valtype* wv = reinterpret_cast<Valtype*>(pov);
Valtype val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
Valtype reloc =
((gotplt_base + got_offset) - (plt_base + plt_offset + 8)) >> 16;
elfcpp::Elf_Xword dst_mask =
(elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
val &= ~dst_mask;
reloc &= TILEGX_IMM16_MASK;
elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
val | (reloc<<TILEGX_X0_IMM16_BITOFF));
// second bundle in plt stub - x1
wv = reinterpret_cast<Valtype*>(pov + 8);
val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
reloc = (gotplt_base + got_offset) - (plt_base + plt_offset + 8);
dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF;
val &= ~dst_mask;
reloc &= TILEGX_IMM16_MASK;
elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
val | (reloc<<TILEGX_X1_IMM16_BITOFF));
// second bundle in plt stub - x0
wv = reinterpret_cast<Valtype*>(pov + 8);
val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
reloc = (gotplt_base - (plt_base + plt_offset + 8)) >> 16;
dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
val &= ~dst_mask;
reloc &= TILEGX_IMM16_MASK;
elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
val | (reloc<<TILEGX_X0_IMM16_BITOFF));
// third bundle in plt stub - x1
wv = reinterpret_cast<Valtype*>(pov + 16);
val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
reloc = gotplt_base - (plt_base + plt_offset + 8);
dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF;
val &= ~dst_mask;
reloc &= TILEGX_IMM16_MASK;
elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
val | (reloc<<TILEGX_X1_IMM16_BITOFF));
// fifth bundle in plt stub - carry plt_index x0
wv = reinterpret_cast<Valtype*>(pov + 32);
val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
val &= ~dst_mask;
plt_index &= TILEGX_IMM16_MASK;
elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
val | (plt_index<<TILEGX_X0_IMM16_BITOFF));
}
// Write out the PLT. This uses the hand-coded instructions above.
template<int size, bool big_endian>
void
Output_data_plt_tilegx<size, big_endian>::do_write(Output_file* of)
{
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
const off_t got_file_offset = this->got_plt_->offset();
gold_assert(parameters->incremental_update()
|| (got_file_offset + this->got_plt_->data_size()
== this->got_irelative_->offset()));
const section_size_type got_size =
convert_to_section_size_type(this->got_plt_->data_size()
+ this->got_irelative_->data_size());
unsigned char* const got_view = of->get_output_view(got_file_offset,
got_size);
unsigned char* pov = oview;
// The base address of the .plt section.
typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
typename elfcpp::Elf_types<size>::Elf_Addr got_address =
this->got_plt_->address();
this->fill_first_plt_entry(pov);
pov += this->get_plt_entry_size();
unsigned char* got_pov = got_view;
// first entry of .got.plt are set to -1
// second entry of .got.plt are set to 0
memset(got_pov, 0xff, size / 8);
got_pov += size / 8;
memset(got_pov, 0x0, size / 8);
got_pov += size / 8;
unsigned int plt_offset = this->get_plt_entry_size();
const unsigned int count = this->count_ + this->irelative_count_;
unsigned int got_offset = (size / 8) * TILEGX_GOTPLT_RESERVE_COUNT;
for (unsigned int plt_index = 0;
plt_index < count;
++plt_index,
pov += this->get_plt_entry_size(),
got_pov += size / 8,
plt_offset += this->get_plt_entry_size(),
got_offset += size / 8)
{
// Set and adjust the PLT entry itself.
this->fill_plt_entry(pov, got_address, got_offset,
plt_address, plt_offset, plt_index);
// Initialize entry in .got.plt to plt start address
elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
}
gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
of->write_output_view(offset, oview_size, oview);
of->write_output_view(got_file_offset, got_size, got_view);
}
// Create the PLT section.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::make_plt_section(Symbol_table* symtab,
Layout* layout)
{
if (this->plt_ == NULL)
{
// Create the GOT sections first.
this->got_section(symtab, layout);
// Ensure that .rela.dyn always appears before .rela.plt,
// becuase on TILE-Gx, .rela.dyn needs to include .rela.plt
// in it's range.
this->rela_dyn_section(layout);
this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout,
TILEGX_INST_BUNDLE_SIZE, this->got_, this->got_plt_,
this->got_irelative_);
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR),
this->plt_, ORDER_NON_RELRO_FIRST,
false);
// Make the sh_info field of .rela.plt point to .plt.
Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
rela_plt_os->set_info_section(this->plt_->output_section());
}
}
// Create a PLT entry for a global symbol.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::make_plt_entry(Symbol_table* symtab,
Layout* layout, Symbol* gsym)
{
if (gsym->has_plt_offset())
return;
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
this->plt_->add_entry(symtab, layout, gsym);
}
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::make_local_ifunc_plt_entry(
Symbol_table* symtab, Layout* layout,
Sized_relobj_file<size, big_endian>* relobj,
unsigned int local_sym_index)
{
if (relobj->local_has_plt_offset(local_sym_index))
return;
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
relobj,
local_sym_index);
relobj->set_local_plt_offset(local_sym_index, plt_offset);
}
// Return the number of entries in the PLT.
template<int size, bool big_endian>
unsigned int
Target_tilegx<size, big_endian>::plt_entry_count() const
{
if (this->plt_ == NULL)
return 0;
return this->plt_->entry_count();
}
// Return the offset of the first non-reserved PLT entry.
template<int size, bool big_endian>
unsigned int
Target_tilegx<size, big_endian>::first_plt_entry_offset() const
{
return this->plt_->first_plt_entry_offset();
}
// Return the size of each PLT entry.
template<int size, bool big_endian>
unsigned int
Target_tilegx<size, big_endian>::plt_entry_size() const
{
return this->plt_->get_plt_entry_size();
}
// Create the GOT and PLT sections for an incremental update.
template<int size, bool big_endian>
Output_data_got_base*
Target_tilegx<size, big_endian>::init_got_plt_for_update(Symbol_table* symtab,
Layout* layout,
unsigned int got_count,
unsigned int plt_count)
{
gold_assert(this->got_ == NULL);
this->got_ =
new Output_data_got<size, big_endian>((got_count
+ TILEGX_GOT_RESERVE_COUNT)
* (size / 8));
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE),
this->got_, ORDER_RELRO_LAST,
true);
// Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
this->global_offset_table_ =
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
Symbol_table::PREDEFINED,
this->got_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
if (parameters->options().shared()) {
this->tilegx_dynamic_ =
symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL,
Symbol_table::PREDEFINED,
layout->dynamic_section(),
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD);
} else
this->got_->set_current_data_size(size / 8);
// Add the two reserved entries.
this->got_plt_
= new Output_data_space((plt_count + TILEGX_GOTPLT_RESERVE_COUNT)
* (size / 8), size / 8, "** GOT PLT");
layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE),
this->got_plt_, ORDER_NON_RELRO_FIRST,
false);
// If there are any IRELATIVE relocations, they get GOT entries in
// .got.plt after the jump slot.
this->got_irelative_
= new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
this->got_irelative_,
ORDER_NON_RELRO_FIRST, false);
// Create the PLT section.
this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout,
this->plt_entry_size(), this->got_, this->got_plt_, this->got_irelative_,
plt_count);
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
this->plt_, ORDER_PLT, false);
// Make the sh_info field of .rela.plt point to .plt.
Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
rela_plt_os->set_info_section(this->plt_->output_section());
// Create the rela_dyn section.
this->rela_dyn_section(layout);
return this->got_;
}
// Reserve a GOT entry for a local symbol, and regenerate any
// necessary dynamic relocations.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::reserve_local_got_entry(
unsigned int got_index,
Sized_relobj<size, big_endian>* obj,
unsigned int r_sym,
unsigned int got_type)
{
unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT)
* (size / 8);
Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
this->got_->reserve_local(got_index, obj, r_sym, got_type);
switch (got_type)
{
case GOT_TYPE_STANDARD:
if (parameters->options().output_is_position_independent())
rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_TILEGX_RELATIVE,
this->got_, got_offset, 0, false);
break;
case GOT_TYPE_TLS_OFFSET:
rela_dyn->add_local(obj, r_sym,
size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32
: elfcpp::R_TILEGX_TLS_DTPOFF64,
this->got_, got_offset, 0);
break;
case GOT_TYPE_TLS_PAIR:
this->got_->reserve_slot(got_index + 1);
rela_dyn->add_local(obj, r_sym,
size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
: elfcpp::R_TILEGX_TLS_DTPMOD64,
this->got_, got_offset, 0);
break;
case GOT_TYPE_TLS_DESC:
gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
break;
default:
gold_unreachable();
}
}
// Reserve a GOT entry for a global symbol, and regenerate any
// necessary dynamic relocations.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::reserve_global_got_entry(
unsigned int got_index, Symbol* gsym, unsigned int got_type)
{
unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT)
* (size / 8);
Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
this->got_->reserve_global(got_index, gsym, got_type);
switch (got_type)
{
case GOT_TYPE_STANDARD:
if (!gsym->final_value_is_known())
{
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible()
|| gsym->type() == elfcpp::STT_GNU_IFUNC)
rela_dyn->add_global(gsym, elfcpp::R_TILEGX_GLOB_DAT,
this->got_, got_offset, 0);
else
rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE,
this->got_, got_offset, 0, false);
}
break;
case GOT_TYPE_TLS_OFFSET:
rela_dyn->add_global_relative(gsym,
size == 32 ? elfcpp::R_TILEGX_TLS_TPOFF32
: elfcpp::R_TILEGX_TLS_TPOFF64,
this->got_, got_offset, 0, false);
break;
case GOT_TYPE_TLS_PAIR:
this->got_->reserve_slot(got_index + 1);
rela_dyn->add_global_relative(gsym,
size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
: elfcpp::R_TILEGX_TLS_DTPMOD64,
this->got_, got_offset, 0, false);
rela_dyn->add_global_relative(gsym,
size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32
: elfcpp::R_TILEGX_TLS_DTPOFF64,
this->got_, got_offset + size / 8,
0, false);
break;
case GOT_TYPE_TLS_DESC:
gold_fatal(_("TLS_DESC not yet supported for TILEGX"));
break;
default:
gold_unreachable();
}
}
// Register an existing PLT entry for a global symbol.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::register_global_plt_entry(
Symbol_table* symtab, Layout* layout, unsigned int plt_index, Symbol* gsym)
{
gold_assert(this->plt_ != NULL);
gold_assert(!gsym->has_plt_offset());
this->plt_->reserve_slot(plt_index);
gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
unsigned int got_offset = (plt_index + 2) * (size / 8);
this->plt_->add_relocation(symtab, layout, gsym, got_offset);
}
// Force a COPY relocation for a given symbol.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::emit_copy_reloc(
Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
{
this->copy_relocs_.emit_copy_reloc(symtab,
symtab->get_sized_symbol<size>(sym),
os,
offset,
this->rela_dyn_section(NULL));
}
// Create a GOT entry for the TLS module index.
template<int size, bool big_endian>
unsigned int
Target_tilegx<size, big_endian>::got_mod_index_entry(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object)
{
if (this->got_mod_index_offset_ == -1U)
{
gold_assert(symtab != NULL && layout != NULL && object != NULL);
Reloc_section* rela_dyn = this->rela_dyn_section(layout);
Output_data_got<size, big_endian>* got
= this->got_section(symtab, layout);
unsigned int got_offset = got->add_constant(0);
rela_dyn->add_local(object, 0,
size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
: elfcpp::R_TILEGX_TLS_DTPMOD64, got,
got_offset, 0);
got->add_constant(0);
this->got_mod_index_offset_ = got_offset;
}
return this->got_mod_index_offset_;
}
// Optimize the TLS relocation type based on what we know about the
// symbol. IS_FINAL is true if the final address of this symbol is
// known at link time.
//
// the transformation rules is described below:
//
// compiler GD reference
// |
// V
// moveli tmp, hw1_last_tls_gd(x) X0/X1
// shl16insli r0, tmp, hw0_tls_gd(x) X0/X1
// addi r0, got, tls_add(x) Y0/Y1/X0/X1
// jal tls_gd_call(x) X1
// addi adr, r0, tls_gd_add(x) Y0/Y1/X0/X1
//
// linker tranformation of GD insn sequence
// |
// V
// ==> GD:
// moveli tmp, hw1_last_tls_gd(x) X0/X1
// shl16insli r0, tmp, hw0_tls_gd(x) X0/X1
// add r0, got, r0 Y0/Y1/X0/X1
// jal plt(__tls_get_addr) X1
// move adr, r0 Y0/Y1/X0/X1
// ==> IE:
// moveli tmp, hw1_last_tls_ie(x) X0/X1
// shl16insli r0, tmp, hw0_tls_ie(x) X0/X1
// add r0, got, r0 Y0/Y1/X0/X1
// ld r0, r0 X1
// add adr, r0, tp Y0/Y1/X0/X1
// ==> LE:
// moveli tmp, hw1_last_tls_le(x) X0/X1
// shl16insli r0, tmp, hw0_tls_le(x) X0/X1
// move r0, r0 Y0/Y1/X0/X1
// move r0, r0 Y0/Y1/X0/X1
// add adr, r0, tp Y0/Y1/X0/X1
//
//
// compiler IE reference
// |
// V
// moveli tmp, hw1_last_tls_ie(x) X0/X1
// shl16insli tmp, tmp, hw0_tls_ie(x) X0/X1
// addi tmp, got, tls_add(x) Y0/Y1/X0/X1
// ld_tls tmp, tmp, tls_ie_load(x) X1
// add adr, tmp, tp Y0/Y1/X0/X1
//
// linker transformation for IE insn sequence
// |
// V
// ==> IE:
// moveli tmp, hw1_last_tls_ie(x) X0/X1
// shl16insli tmp, tmp, hw0_tls_ie(x) X0/X1
// add tmp, got, tmp Y0/Y1/X0/X1
// ld tmp, tmp X1
// add adr, tmp, tp Y0/Y1/X0/X1
// ==> LE:
// moveli tmp, hw1_last_tls_le(x) X0/X1
// shl16insli tmp, tmp, hw0_tls_le(x) X0/X1
// move tmp, tmp Y0/Y1/X0/X1
// move tmp, tmp Y0/Y1/X0/X1
//
//
// compiler LE reference
// |
// V
// moveli tmp, hw1_last_tls_le(x) X0/X1
// shl16insli tmp, tmp, hw0_tls_le(x) X0/X1
// add adr, tmp, tp Y0/Y1/X0/X1
template<int size, bool big_endian>
tls::Tls_optimization
Target_tilegx<size, big_endian>::optimize_tls_reloc(bool is_final, int r_type)
{
// If we are generating a shared library, then we can't do anything
// in the linker.
if (parameters->options().shared())
return tls::TLSOPT_NONE;
switch (r_type)
{
// unique GD relocations
case elfcpp::R_TILEGX_TLS_GD_CALL:
case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
// These are General-Dynamic which permits fully general TLS
// access. Since we know that we are generating an executable,
// we can convert this to Initial-Exec. If we also know that
// this is a local symbol, we can further switch to Local-Exec.
if (is_final)
return tls::TLSOPT_TO_LE;
return tls::TLSOPT_TO_IE;
// unique IE relocations
case elfcpp::R_TILEGX_TLS_IE_LOAD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
// These are Initial-Exec relocs which get the thread offset
// from the GOT. If we know that we are linking against the
// local symbol, we can switch to Local-Exec, which links the
// thread offset into the instruction.
if (is_final)
return tls::TLSOPT_TO_LE;
return tls::TLSOPT_NONE;
// could be created for both GD and IE
// but they are expanded into the same
// instruction in GD and IE.
case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
if (is_final)
return tls::TLSOPT_TO_LE;
return tls::TLSOPT_NONE;
// unique LE relocations
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
// When we already have Local-Exec, there is nothing further we
// can do.
return tls::TLSOPT_NONE;
default:
gold_unreachable();
}
}
// Get the Reference_flags for a particular relocation.
template<int size, bool big_endian>
int
Target_tilegx<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_TILEGX_NONE:
case elfcpp::R_TILEGX_GNU_VTINHERIT:
case elfcpp::R_TILEGX_GNU_VTENTRY:
// No symbol reference.
return 0;
case elfcpp::R_TILEGX_64:
case elfcpp::R_TILEGX_32:
case elfcpp::R_TILEGX_16:
case elfcpp::R_TILEGX_8:
return Symbol::ABSOLUTE_REF;
case elfcpp::R_TILEGX_BROFF_X1:
case elfcpp::R_TILEGX_64_PCREL:
case elfcpp::R_TILEGX_32_PCREL:
case elfcpp::R_TILEGX_16_PCREL:
case elfcpp::R_TILEGX_8_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
return Symbol::RELATIVE_REF;
case elfcpp::R_TILEGX_JUMPOFF_X1:
case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
case elfcpp::R_TILEGX_IMM16_X0_HW0:
case elfcpp::R_TILEGX_IMM16_X1_HW0:
case elfcpp::R_TILEGX_IMM16_X0_HW1:
case elfcpp::R_TILEGX_IMM16_X1_HW1:
case elfcpp::R_TILEGX_IMM16_X0_HW2:
case elfcpp::R_TILEGX_IMM16_X1_HW2:
case elfcpp::R_TILEGX_IMM16_X0_HW3:
case elfcpp::R_TILEGX_IMM16_X1_HW3:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
return Symbol::ABSOLUTE_REF;
case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
// Absolute in GOT.
return Symbol::ABSOLUTE_REF;
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_TLS_DTPOFF64:
case elfcpp::R_TILEGX_TLS_DTPMOD32:
case elfcpp::R_TILEGX_TLS_DTPOFF32:
case elfcpp::R_TILEGX_TLS_TPOFF32:
case elfcpp::R_TILEGX_TLS_GD_CALL:
case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
case elfcpp::R_TILEGX_TLS_IE_LOAD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
return Symbol::TLS_REF;
case elfcpp::R_TILEGX_COPY:
case elfcpp::R_TILEGX_GLOB_DAT:
case elfcpp::R_TILEGX_JMP_SLOT:
case elfcpp::R_TILEGX_RELATIVE:
case elfcpp::R_TILEGX_TLS_TPOFF64:
case elfcpp::R_TILEGX_TLS_DTPMOD64:
default:
// Not expected. We will give an error later.
return 0;
}
}
// Report an unsupported relocation against a local symbol.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::Scan::unsupported_reloc_local(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type)
{
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
}
// We are about to emit a dynamic relocation of type R_TYPE. If the
// dynamic linker does not support it, issue an error.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::Scan::check_non_pic(Relobj* object,
unsigned int r_type)
{
switch (r_type)
{
// These are the relocation types supported by glibc for tilegx
// which should always work.
case elfcpp::R_TILEGX_RELATIVE:
case elfcpp::R_TILEGX_GLOB_DAT:
case elfcpp::R_TILEGX_JMP_SLOT:
case elfcpp::R_TILEGX_TLS_DTPMOD64:
case elfcpp::R_TILEGX_TLS_DTPOFF64:
case elfcpp::R_TILEGX_TLS_TPOFF64:
case elfcpp::R_TILEGX_8:
case elfcpp::R_TILEGX_16:
case elfcpp::R_TILEGX_32:
case elfcpp::R_TILEGX_64:
case elfcpp::R_TILEGX_COPY:
case elfcpp::R_TILEGX_IMM16_X0_HW0:
case elfcpp::R_TILEGX_IMM16_X1_HW0:
case elfcpp::R_TILEGX_IMM16_X0_HW1:
case elfcpp::R_TILEGX_IMM16_X1_HW1:
case elfcpp::R_TILEGX_IMM16_X0_HW2:
case elfcpp::R_TILEGX_IMM16_X1_HW2:
case elfcpp::R_TILEGX_IMM16_X0_HW3:
case elfcpp::R_TILEGX_IMM16_X1_HW3:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
case elfcpp::R_TILEGX_BROFF_X1:
case elfcpp::R_TILEGX_JUMPOFF_X1:
case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
return;
default:
// This prevents us from issuing more than one error per reloc
// section. But we can still wind up issuing more than one
// error per object file.
if (this->issued_non_pic_error_)
return;
gold_assert(parameters->options().output_is_position_independent());
object->error(_("requires unsupported dynamic reloc %u; "
"recompile with -fPIC"),
r_type);
this->issued_non_pic_error_ = true;
return;
case elfcpp::R_TILEGX_NONE:
gold_unreachable();
}
}
// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.
template<int size, bool big_endian>
bool
Target_tilegx<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
Sized_relobj_file<size, big_endian>* object, unsigned int r_type)
{
int flags = Scan::get_reference_flags(r_type);
if (flags & Symbol::TLS_REF)
gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
object->name().c_str(), r_type);
return flags != 0;
}
// Scan a relocation for a local symbol.
template<int size, bool big_endian>
inline void
Target_tilegx<size, big_endian>::Scan::local(Symbol_table* symtab,
Layout* layout,
Target_tilegx<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded)
{
if (is_discarded)
return;
// A local STT_GNU_IFUNC symbol may require a PLT entry.
bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
}
switch (r_type)
{
case elfcpp::R_TILEGX_NONE:
case elfcpp::R_TILEGX_GNU_VTINHERIT:
case elfcpp::R_TILEGX_GNU_VTENTRY:
break;
// If building a shared library (or a position-independent
// executable), because the runtime address needs plus
// the module base address, so generate a R_TILEGX_RELATIVE.
case elfcpp::R_TILEGX_32:
case elfcpp::R_TILEGX_64:
if (parameters->options().output_is_position_independent())
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_local_relative(object, r_sym,
elfcpp::R_TILEGX_RELATIVE,
output_section, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend(), is_ifunc);
}
break;
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for this
// location.
case elfcpp::R_TILEGX_8:
case elfcpp::R_TILEGX_16:
case elfcpp::R_TILEGX_IMM16_X0_HW0:
case elfcpp::R_TILEGX_IMM16_X1_HW0:
case elfcpp::R_TILEGX_IMM16_X0_HW1:
case elfcpp::R_TILEGX_IMM16_X1_HW1:
case elfcpp::R_TILEGX_IMM16_X0_HW2:
case elfcpp::R_TILEGX_IMM16_X1_HW2:
case elfcpp::R_TILEGX_IMM16_X0_HW3:
case elfcpp::R_TILEGX_IMM16_X1_HW3:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
if (parameters->options().output_is_position_independent())
{
this->check_non_pic(object, r_type);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
if (lsym.get_st_type() != elfcpp::STT_SECTION)
rela_dyn->add_local(object, r_sym, r_type, output_section,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
else
{
gold_assert(lsym.get_st_value() == 0);
rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
output_section,
data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
}
}
break;
// R_TILEGX_JUMPOFF_X1_PLT against local symbol
// may happen for ifunc case.
case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
case elfcpp::R_TILEGX_JUMPOFF_X1:
case elfcpp::R_TILEGX_64_PCREL:
case elfcpp::R_TILEGX_32_PCREL:
case elfcpp::R_TILEGX_16_PCREL:
case elfcpp::R_TILEGX_8_PCREL:
case elfcpp::R_TILEGX_BROFF_X1:
case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
break;
case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
{
// The symbol requires a GOT entry.
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
// For a STT_GNU_IFUNC symbol we want the PLT offset. That
// lets function pointers compare correctly with shared
// libraries. Otherwise we would need an IRELATIVE reloc.
bool is_new;
if (is_ifunc)
is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
else
is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
if (is_new)
{
// tilegx dynamic linker will not update local got entry,
// so, if we are generating a shared object, we need to add a
// dynamic relocation for this symbol's GOT entry to inform
// dynamic linker plus the load base explictly.
if (parameters->options().output_is_position_independent())
{
unsigned int got_offset
= object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_local_relative(object, r_sym,
r_type,
got, got_offset, 0, is_ifunc);
}
}
}
break;
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_TLS_GD_CALL:
case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
case elfcpp::R_TILEGX_TLS_IE_LOAD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
{
bool output_is_shared = parameters->options().shared();
const tls::Tls_optimization opt_t =
Target_tilegx<size, big_endian>::optimize_tls_reloc(
!output_is_shared, r_type);
switch (r_type)
{
case elfcpp::R_TILEGX_TLS_GD_CALL:
// FIXME: predefine __tls_get_addr
//
// R_TILEGX_TLS_GD_CALL implicitly reference __tls_get_addr,
// while all other target, x86/arm/mips/powerpc/sparc
// generate tls relocation against __tls_get_addr explictly,
// so for TILEGX, we need the following hack.
if (opt_t == tls::TLSOPT_NONE) {
if (!target->tls_get_addr_sym_defined_) {
Symbol* sym = NULL;
options::parse_set(NULL, "__tls_get_addr",
(gold::options::String_set*)
&parameters->options().undefined());
symtab->add_undefined_symbols_from_command_line(layout);
target->tls_get_addr_sym_defined_ = true;
sym = symtab->lookup("__tls_get_addr");
sym->set_in_reg();
}
target->make_plt_entry(symtab, layout,
symtab->lookup("__tls_get_addr"));
}
break;
// only make effect when applying relocation
case elfcpp::R_TILEGX_TLS_IE_LOAD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
break;
// GD: requires two GOT entry for module index and offset
// IE: requires one GOT entry for tp-relative offset
// LE: shouldn't happen for global symbol
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
{
if (opt_t == tls::TLSOPT_NONE) {
Output_data_got<size, big_endian> *got
= target->got_section(symtab, layout);
unsigned int r_sym
= elfcpp::elf_r_sym<size>(reloc.get_r_info());
unsigned int shndx = lsym.get_st_shndx();
bool is_ordinary;
shndx = object->adjust_sym_shndx(r_sym, shndx,
&is_ordinary);
if (!is_ordinary)
object->error(_("local symbol %u has bad shndx %u"),
r_sym, shndx);
else
got->add_local_pair_with_rel(object, r_sym, shndx,
GOT_TYPE_TLS_PAIR,
target->rela_dyn_section(layout),
size == 32
? elfcpp::R_TILEGX_TLS_DTPMOD32
: elfcpp::R_TILEGX_TLS_DTPMOD64);
} else if (opt_t == tls::TLSOPT_TO_IE) {
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
Reloc_section* rela_dyn
= target->rela_dyn_section(layout);
unsigned int r_sym
= elfcpp::elf_r_sym<size>(reloc.get_r_info());
unsigned int off = got->add_constant(0);
object->set_local_got_offset(r_sym,
GOT_TYPE_TLS_OFFSET,off);
rela_dyn->add_symbolless_local_addend(object, r_sym,
size == 32
? elfcpp::R_TILEGX_TLS_TPOFF32
: elfcpp::R_TILEGX_TLS_TPOFF64,
got, off, 0);
} else if (opt_t != tls::TLSOPT_TO_LE)
// only TO_LE is allowed for local symbol
unsupported_reloc_local(object, r_type);
}
break;
// IE
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
{
layout->set_has_static_tls();
if (opt_t == tls::TLSOPT_NONE) {
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
Reloc_section* rela_dyn
= target->rela_dyn_section(layout);
unsigned int r_sym
= elfcpp::elf_r_sym<size>(reloc.get_r_info());
unsigned int off = got->add_constant(0);
object->set_local_got_offset(r_sym,
GOT_TYPE_TLS_OFFSET, off);
rela_dyn->add_symbolless_local_addend(object, r_sym,
size == 32
? elfcpp::R_TILEGX_TLS_TPOFF32
: elfcpp::R_TILEGX_TLS_TPOFF64,
got, off, 0);
} else if (opt_t != tls::TLSOPT_TO_LE)
unsupported_reloc_local(object, r_type);
}
break;
// LE
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
layout->set_has_static_tls();
if (parameters->options().shared()) {
// defer to dynamic linker
gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
unsigned int r_sym
= elfcpp::elf_r_sym<size>(reloc.get_r_info());
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
output_section, data_shndx,
reloc.get_r_offset(), 0);
}
break;
default:
gold_unreachable();
}
}
break;
case elfcpp::R_TILEGX_COPY:
case elfcpp::R_TILEGX_GLOB_DAT:
case elfcpp::R_TILEGX_JMP_SLOT:
case elfcpp::R_TILEGX_RELATIVE:
// These are outstanding tls relocs, which are unexpected when linking
case elfcpp::R_TILEGX_TLS_TPOFF32:
case elfcpp::R_TILEGX_TLS_TPOFF64:
case elfcpp::R_TILEGX_TLS_DTPMOD32:
case elfcpp::R_TILEGX_TLS_DTPMOD64:
case elfcpp::R_TILEGX_TLS_DTPOFF32:
case elfcpp::R_TILEGX_TLS_DTPOFF64:
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
default:
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
break;
}
}
// Report an unsupported relocation against a global symbol.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::Scan::unsupported_reloc_global(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type,
Symbol* gsym)
{
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
// Returns true if this relocation type could be that of a function pointer.
template<int size, bool big_endian>
inline bool
Target_tilegx<size, big_endian>::Scan::possible_function_pointer_reloc(
unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_TILEGX_IMM16_X0_HW0:
case elfcpp::R_TILEGX_IMM16_X1_HW0:
case elfcpp::R_TILEGX_IMM16_X0_HW1:
case elfcpp::R_TILEGX_IMM16_X1_HW1:
case elfcpp::R_TILEGX_IMM16_X0_HW2:
case elfcpp::R_TILEGX_IMM16_X1_HW2:
case elfcpp::R_TILEGX_IMM16_X0_HW3:
case elfcpp::R_TILEGX_IMM16_X1_HW3:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
{
return true;
}
}
return false;
}
// For safe ICF, scan a relocation for a local symbol to check if it
// corresponds to a function pointer being taken. In that case mark
// the function whose pointer was taken as not foldable.
template<int size, bool big_endian>
inline bool
Target_tilegx<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
Symbol_table* ,
Layout* ,
Target_tilegx<size, big_endian>* ,
Sized_relobj_file<size, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rela<size, big_endian>& ,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>&)
{
return possible_function_pointer_reloc(r_type);
}
// For safe ICF, scan a relocation for a global symbol to check if it
// corresponds to a function pointer being taken. In that case mark
// the function whose pointer was taken as not foldable.
template<int size, bool big_endian>
inline bool
Target_tilegx<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
Symbol_table*,
Layout* ,
Target_tilegx<size, big_endian>* ,
Sized_relobj_file<size, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rela<size, big_endian>& ,
unsigned int r_type,
Symbol* gsym)
{
// GOT is not a function.
if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
return false;
// When building a shared library, do not fold symbols whose visibility
// is hidden, internal or protected.
return ((parameters->options().shared()
&& (gsym->visibility() == elfcpp::STV_INTERNAL
|| gsym->visibility() == elfcpp::STV_PROTECTED
|| gsym->visibility() == elfcpp::STV_HIDDEN))
|| possible_function_pointer_reloc(r_type));
}
// Scan a relocation for a global symbol.
template<int size, bool big_endian>
inline void
Target_tilegx<size, big_endian>::Scan::global(Symbol_table* symtab,
Layout* layout,
Target_tilegx<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
Symbol* gsym)
{
// A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
// section. We check here to avoid creating a dynamic reloc against
// _GLOBAL_OFFSET_TABLE_.
if (!target->has_got_section()
&& strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
target->got_section(symtab, layout);
// A STT_GNU_IFUNC symbol may require a PLT entry.
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& this->reloc_needs_plt_for_ifunc(object, r_type))
target->make_plt_entry(symtab, layout, gsym);
switch (r_type)
{
case elfcpp::R_TILEGX_NONE:
case elfcpp::R_TILEGX_GNU_VTINHERIT:
case elfcpp::R_TILEGX_GNU_VTENTRY:
break;
case elfcpp::R_TILEGX_DEST_IMM8_X1:
case elfcpp::R_TILEGX_IMM16_X0_HW0:
case elfcpp::R_TILEGX_IMM16_X1_HW0:
case elfcpp::R_TILEGX_IMM16_X0_HW1:
case elfcpp::R_TILEGX_IMM16_X1_HW1:
case elfcpp::R_TILEGX_IMM16_X0_HW2:
case elfcpp::R_TILEGX_IMM16_X1_HW2:
case elfcpp::R_TILEGX_IMM16_X0_HW3:
case elfcpp::R_TILEGX_IMM16_X1_HW3:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
case elfcpp::R_TILEGX_64:
case elfcpp::R_TILEGX_32:
case elfcpp::R_TILEGX_16:
case elfcpp::R_TILEGX_8:
{
// Make a PLT entry if necessary.
if (gsym->needs_plt_entry())
{
target->make_plt_entry(symtab, layout, gsym);
// Since this is not a PC-relative relocation, we may be
// taking the address of a function. In that case we need to
// set the entry in the dynamic symbol table to the address of
// the PLT entry.
if (gsym->is_from_dynobj() && !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
{
if (!parameters->options().output_is_position_independent()
&& gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else if (((size == 64 && r_type == elfcpp::R_TILEGX_64)
|| (size == 32 && r_type == elfcpp::R_TILEGX_32))
&& gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false)
&& !gsym->is_from_dynobj()
&& !gsym->is_undefined()
&& !gsym->is_preemptible())
{
// Use an IRELATIVE reloc for a locally defined
// STT_GNU_IFUNC symbol. This makes a function
// address in a PIE executable match the address in a
// shared library that it links against.
Reloc_section* rela_dyn =
target->rela_irelative_section(layout);
unsigned int r_type = elfcpp::R_TILEGX_IRELATIVE;
rela_dyn->add_symbolless_global_addend(gsym, r_type,
output_section, object,
data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
} else if ((r_type == elfcpp::R_TILEGX_64
|| r_type == elfcpp::R_TILEGX_32)
&& gsym->can_use_relative_reloc(false))
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE,
output_section, object,
data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend(), false);
}
else
{
this->check_non_pic(object, r_type);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
}
}
break;
case elfcpp::R_TILEGX_BROFF_X1:
case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
case elfcpp::R_TILEGX_64_PCREL:
case elfcpp::R_TILEGX_32_PCREL:
case elfcpp::R_TILEGX_16_PCREL:
case elfcpp::R_TILEGX_8_PCREL:
{
// Make a PLT entry if necessary.
if (gsym->needs_plt_entry())
target->make_plt_entry(symtab, layout, gsym);
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
{
if (parameters->options().output_is_executable()
&& gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else
{
this->check_non_pic(object, r_type);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
}
}
break;
case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
{
// The symbol requires a GOT entry.
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
if (gsym->final_value_is_known())
{
// For a STT_GNU_IFUNC symbol we want the PLT address.
if (gsym->type() == elfcpp::STT_GNU_IFUNC)
got->add_global_plt(gsym, GOT_TYPE_STANDARD);
else
got->add_global(gsym, GOT_TYPE_STANDARD);
}
else
{
// If this symbol is not fully resolved, we need to add a
// dynamic relocation for it.
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
// Use a GLOB_DAT rather than a RELATIVE reloc if:
//
// 1) The symbol may be defined in some other module.
//
// 2) We are building a shared library and this is a
// protected symbol; using GLOB_DAT means that the dynamic
// linker can use the address of the PLT in the main
// executable when appropriate so that function address
// comparisons work.
//
// 3) This is a STT_GNU_IFUNC symbol in position dependent
// code, again so that function address comparisons work.
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible()
|| (gsym->visibility() == elfcpp::STV_PROTECTED
&& parameters->options().shared())
|| (gsym->type() == elfcpp::STT_GNU_IFUNC
&& parameters->options().output_is_position_independent()))
got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
elfcpp::R_TILEGX_GLOB_DAT);
else
{
// For a STT_GNU_IFUNC symbol we want to write the PLT
// offset into the GOT, so that function pointer
// comparisons work correctly.
bool is_new;
if (gsym->type() != elfcpp::STT_GNU_IFUNC)
is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
else
{
is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
// Tell the dynamic linker to use the PLT address
// when resolving relocations.
if (gsym->is_from_dynobj()
&& !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
if (is_new)
{
unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
rela_dyn->add_global_relative(gsym,
r_type,
got, got_off, 0, false);
}
}
}
}
break;
// a minor difference here for R_TILEGX_JUMPOFF_X1
// between bfd linker and gold linker for gold, when
// R_TILEGX_JUMPOFF_X1 against global symbol, we
// turn it into JUMPOFF_X1_PLT, otherwise the distance
// to the symbol function may overflow at runtime.
case elfcpp::R_TILEGX_JUMPOFF_X1:
case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
// If the symbol is fully resolved, this is just a PC32 reloc.
// Otherwise we need a PLT entry.
if (gsym->final_value_is_known())
break;
// If building a shared library, we can also skip the PLT entry
// if the symbol is defined in the output file and is protected
// or hidden.
if (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible())
break;
target->make_plt_entry(symtab, layout, gsym);
break;
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_TLS_GD_CALL:
case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
case elfcpp::R_TILEGX_TLS_IE_LOAD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
{
const bool is_final = gsym->final_value_is_known();
const tls::Tls_optimization opt_t =
Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final,
r_type);
switch (r_type)
{
// only expand to plt against __tls_get_addr in GD model
case elfcpp::R_TILEGX_TLS_GD_CALL:
if (opt_t == tls::TLSOPT_NONE) {
// FIXME: it's better '__tls_get_addr' referenced explictly
if (!target->tls_get_addr_sym_defined_) {
Symbol* sym = NULL;
options::parse_set(NULL, "__tls_get_addr",
(gold::options::String_set*)
&parameters->options().undefined());
symtab->add_undefined_symbols_from_command_line(layout);
target->tls_get_addr_sym_defined_ = true;
sym = symtab->lookup("__tls_get_addr");
sym->set_in_reg();
}
target->make_plt_entry(symtab, layout,
symtab->lookup("__tls_get_addr"));
}
break;
// only make effect when applying relocation
case elfcpp::R_TILEGX_TLS_IE_LOAD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
break;
// GD: requires two GOT entry for module index and offset
// IE: requires one GOT entry for tp-relative offset
// LE: shouldn't happen for global symbol
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
{
if (opt_t == tls::TLSOPT_NONE) {
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
target->rela_dyn_section(layout),
size == 32
? elfcpp::R_TILEGX_TLS_DTPMOD32
: elfcpp::R_TILEGX_TLS_DTPMOD64,
size == 32
? elfcpp::R_TILEGX_TLS_DTPOFF32
: elfcpp::R_TILEGX_TLS_DTPOFF64);
} else if (opt_t == tls::TLSOPT_TO_IE) {
// Create a GOT entry for the tp-relative offset.
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
target->rela_dyn_section(layout),
size == 32
? elfcpp::R_TILEGX_TLS_TPOFF32
: elfcpp::R_TILEGX_TLS_TPOFF64);
} else if (opt_t != tls::TLSOPT_TO_LE)
// exteranl symbol should not be optimized to TO_LE
unsupported_reloc_global(object, r_type, gsym);
}
break;
// IE
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
{
layout->set_has_static_tls();
if (opt_t == tls::TLSOPT_NONE) {
// Create a GOT entry for the tp-relative offset.
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
target->rela_dyn_section(layout),
size == 32
? elfcpp::R_TILEGX_TLS_TPOFF32
: elfcpp::R_TILEGX_TLS_TPOFF64);
} else if (opt_t != tls::TLSOPT_TO_LE)
unsupported_reloc_global(object, r_type, gsym);
}
break;
// LE
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
layout->set_has_static_tls();
if (parameters->options().shared()) {
// defer to dynamic linker
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_symbolless_global_addend(gsym, r_type,
output_section, object,
data_shndx,
reloc.get_r_offset(), 0);
}
break;
default:
gold_unreachable();
}
}
break;
// below are outstanding relocs
// should not existed in static linking stage
case elfcpp::R_TILEGX_COPY:
case elfcpp::R_TILEGX_GLOB_DAT:
case elfcpp::R_TILEGX_JMP_SLOT:
case elfcpp::R_TILEGX_RELATIVE:
case elfcpp::R_TILEGX_TLS_TPOFF32:
case elfcpp::R_TILEGX_TLS_TPOFF64:
case elfcpp::R_TILEGX_TLS_DTPMOD32:
case elfcpp::R_TILEGX_TLS_DTPMOD64:
case elfcpp::R_TILEGX_TLS_DTPOFF32:
case elfcpp::R_TILEGX_TLS_DTPOFF64:
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
default:
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type,
gsym->demangled_name().c_str());
break;
}
}
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_tilegx<size, big_endian> Tilegx;
typedef typename Target_tilegx<size, big_endian>::Scan Scan;
typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
if (sh_type == elfcpp::SHT_REL)
{
return;
}
gold::gc_process_relocs<size, big_endian, Tilegx, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Scan relocations for a section.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_tilegx<size, big_endian> Tilegx;
typedef typename Target_tilegx<size, big_endian>::Scan Scan;
typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
if (sh_type == elfcpp::SHT_REL)
{
gold_error(_("%s: unsupported REL reloc section"),
object->name().c_str());
return;
}
gold::scan_relocs<size, big_endian, Tilegx, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::do_define_standard_symbols(
Symbol_table* symtab,
Layout* layout)
{
Output_section* feedback_section = layout->find_output_section(".feedback");
if (feedback_section != NULL)
{
symtab->define_in_output_data("__feedback_section_end",
NULL,
Symbol_table::PREDEFINED,
feedback_section,
0,
0,
elfcpp::STT_NOTYPE,
elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN,
0,
true, // offset_is_from_end
false);
}
}
// Finalize the sections.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::do_finalize_sections(
Layout* layout,
const Input_objects*,
Symbol_table* symtab)
{
const Reloc_section* rel_plt = (this->plt_ == NULL
? NULL
: this->plt_->rela_plt());
layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
this->rela_dyn_, true, true);
// Emit any relocs we saved in an attempt to avoid generating COPY
// relocs.
if (this->copy_relocs_.any_saved_relocs())
this->copy_relocs_.emit(this->rela_dyn_section(layout));
// Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
// the .got section.
Symbol* sym = this->global_offset_table_;
if (sym != NULL)
{
uint64_t data_size = this->got_->current_data_size();
symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
// If the .got section is more than 0x8000 bytes, we add
// 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
// bit relocations have a greater chance of working.
if (data_size >= 0x8000)
symtab->get_sized_symbol<size>(sym)->set_value(
symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
}
if (parameters->doing_static_link()
&& (this->plt_ == NULL || !this->plt_->has_irelative_section()))
{
// If linking statically, make sure that the __rela_iplt symbols
// were defined if necessary, even if we didn't create a PLT.
static const Define_symbol_in_segment syms[] =
{
{
"__rela_iplt_start", // name
elfcpp::PT_LOAD, // segment_type
elfcpp::PF_W, // segment_flags_set
elfcpp::PF(0), // segment_flags_clear
0, // value
0, // size
elfcpp::STT_NOTYPE, // type
elfcpp::STB_GLOBAL, // binding
elfcpp::STV_HIDDEN, // visibility
0, // nonvis
Symbol::SEGMENT_START, // offset_from_base
true // only_if_ref
},
{
"__rela_iplt_end", // name
elfcpp::PT_LOAD, // segment_type
elfcpp::PF_W, // segment_flags_set
elfcpp::PF(0), // segment_flags_clear
0, // value
0, // size
elfcpp::STT_NOTYPE, // type
elfcpp::STB_GLOBAL, // binding
elfcpp::STV_HIDDEN, // visibility
0, // nonvis
Symbol::SEGMENT_START, // offset_from_base
true // only_if_ref
}
};
symtab->define_symbols(layout, 2, syms,
layout->script_options()->saw_sections_clause());
}
}
// Perform a relocation.
template<int size, bool big_endian>
inline bool
Target_tilegx<size, big_endian>::Relocate::relocate(
const Relocate_info<size, big_endian>* relinfo,
unsigned int,
Target_tilegx<size, big_endian>* target,
Output_section*,
size_t relnum,
const unsigned char* preloc,
const Sized_symbol<size>* gsym,
const Symbol_value<size>* psymval,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type)
{
if (view == NULL)
return true;
typedef Tilegx_relocate_functions<size, big_endian> TilegxReloc;
typename TilegxReloc::Tilegx_howto r_howto;
const elfcpp::Rela<size, big_endian> rela(preloc);
unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
const Sized_relobj_file<size, big_endian>* object = relinfo->object;
// Pick the value to use for symbols defined in the PLT.
Symbol_value<size> symval;
if (gsym != NULL
&& gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
{
symval.set_output_value(target->plt_address_for_global(gsym));
psymval = &symval;
}
else if (gsym == NULL && psymval->is_ifunc_symbol())
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
if (object->local_has_plt_offset(r_sym))
{
symval.set_output_value(target->plt_address_for_local(object, r_sym));
psymval = &symval;
}
}
elfcpp::Elf_Xword addend = rela.get_r_addend();
// Get the GOT offset if needed.
// For tilegx, the GOT pointer points to the start of the GOT section.
bool have_got_offset = false;
int got_offset = 0;
int got_base = target->got_ != NULL
? target->got_->current_data_size() >= 0x8000 ? 0x8000 : 0
: 0;
unsigned int got_type = GOT_TYPE_STANDARD;
bool always_apply_relocation = false;
switch (r_type)
{
case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(got_type));
got_offset = gsym->got_offset(got_type) - got_base;
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
got_offset =
object->local_got_offset(r_sym, got_type) - got_base;
}
have_got_offset = true;
break;
default:
break;
}
r_howto = TilegxReloc::howto[r_type];
switch (r_type)
{
case elfcpp::R_TILEGX_NONE:
case elfcpp::R_TILEGX_GNU_VTINHERIT:
case elfcpp::R_TILEGX_GNU_VTENTRY:
break;
case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
gold_assert(have_got_offset);
symval.set_output_value(got_offset);
psymval = &symval;
always_apply_relocation = true;
addend = 0;
// Fall through.
// when under PIC mode, these relocations are deferred to rtld
case elfcpp::R_TILEGX_IMM16_X0_HW0:
case elfcpp::R_TILEGX_IMM16_X1_HW0:
case elfcpp::R_TILEGX_IMM16_X0_HW1:
case elfcpp::R_TILEGX_IMM16_X1_HW1:
case elfcpp::R_TILEGX_IMM16_X0_HW2:
case elfcpp::R_TILEGX_IMM16_X1_HW2:
case elfcpp::R_TILEGX_IMM16_X0_HW3:
case elfcpp::R_TILEGX_IMM16_X1_HW3:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
if (always_apply_relocation
|| !parameters->options().output_is_position_independent())
TilegxReloc::imm_x_general(view, object, psymval, addend, r_howto);
break;
case elfcpp::R_TILEGX_JUMPOFF_X1:
case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
gold_assert(gsym == NULL
|| gsym->has_plt_offset()
|| gsym->final_value_is_known()
|| (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible()));
TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend,
address, r_howto);
break;
case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend,
address, r_howto);
break;
case elfcpp::R_TILEGX_BROFF_X1:
case elfcpp::R_TILEGX_DEST_IMM8_X1:
TilegxReloc::imm_x_two_part_general(view, object, psymval,
addend, address, r_type);
break;
// below are general relocation types, which can be
// handled by target-independent handlers
case elfcpp::R_TILEGX_64:
TilegxReloc::abs64(view, object, psymval, addend);
break;
case elfcpp::R_TILEGX_64_PCREL:
TilegxReloc::pc_abs64(view, object, psymval, addend, address);
break;
case elfcpp::R_TILEGX_32:
TilegxReloc::abs32(view, object, psymval, addend);
break;
case elfcpp::R_TILEGX_32_PCREL:
TilegxReloc::pc_abs32(view, object, psymval, addend, address);
break;
case elfcpp::R_TILEGX_16:
TilegxReloc::abs16(view, object, psymval, addend);
break;
case elfcpp::R_TILEGX_16_PCREL:
TilegxReloc::pc_abs16(view, object, psymval, addend, address);
break;
case elfcpp::R_TILEGX_8:
Relocate_functions<size, big_endian>::rela8(view, object,
psymval, addend);
break;
case elfcpp::R_TILEGX_8_PCREL:
Relocate_functions<size, big_endian>::pcrela8(view, object,
psymval, addend, address);
break;
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_TLS_GD_CALL:
case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
case elfcpp::R_TILEGX_TLS_IE_LOAD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
{
const bool is_final = (gsym == NULL
? !parameters->options().shared()
: gsym->final_value_is_known());
tls::Tls_optimization opt_t =
Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final,
r_type);
switch (r_type)
{
case elfcpp::R_TILEGX_TLS_GD_CALL:
{
if (opt_t == tls::TLSOPT_NONE) {
Symbol *tls_sym = relinfo->symtab->lookup("__tls_get_addr");
symval.set_output_value(
target->plt_address_for_global(tls_sym));
psymval = &symval;
TilegxReloc::imm_x_pcrel_general(view, object, psymval,
addend, address, r_howto);
}
else if (opt_t == tls::TLSOPT_TO_IE
|| opt_t == tls::TLSOPT_TO_LE)
TilegxReloc::tls_relax(view, r_type, opt_t);
}
break;
// XX_TLS_GD is the same as normal X_GOT relocation
// except allocating a got entry pair,
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
if (opt_t == tls::TLSOPT_NONE) {
got_type = GOT_TYPE_TLS_PAIR;
have_got_offset = true;
} else if (opt_t == tls::TLSOPT_TO_IE) {
got_type = GOT_TYPE_TLS_OFFSET;
have_got_offset = true;
}
goto do_update_value;
// XX_TLS_IE is the same as normal X_GOT relocation
// except allocating one additional runtime relocation
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
if (opt_t == tls::TLSOPT_NONE) {
got_type = GOT_TYPE_TLS_OFFSET;
have_got_offset = true;
}
// Fall through.
do_update_value:
if (have_got_offset) {
if (gsym != NULL) {
gold_assert(gsym->has_got_offset(got_type));
got_offset = gsym->got_offset(got_type) - got_base;
} else {
unsigned int r_sym
= elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
got_offset =
object->local_got_offset(r_sym, got_type) - got_base;
}
}
if (opt_t == tls::TLSOPT_NONE
|| opt_t == tls::TLSOPT_TO_IE) {
// for both GD/IE, these relocations
// actually calculate got offset, so
// there behavior are the same
gold_assert(have_got_offset);
symval.set_output_value(got_offset);
psymval = &symval;
addend = 0;
TilegxReloc::imm_x_general(view, object, psymval,
addend, r_howto);
break;
} // else if (opt_t == tls::TLSOPT_TO_LE)
// both GD/IE are turned into LE, which
// is absolute relocation.
//
// | go through
// |
// V
// LE
//
// tp
// |
// V
// t_var1 | t_var2 | t_var3 | ...
// --------------------------------------------------
//
// so offset to tp should be negative, we get offset
// from the following formular for LE
//
// t_var1_off = t_var1_sym_value - tls_section_start
//
case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
{
Output_segment *tls_segment = relinfo->layout->tls_segment();
if (tls_segment == NULL) {
gold_assert(parameters->errors()->error_count() > 0
|| issue_undefined_symbol_error(gsym));
return false;
}
typename elfcpp::Elf_types<size>::Elf_Addr value
= psymval->value(relinfo->object, 0);
symval.set_output_value(value);
psymval = &symval;
TilegxReloc::imm_x_general(view, object, psymval,
addend, r_howto);
}
break;
// tls relaxation
case elfcpp::R_TILEGX_TLS_IE_LOAD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
TilegxReloc::tls_relax(view, r_type, opt_t);
break;
default:
gold_unreachable();
}
}
break;
// below are outstanding relocs
// should not existed in static linking stage
case elfcpp::R_TILEGX_COPY:
case elfcpp::R_TILEGX_GLOB_DAT:
case elfcpp::R_TILEGX_JMP_SLOT:
case elfcpp::R_TILEGX_RELATIVE:
case elfcpp::R_TILEGX_TLS_TPOFF32:
case elfcpp::R_TILEGX_TLS_TPOFF64:
case elfcpp::R_TILEGX_TLS_DTPMOD32:
case elfcpp::R_TILEGX_TLS_DTPMOD64:
case elfcpp::R_TILEGX_TLS_DTPOFF32:
case elfcpp::R_TILEGX_TLS_DTPOFF64:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unexpected reloc %u in object file"),
r_type);
break;
default:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"),
r_type);
break;
}
return true;
}
// Relocate section data.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::relocate_section(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type view_size,
const Reloc_symbol_changes* reloc_symbol_changes)
{
typedef Target_tilegx<size, big_endian> Tilegx;
typedef typename Target_tilegx<size, big_endian>::Relocate Tilegx_relocate;
typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::relocate_section<size, big_endian, Tilegx, Tilegx_relocate,
gold::Default_comdat_behavior, Classify_reloc>(
relinfo,
this,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
address,
view_size,
reloc_symbol_changes);
}
// Apply an incremental relocation. Incremental relocations always refer
// to global symbols.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::apply_relocation(
const Relocate_info<size, big_endian>* relinfo,
typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
unsigned int r_type,
typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
const Symbol* gsym,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type view_size)
{
gold::apply_relocation<size, big_endian, Target_tilegx<size, big_endian>,
typename Target_tilegx<size, big_endian>::Relocate>(
relinfo,
this,
r_offset,
r_type,
r_addend,
gsym,
view,
address,
view_size);
}
// Scan the relocs during a relocatable link.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::scan_relocatable_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs* rr)
{
typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
Scan_relocatable_relocs;
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols,
rr);
}
// Scan the relocs for --emit-relocs.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::emit_relocs_scan(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_syms,
Relocatable_relocs* rr)
{
typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
typedef gold::Default_emit_relocs_strategy<Classify_reloc>
Emit_relocs_strategy;
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_syms,
rr);
}
// Relocate a section during a relocatable link.
template<int size, bool big_endian>
void
Target_tilegx<size, big_endian>::relocate_relocs(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size)
{
typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::relocate_relocs<size, big_endian, Classify_reloc>(
relinfo,
prelocs,
reloc_count,
output_section,
offset_in_output_section,
view,
view_address,
view_size,
reloc_view,
reloc_view_size);
}
// Return the value to use for a dynamic which requires special
// treatment. This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
template<int size, bool big_endian>
uint64_t
Target_tilegx<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
{
gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
return this->plt_address_for_global(gsym);
}
// Return the value to use for the base of a DW_EH_PE_datarel offset
// in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
// assembler can not write out the difference between two labels in
// different sections, so instead of using a pc-relative value they
// use an offset from the GOT.
template<int size, bool big_endian>
uint64_t
Target_tilegx<size, big_endian>::do_ehframe_datarel_base() const
{
gold_assert(this->global_offset_table_ != NULL);
Symbol* sym = this->global_offset_table_;
Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
return ssym->value();
}
// The selector for tilegx object files.
template<int size, bool big_endian>
class Target_selector_tilegx : public Target_selector
{
public:
Target_selector_tilegx()
: Target_selector(elfcpp::EM_TILEGX, size, big_endian,
(size == 64
? (big_endian ? "elf64-tilegx-be" : "elf64-tilegx-le")
: (big_endian ? "elf32-tilegx-be"
: "elf32-tilegx-le")),
(size == 64
? (big_endian ? "elf64tilegx_be" : "elf64tilegx")
: (big_endian ? "elf32tilegx_be" : "elf32tilegx")))
{ }
Target*
do_instantiate_target()
{ return new Target_tilegx<size, big_endian>(); }
};
Target_selector_tilegx<64, false> target_selector_tilegx64_le;
Target_selector_tilegx<32, false> target_selector_tilegx32_le;
Target_selector_tilegx<64, true> target_selector_tilegx64_be;
Target_selector_tilegx<32, true> target_selector_tilegx32_be;
} // End anonymous namespace.